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Abstract

Test Time Adaptation (TTA) is a pivotal concept in ma-
chine learning, enabling models to perform well in real-
world scenarios, where test data distribution differs from
training. In this work, we propose a novel approach
called pseudo Source guided Target Clustering (pSTarC)
addressing the relatively unexplored area of TTA under
real-world domain shifts. This method draws inspiration
from target clustering techniques and exploits the source
classifier for generating pseudo-source samples. The test
samples are strategically aligned with these pseudo-source
samples, facilitating their clustering and thereby enhanc-
ing TTA performance. pSTarC operates solely within the
fully test-time adaptation protocol, removing the need for
actual source data. Experimental validation on a vari-
ety of domain shift datasets, namely VisDA, Office-Home,
DomainNet-126, CIFAR-100C verifies pSTarC’s effective-
ness. This method exhibits significant improvements in pre-
diction accuracy along with efficient computational require-
ments. Furthermore, we also demonstrate the universality
of the pSTarC framework by showing its effectiveness for
the continuous TTA framework.

1. Introduction

Over the past decade, deep networks have shown a
continuous upward trend due to the availability of large
datasets [4, 6, 19], significant improvements in computing
power, and advancements in algorithms [8, 23] and archi-
tectures [9, 26]. But while humans can adapt seamlessly
to new domains, the performance of deep networks deteri-
orate significantly when the test and training distributions
differ. In practical scenarios, a trained model is often de-
ployed in an unseen test environment, so equipping it with
good adaptation capabilities to mitigate the adverse effects
of any domain shift is crucial. Additionally, since access
to the source data may be difficult because of privacy con-
cerns or storage limitations, there is a significant interest in

the following research directions: (i) Source-free Domain
Adaptation (SFDA) [17, 33, 34], which assumes access to
the source model and a large amount of unlabeled test data
and (ii) Test-Time adaptation (TTA) [1, 2, 29], where test
data arrives in an online manner, one batch at a time, al-
lowing for one-step model adaptation followed by predic-
tion. SFDA and TTA methods have been developed inde-
pendently, resulting in fundamentally different approaches.

Here, we address the challenging and more practical task
of swiftly adapting models without the need for extensive
accumulation of test data, i.e. the TTA setting. Unlike
SFDA methods which have been evaluated on real world
domain shift datasets like VisDA [22], DomainNet [21] and
Office-Home [28], TTA methods have primarily been eval-
uated within the confines of artificially corrupted data. It
is only recently that researchers have started to address the
TTA task for such real-world domain shifts [2, 13, 14].

In this work, we propose a simple yet effective TTA
strategy termed pseudo Source guided Target Clustering
(pSTarC). It is inspired by the exceptional performance of
SFDA techniques like SHOT [17], NRC [33], and AaD
[34] in the context of the real world domain shift bench-
marks. Notably, contemporary SFDA methods, including
NRC and AaD, concentrate on refining target sample clus-
tering, leveraging the luxury of abundant unlabeled target
data. To extend this SFDA principle to TTA, one com-
pelling avenue is the maintenance of a feature bank, which
dynamically populates as new target data becomes avail-
able, enriching the adaptation process. While approaches
like AdaContrast [2] have successfully harnessed this con-
cept for TTA, they need to store auxiliary components like
the momentum encoder and key features, a constraint that
might not align well with an online TTA framework.

Our proposed pSTarC approach aims to leverage the
power of SFDA objectives while adhering to the principle of
minimizing memory and storage requirements for TTA task.
Generally, the source-trained classifier remains unchanged
during TTA to preserve the valuable class-discriminative in-
sights gained from the source. Building on this insight, we
introduce a novel strategy: utilizing the classifier to gener-
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ate a diverse array of pseudo-source samples, thereby steer-
ing the target clustering process. Impressively, our findings
reveal that generating as few as 20 pseudo-source samples
per class is adequate to achieve state-of-the-art TTA per-
formance, without imposing a significant burden on storage
demands. Thus, the main contributions of this work can be
summarized as follows:

1. We propose the pSTarC framework, which generates
pseudo-source samples to guide the target clustering
during test time adaptation.

2. We strive to achieve TTA using SFDA objectives,
which not only improves the TTA performance signif-
icantly for real domain-shifts, but also helps to unify
the seemingly disparate research directions.

3. pSTarC outperforms the state-of-the-art TTA tech-
niques on Office-Home and DomainNet, and at par on
VisDA, while requiring much lesser memory.

4. pSTarC also seamlessly works in Continual Test-Time
Adaptation (CTTA) [31] scenario, where the test dis-
tribution changes with time. Here, its performance is
at par with current state-of-the-art approaches on the
large-scale DomainNet-126 benchmark.

In a nutshell, pSTarC aligns seamlessly with our objective
to pave the way for swift, efficient TTA in the face of real-
world domain shifts, building upon the insights garnered
from the relationship between SFDA techniques and such
demanding benchmarks.

2. Related Works
Here, we discuss the related work in Source-Free

Domain Adaptation, Test-Time Adaptation, Continuous
Test Time Adaptation and Model Inversion.

Source-free domain adaptation (SFDA) aims to adapt a
source domain trained model to a target domain without
access to any labeled data from either the source or target
domain. SFDA methods typically assume access to abun-
dant unlabeled data from the target domain and leverage the
structure of the data to refine the target predictions. [17]
proposes to cluster target features by mutual entropy max-
imization along with pseudo labeling, while keeping the
classifier fixed. [2] extends the idea in [17] proposing to
refine the pseudo labels using a feature bank, alongside do-
ing self-supervised contrastive learning [3]. Another line
of work include [33, 34], where they exploit the inherent
semantic structure of the target features extracted from the
source model. They reinforce consistency between the pre-
dictions of a sample and its local neighbors while also en-
suring diversity to avoid degenerate predictions.

Test Time Adaptation (TTA) further relaxes the assump-
tions on data availability compared to SFDA. TENT [29]
proposed the more practical fully test time adaptation set-
ting, where source data cannot be accessed at all, and the
model can only utilize the test samples in each batch en-
countered in an online manner for adaptation. They propose
minimizing the entropy of the model predictions on the test
data. More recently LAME [1] uses Concave-Convex Pro-
cedure (CCCP) to modify the feature vectors to obtain bet-
ter classification, while AdaContrast [2] addresses SFDA
and TTA settings by using contrastive learning with nearest
neighbour soft voting for online pseudo label refinement.
C-SFDA [14] uses curriculum learning in a Teacher Stu-
dent framework. Other works like EATA [20] uses a small
buffer from source distribution. TTN [18] trains a modi-
fied BN layer to leverage source data for improved TTA.
In [13], they synthesize source proxy images by condens-
ing the source dataset, which is then used during TTA after
stylizing them to match the test distribution. Our work falls
in the category of fully test-time adaptation [2, 14, 29, 31].
Continual Test Time Adaptation (CTTA) As a further ex-
tension of TTA, the concept of continual test-time adapta-
tion (CTTA) has been recently introduced [31]. This pro-
tocol recognizes the dynamic nature of the testing environ-
ment, where the test domain evolves over time. CoTTA [31]
adopts strategies like weight-averaged and augmentation-
averaged predictions in a teacher-student framework to mit-
igate error accumulation. Additionally, it retains a fraction
of neurons with source pre-trained weights during each iter-
ation to prevent catastrophic forgetting, thus enabling model
adaptation while preserving source knowledge. RMT [5] is
a recent CTTA method that uses symmetric cross-entropy
loss and contrastive loss in a teacher student framework.
Model inversion is a recent research direction explored in
[15, 24, 30] for image generation where they optimize the
input space to generate an image x̂ using a pre-trained deep
network. To do this, given an arbitrary target y which can
be a label or a reference image, a trainable input x̂ in the im-
age space is initialized with random noise. This input space
is then optimized by minimizing a loss function L(x̂, y),
which is usually cross-entropy loss and a regularizer R(x̂)
to induce natural image prior. The training is done in an ad-
versarial manner by alternating between the optimization of
the synthesized image and that of the discriminator weights.
Inspired by the effectiveness of these methods, here we pro-
pose a classifier guided feature generation approach, which
is used for generating pseudo-source samples for guiding
the clustering of the target data.

3. Problem Setting & Motivation
Firstly, the source model is trained using labeled source

data. Then, in the Test Time Adaptation (TTA) stage, this
model is adapted using the test batches in an online manner.
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Source training: The model is first trained using labeled
source data Ds = {xs

i , y
s
i }

ns
i=1 comprising of C classes.

Here, xs
i ∈ Xs and ysi ∈ Ys denote the source sample and

its class label, and ns is the number of training samples.
We denote the source model as Fs = Hs ◦Gs, where Gs

is the feature extractor and Hs is the classifier. Following
[2, 17, 34], the source model Fs : Xs → Ys is trained by
minimizing the label-smoothing cross entropy loss as
Test Time Adaptation: Given the source model Fs,
during TTA, the target model Ft is initialized with the
source model Fs. We only have access to the unlabeled
test samples xt coming in batches from an unseen test
distribution Dt. Here, we address the closed setting where
the source and target samples come from the same C
classes. The goal is to continuously adapt Ft : Xt → Yt

using the unlabeled samples xt ∈ Xt (in batches) in an
online manner.

Continual Test Time Adaptation: In addition to the above
setup, the test data can come from multiple domains which
changes over time such that D(1)

t ̸= D
(2)
t ̸= . . . ̸= Ds

leading to the continual test time adaptation scenario.

4. Proposed Framework
The proposed pSTarC framework is based on effectively

clustering the target samples which are available during test
time. Our formulation is inspired by the clustering frame-
work proposed in the state-of-the-art SFDA technique,
AaD [34], which we briefly describe below.

Attracting and Dispersing (AaD): AaD [34] treats
SFDA as an unsupervised clustering problem, where
consistency is enforced between predictions of local
neighbourhood features, while also ensuring diversity in
the feature space. The test objective for a sample xi from a
test batch xt is

L(xi) = −
∑

xj∈Ni

pTi pj + λ
∑

xm∈xt

pTi pm (1)

where pi refers to the softmax prediction vector of the sam-
ple xi ∈ xt, pj in the first term corresponds to the prediction
vectors in its neighborhood Ni, pm in the second term cor-
responds to the prediction vectors of the samples xm in the
current batch xt.

Now, we describe the proposed pSTarC framework for
fully TTA task, which we also illustrate in Fig.( 1). In a TTA
setting, as mentioned before, the labeled source samples are
unavailable, and only the source model is available for adap-
tation. In addition, since the number of samples in a batch
is usually quite low, it is a common practice to freeze the
source trained classifier and update only the feature extrac-
tor to align target features with those of the source. Hence,

we set Ht = Hs = H and only update the feature extrac-
tor Gt using the test data in an online manner. The goal
is to adapt the test features such that they align with the
source features so that the classifier H is transferable to test
data. The classifier, being trained in a supervised manner
using abundant source data, defines the decision boundaries
for which the source data is perfectly classified. We lever-
age this fact to synthesize pseudo-source features, which are
used to guide the target clustering. Given the source model,
this process is only done once to store few features and cor-
responding prediction scores, and can be utilized through-
out the TTA process. We describe the feature generation
and clustering in detail below.

4.1. Pseudo Source Feature Generation

Since the decision boundaries in the feature space re-
main fixed (due to the classifiers remaining unchanged), it
is important to align the target features with the original
source features, which will inherently lead to better clus-
tering and hence better classification of the target samples.
First, we utilize the fixed source classifier to synthesize
pseudo-source features. By aligning the target to these gen-
erated features, we hope to improve the adaptation perfor-
mance of the model and make it more robust to the domain
shift between the source and target domains.

Here, we aim to generate, say N pseudo-source features,
where N = C × nc, C being the number of classes and
nc is the number of samples per class. We first randomly
initialize a feature bank f ∈ RN×d, where d is the fea-
ture dimension. To compute the pseudo-source features, we
use the information maximization loss which is a combi-
nation of entropy minimization and diversity maximization.
These losses have been widely used in unsupervised clus-
tering methods [17] to optimize a feature extractor to make
the predictions of unlabeled samples diverse and confident.
However, our objectives are very different. While they aim
to learn a good feature extractor, our goal is to synthesize
pseudo-source features given the source trained classifier
H. We want to generate features which are likely to be
correctly classified by the source classifier. This is achieved
by minimizing the following entropy loss:

Lent (f ;H) = − 1

N

N∑
i=1

C∑
k=1

δk (H (fi)) log δk (H (fi))

(2)
where δk (H (fi)) is the softmax score of class k for the
pseudo-source feature fi ∈ f .

Along with this, we use diversity maximization loss to
avoid the trivial solution where all feature vectors collapse
to the same class. This ensures there are adequate number
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Figure 1. pSTarC Framework: (1) Feature Generation: We randomly initialize a feature bank f which is iteratively optimized keeping the
classifier H fixed to minimize the entropy of the features while maximizing the diversity across classes using the loss in eqn (4). (2) Given
the learnt features, we aim to bring the low entropy samples towards the corresponding pseudo-source features. We anchor the high entropy
target samples to its own prediction. We also enforce consistency between the predictions of the test sample and its strong augmentation.

of feature vectors from each class in f .

Ldiv (f ;H) =

C∑
k=1

p̂k log p̂k

= DKL

(
p̂,

1

C
1C

)
− logC

(3)

The loss is computed based on the mean softmax score of
the test batch p̂ = Ef∈f [δ (h (f))]. The first term in the
equation is the Kullback-Leibler (KL) divergence between
the mean prediction vector p̂ and the uniform distribution
1
C1C . Here, p̂ represents the marginal class distribution of
the target data as estimated by the target model Ft, C is the
number of classes and 1C is a vector of ones with length
C. The KL divergence measures the dissimilarity between
two probability distributions, and in this context, it mea-
sures the discrepancy between the class distribution in the
feature bank and the ideal case where all classes are equally
represented. Overall, the diversity maximization loss en-
courages the feature bank to have a balanced representation
of features across all classes, which is important for im-
proving the clustering performance of the TTA algorithm.
To summarize, we optimize the following

f∗ = argmin
f

Lent(f ;H) + βLdiv(f ;H) (4)

In Fig.( 2), we visualize the generated features on setting 20
samples per class for VisDA dataset.

4.2. Pseudo Source Guided Target Clustering

The use of feature bank has proven to be effective in
Contrastive learning [7] and SFDA methods like AaD [34]
and AdaContrast [2]. The proposed feature bank consists
of pseudo-source features which are very different from the
target feature bank used in [2, 34]. Unlike target features
whose pseudo labels can be noisy, we can obtain clean la-
bels for the generated pseudo-source features. We explain
below how the generated features and their label informa-
tion can be leveraged to better cluster and align the target
features. We visually demonstrate the entire pSTarC frame-
work in Fig.( 1).

Pseudo-labeling based on confidence thresholding has
been used very effectively in several applications [27].
Here, we propose a soft pseudo-labeling approach to cluster
the target samples. Specifically, we identify the low entropy
test samples based on a threshold τt, which we define as the
mean entropy of the batch. We aim to align these selected
test samples to the nearest pseudo-source samples which
belong to the same class as the sample. Formally, given
the generated feature bank f∗, we first obtain their softmax
score vectors and pseudo labels. We denote pi = δ(H(fi))
as the softmax score vector and ŷi = argmaxc pi,c as the
pseudo label for feature fi, where pi,c is the score of feature
i for class c. We partition the features into sets Sc based on
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Method plane bycyl bus car horse knife mcycl person plant sktbrd train truck Average

Source 57.2 11.1 42.4 66.9 55.0 4.4 81.1 27.3 57.9 29.4 86.7 5.8 43.8
CAN∗ [12] 95.7 88.8 6.9 68.6 94.5 94.8 79.2 70.3 88.7 80.6 83.2 51.7 75.2
MCC∗ [11] 93.9 78.4 70.4 74.3 92.5 84.2 84.5 58.2 86.6 36.0 86.1 20.6 72.2

Source-Proxy TTA∗ [13] 92.5 82.4 85.8 74.2 92.7 88.5 83.9 85.8 92.8 62.5 75.2 32.5 79.1
BN-Adapt [25] 87.3 52.1 83.7 52.8 83.7 57.0 83.6 59.2 69.1 54.7 80.0 28.1 66.0

TENT [29] 91.1 45.6 86.4 66.4 88.7 75.1 90.3 76.4 84.4 47.1 83.6 13.7 70.7
AdaContrast [2] 95.0 68.0 82.7 69.6 94.3 80.8 90.3 79.6 90.6 69.7 87.6 36.0 78.7

C-SFDA [14] 95.9 75.6 88.4 68.1 95.4 86.1 94.5 82.0 89.2 80.2 87.3 43.8 82.1

pSTarC 95.1 82.1 83.6 61.2 93.8 89.9 87.9 80.7 90.9 81.9 87.6 48.1 81.9

Table 1. Average class accuracy (%) of pSTarC and other TTA methods on VisDA. ∗ refers to methods utilizing source data to enable TTA.

Figure 2. t-SNE plot of 240 generated pseudo-source features for
TTA on VisDA dataset comprising of 12 classes.

their pseudo labels as follows:

Sc = {fi; ŷi = c, fi ∈ f}; c ∈ {1 . . . C} (5)

These sets are obtained once for the pseudo-source features
generated and kept fixed throughout the adaptation process.

Given a test batch xt, we first obtain their confidence
scores and pseudo labels and set the threshold τt =
Exk∈xt

[ek], the mean entropy of the batch. For a test sam-
ple xk ∈ xt (test batch), we denote its pseudo label as ŷk
and compute the sample entropy as ek. For this sample, we
define its positive set p+ based on its entropy ek as follows:
(1) When ek < τt, we define the positives to be K nearest
pseudo-source samples from set Sŷk

. (2) For samples which
have high entropy, i.e, with ek > τt, as the pseudo labels
can be highly noisy, it is not desirable to enforce them to
align towards any pseudo-source samples. Instead, we an-
chor it to its own prediction vector by setting p+ = {pk}.
In addition, we use its strong image augmentation x̃k to en-
force prediction consistency between pk and p̃k, the predic-
tion vector of x̃k. This helps the model to be invariant to
image transformations and improves its generalization abil-
ity. We also use the dispersion loss that makes a sample
dissimilar to the other samples in the batch, which is repre-
sentative of the test data in all. This dispersion loss prevents

the model from the trivial solution of all test samples col-
lapsing to the same class. Our objective now is to make
the predictions of the target embeddings similar to its pos-
itives without facing mode collapse, which we achieve by
optimizing the following loss:

LpSTarC(xk) = − pTk p̃k

︸ ︷︷ ︸
Laug

−
∑

p+
j ∈p+

pTk p
+
j

︸ ︷︷ ︸
Lattr

+λ
∑

xj∈xt

pTk pj

︸ ︷︷ ︸
Ldisp

(6)
We perform one step optimization on test batch xt using
this loss and then predict their labels. This process is
repeated for each batch in the TTA setting.

What makes pSTarC an effective framework?
1. We operate in the fully test-time scenario, i.e., we do

not assume access to source data in any form unlike some
prior methods [11–13], which use the source data to equip
the model for future TTA. In pSTarC, we leverage the clas-
sifier which is a part of the given source model to synthesize
pseudo-source features to enable clustering during test time.

2. Feature banks have been effectively used in AdaCon-
trast [2] to cluster the test data. However, it is expensive to
have multiple large memory buffers which have to be con-
tinuously updated. We propose a simple one-step pseudo
source generation framework. These generated features can
be used during TTA forever, as the final goal indeed is to
align the test distribution to the source distribution.

3. pSTarC is a memory efficient framework as we only
store the online updating model, in contrast to AdaCon-
trast [2] and C-SFDA [14] where they need to store the
student and teacher model. Our framework is also more
efficient in runtime as we only forward pass the image and
its strong augmentation, while the state-of-the-art method
C-SFDA [14] uses 12 augmentations.

5. Experimental Evaluation
We evaluate the proposed framework extensively on

three real-world domain shift datasets, namely VisDA [22],
DomainNet-126 [21] and Office-Home [28] and also on a
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Method A → C A → P A → R C → A C → P C → R P → A P → C P → R R → A R → C R → P Average

Source 44.6 66.5 73.5 51.0 61.9 63.2 51.1 40.5 71.9 64.4 47.1 77.3 59.4
BN-Adapt [25] 38.9 59.9 71.5 55.0 62.0 65.2 54.4 37.3 71.6 65.2 41.3 73.8 58.0

TENT [29] 39.1 60.2 71.6 55.2 62.2 65.5 54.6 37.6 71.8 65.3 41.6 73.9 58.2
AdaContrast [2] 42.2 64.5 73.2 56.2 64.1 66.4 54.7 40.4 73.0 66.7 45.1 75.6 60.2

pSTarC 47.7 68.7 75.4 58.6 68.4 68.9 55.1 45.8 75.6 67.5 51.8 78.7 63.5

Table 2. Total accuracy (%) of pSTarC and other TTA methods on Office-Home dataset.

Method gaussian shot impulse defocus glass motion zoom snow frost fog brightness contrast elastic pixelate jpeg Average

Source 27 32 60.6 70.7 45.9 69.2 71.2 60.5 54.2 49.7 70.5 44.9 62.8 25.3 58.8 53.6
BN Adapt [25] 57.9 59.3 57.3 72.4 58.1 70.3 72.1 65.1 65 58.5 73.5 69.7 64.3 67.1 58.8 64.6

TENT [29] 62.7 65.1 65.5 75.0 62.6 72.5 75.0 69.6 68.1 66.2 76.0 71.8 67.1 71.6 63.1 68.8
AdaContrast [2] 57.3 59.4 61.1 73.4 58.8 71.1 73.4 66.6 67.3 60.7 75.2 71.8 65.4 65.8 60.5 65.9

pSTarC 63.4 65.4 66.5 75 63 73.2 74.9 70.3 69.8 66.5 76.6 73.2 68.0 72.2 63.8 69.5

Table 3. Accuracy (%) of different TTA methods on 15 corruptions from CIFAR-100C dataset in TTA setting.

Method R→C R→P P→C C→S S→P R→S P→R Average

Source 55.5 62.7 53 46.9 47.3 46.3 75.0 55.2
BN-Adapt [25] 54.1 62.8 54.3 49.4 59.1 47.6 75.0 57.5

TENT [29] 55.6 64.5 55.5 50.8 59.9 49.9 75.9 58.9
AdaContrast [2] 61.1 66.9 60.8 53.4 62.7 54.5 78.9 62.6

C-SFDA [14] 61.6 67.4 61.3 55.1 63.2 54.8 78.5 63.1

pSTarC 60.8 67.7 60.3 55.6 65.3 55.8 80.2 63.7

Table 4. Total accuracy (%) of TTA methods on DomainNet-126.

corruption benchmark dataset, namely CIFAR100C [10].

Datasets: VisDA is a challenging dataset for object
recognition tasks with synthetic to real domain shift.
The target domain consists of 55, 388 real object images
from 12 classes. Office-Home contains four domains -
Real, Clipart, Art, Product and 65 classes with a total of
15, 500 images. DomainNet-126 is a subset of DomainNet
consisting of 126 classes from four domains, namely Real,
Sketch, Clipart and Painting. CIFAR-100C is a corruption
benchmark with domain shifts like gaussian noise, blur,
weather changes, etc. Following [31], we use severity
level 5 corruptions. For VisDA-C, we compare the average
of per-class accuracies while for the other datasets, we
compare the average of total accuracy across domain shifts.

Model Architecture: For TTA experiments, we use
ResNet-50 [9] as the backbone for Office-Home and
DomainNet-126 datasets and ResNet-101 [9] for the VisDA
dataset. We use the same network architecture as in [2], in
which the final part of the network is modified to include
fully connected layer and Batch Normalization, and then
followed by a classifier, which is a fully connected layer
with weight normalization. For CIFAR-100C , we use
ResNeXt [32] as used in [5, 31].

Implementation details: We use Pytorch framework and

run all experiments on a single NVIDIA A-5000 GPU.
For source training, following [2, 14] the model is initial-
ized with ImageNet pre-trained weights and trained for 10,
60 and 50 epochs for VisDA, DomainNet-126 and Office-
Home respectively. During test time adaptation, we only
update the backbone parameters, keeping the classifier fixed
for all experiments. Following [2, 13, 14], we set the batch
size to 128 in all experiments for VisDA, DomainNet-126
and Office-Home. We use SGD as the optimizer with learn-
ing rate of 5e-4 and momentum 0.9. Following [5, 31],
for CIFAR-100C, the batch size is set to 200 and we use
Adam [16] optimizer with learning rate of 1e-3. We set β to
5 in eqn.(4) and the number of features per class nc to 20 in
all experiments. We report the results of prior methods from
the respective papers. We use the official code provided by
AdaContrast [2] to perform experiments on Office-Home
and also adapt it to CTTA setting. In the Supplementary ma-
terial, we describe the image augmentations used, analysis
on parameter nc and provide the pseudo code for pSTarC.

5.1. Evaluation for TTA setting

We compare the performance of our proposed pSTarC
framework with the prior TTA approaches [2, 13, 14, 25,
29]. For VisDA dataset, from Table 1, we observe that
pSTarC performs at par with the state-of-the-art method C-
SFDA [14], while being computationally much more effi-
cient (Table 9). Interestingly, it also outperforms the ap-
proaches which assume access to the source data before
performing TTA. On Office-Home, we get a significant im-
provement of 3.5% compared to the prior TTA method Ada-
Contrast [2] as shown in Table 2. On DomainNet-126, from
Table 4, we observe that pSTarC achieves an average accu-
racy of 63.7% across 7 domain shifts, outperforming all the
existing approaches including [14]. On CIFAR-100C [10],
our method performs 1.1% better than TENT [29] and 3.6%
better than AdaContrast [2], suggesting its effectiveness
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Method gaussian shot impulse defocus glass motion zoom snow frost fog brightness contrast elastic pixelate jpeg Average

Source 27 32 60.6 70.7 45.9 69.2 71.2 60.5 54.2 49.7 70.5 44.9 62.8 25.3 58.8 53.6
BN Adapt [25] 57.9 59.3 57.3 72.4 58.1 70.3 72.1 65.1 65 58.5 73.5 69.7 64.3 67.1 58.8 64.6

TENT [29] 62.8 64.2 58.3 62.1 48.8 51.7 51.5 41.6 36.3 28.9 29.6 17.7 12.0 11.5 9.6 39.1
CoTTA [31] 59.9 62.3 60.3 73.1 62.0 72.1 73.6 67.2 68.2 59.7 75.3 73.1 67.5 71.7 66.5 67.5

AdaContrast [2] 57.7 63.2 61.4 72.3 59.9 70.9 72.5 67.1 69.3 61.8 74.1 71.7 66.1 66.7 63.8 66.6
RMT [5] 59.5 63.9 63.7 72.3 66.1 71.5 73.6 71.0 71.0 67.5 74.9 72.6 71.8 73.7 70.7 69.6

pSTarC 63.4 67.0 64.0 71.1 62.9 69.3 72.4 67.3 68.7 64.1 72.9 71.9 66.7 70.5 62.9 67.7

Table 5. Accuracy (%) of different methods on 15 corruptions from CIFAR-100C dataset in CTTA setting.

Method Re
al
→

Cl
ip

ar
t→

Pa
in

tin
g→

Sk
et

ch
→

Average

Source only 54.7 50.7 58.3 55.2 54.7
BN Adapt [25] 54.9 54.8 60.5 62.2 58.1

TENT [29] 57.6 55.8 62.8 62.5 59.7
CoTTA [31] 56.6 57.0 63.6 63.7 60.2

AdaContrast [2] 62.2 62.4 67.7 68.1 65.1
RMT [5] 63.0 62.1 68.3 67.9 65.3

pSTarC 62.7 63.6 67.6 68.1 65.5

Table 6. Accuracy (%) of different TTA methods on four domain
shift sequences from DomainNet-126 in CTTA setting.

even on corruption domain shifts (Table 3).

5.2. Evaluation for CTTA setting

We also study the effectiveness of pSTarC in the CTTA
setting where test domains change with time. To do this,
we perform experiments on CIFAR-100C and the following
four domain sequences from DomainNet-126:
(1) Real-World→Clipart→Painting→Sketch;
(2) Clipart→Sketch→Real-World→Painting;
(3) Painting→Real-World→Sketch→Clipart
(4) Sketch→Painting→Clipart→Real-World.

The first domain indicates the source domain, which is
then adapted to the other three test domains in the above
sequence. From Table 6, we observe that pSTarC outper-
forms all the state-of-the-art approaches in this challenging
setting. Specifically, it outperforms CoTTA by a significant
margin of 5.3% and also performs favourably compared to
the state-of-the-art method RMT [5]. In addition, we also
evaluate pSTarC on CIFAR-100C continual setting and re-
port the results in Table 5. It performs favourably compared
to AdaContrast [2] and CoTTA [31], while RMT [5] per-
forms the best in this case. But, CoTTA [31] and RMT [5]
are computationally more expensive as they need to store
teacher and student models, while pSTarC is more light-
weight as it only stores one model.

In Figure 3, we summarize the performance of pSTarC
with the source model, TENT [29] and AdaContrast [2]. In
this plot, the lines farther from the center indicates better
performance. We observe that pSTarC outperforms these

Laug Lattr Ldisp VisDA DomainNet-126

✓ ✓ 68.8 58.8
✓ ✓ 78.2 59.7

✓ ✓ 80.0 63.0
✓ ✓ ✓ 81.9 63.7

Table 7. Ablation study: Importance of each loss term.

methods across all domain shifts for both TTA and CTTA.

5.3. Additional Analysis

Here, we report the results of additional analysis to
better understand the proposed framework.

Ablation Study: The proposed pSTarC framework
consists of three loss components. The first component is
Laug which enforces consistency between an image and
its augmentation. From Table 7, we observe that using
strong augmentations can indeed help improve the feature
representations, as we get 1.9% and 0.7% improvement
on VisDA and DomainNet-126 respectively. The second
component Lattr aims to align the test features with the
pseudo source features. On removing the attraction loss
component from LpSTarC , the loss becomes similar to
contrastive learning. While this performs reasonably,
achieving 78.2% and 59.7% on VisDA and DomainNet
respectively, incorporating the pseudo-source features
improves the results significantly by 3.7% and 4%, prov-
ing that they indeed help model adaptation by correctly
aligning the test features so that the source trained classifier
can well classify the test data. The third component,
Ldisp is the dispersion term which prevents the model
to avoid all the test features collapsing to one cluster,
which is a trivial solution when optimizing only the
attraction loss Lattr. This term plays a role similar to
the diversity term and is crucial in any unsupervised
adaptation protocols [17, 34] to avoid model collapse, the
effect of which we observe in Table 7. The accuracy on
VisDA and DomainNet-126 drop to 68.8% and 58.8%
respectively, as the test samples would be predicted into
lesser number of classes than actually present in the dataset.

Performance on varying batch sizes: In TTA, it is
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Figure 3. Overall comparison of pSTarC with TTA methods.

crucial for the method to be able to continuously adapt
even with very few samples. In this analysis, we vary
the batch size from 8 to 128 and perform experiments on
the DomainNet-126 dataset. Table8 reports the average
accuracy across 7 domain shifts for each batch size. We
observe that the proposed pSTarC consistently outperforms
both TENT [29] and AdaContrast [2] for all batch sizes.
The effect is more pronounced for the smallest batch size
8, where pSTarC outperforms TENT by a huge margin of
15.3% and AdaContrast by 4%. On average, pSTarC does
better than TENT by 6.2% and AdaContrast by 1.7%.

Complexity Analysis: Here, we analyse the complexity
of pSTarC and three other recent TTA methods: AdaCon-
trast [2], Source-Proxy-TTA [13] and C-SFDA [14] on
VisDA dataset. In the TTA setting, it is desirable to have
methods that requires storing less additional information
due to memory limitations and privacy concerns. The prior
methods AdaContrast [2] and C-SFDA [14] are based on the
teacher student framework. Hence, it needs to store twice
the number of model parameters, while we only store the
updating model parameters in pSTarC, as we report in Ta-
ble 9. AdaContrast stores a memory queue of size 16384
to collect key features (of dimension 256), and its pseudo
labels, which is used to retrieve positives for contrastive
learning. Alongside, they store another feature bank (of
size 1024) and their corresponding scores which is used to
retrieve neighbours for soft pseudo-labeling the target sam-
ples. Thus, the total memory buffer required for AdaCon-
trast is 16384x(256+1)+1024x(256+12). [13] condenses the
source data to save 25 images per class of size 112x112
for VisDA dataset. This accounts to a memory require-
ment of 37.6M (12x25x112x112). On the other hand, in

Method Batch size Average8 16 32 64 128

TENT 38.8 55.4 58.6 59.1 58.9 54.2
AdaContrast 50.1 57.9 60.8 62.4 62.4 58.7

pSTarC 54.1 59.2 61.3 63.8 63.7 60.4

Table 8. Ablation on batch size using DomainNet-126

Method AdaContrast Source-Proxy-TTA C-SFDA pSTarC

#Parameters 86M 43M 86M 43M
Memory 4.67M 3.76M - 0.03M
#Forward 3 3 13 2

#Backward 1 1 1 1

Table 9. Complexity Analysis of TTA methods on VisDA

the pSTarC framework, we only store 20 features per class
and the corresponding scores resulting in a memory buffer
of 240x(256 + 12). C-SFDA does not store any features or
images. However, they need 13 forward passes (12 augmen-
tations in addition to the actual test sample), while AdaCon-
trast [2] and Source-Proxy-TTA [13] uses 3 augmentations,
and pSTarC uses only two augmentations. We summarize
this in Table 9, which shows that pSTarC is very efficient,
in addition to achieving better or performance comparable
to the state-of-the-art across several challenging settings.

6. Conclusion
In this paper, we have proposed a novel framework

termed pSTarC for Test Time Adaptation (TTA) of deep
neural networks. pSTarC leverages the fixed source classi-
fier to generate pseudo-source samples, which is then used
to align the test samples, which enables the source trained
classifier to classify test data from different distributions.
Extensive experiments on several real-world domain
shift datasets justify the effectiveness of our proposed
framework. Additionally, we also show that the method
can seamlessly be used in continual test time adaptation
scenario, though there is still scope for improvement in
the corruption datasets. Overall, our findings highlight the
importance of target clustering techniques and leveraging
the source classifier for improving test-time adaptation
performance in several real-world challenging scenarios.
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