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Abstract

Majority of research in learning based methods has been
towards designing and training networks for specific tasks.
However, many of the learning based tasks, across modal-
ities, share commonalities and could be potentially tackled
in a joint framework. We present an approach in such direc-
tion, to learn multiple tasks, in multiple modalities, with a
unified architecture. The proposed network is composed of
task specific encoders, a common trunk in the middle, fol-
lowed by task specific prediction heads. We first pre-train
it by self-supervised masked training, followed by sequen-
tial training for the different tasks. We train the network on
all major modalities, e.g. visual, audio, text and 3D, and
report results on 22 diverse and challenging public bench-
marks. We demonstrate empirically that, using a joint net-
work to train across modalities leads to meaningful infor-
mation sharing and this allows us to achieve state-of-the-art
results on most of the benchmarks. We also show general-
ization of the trained network on cross-modal tasks as well
as unseen datasets and tasks.

1. Introduction
Many applied machine learning methods aim to extract

useful representations from data. However, a majority of
such methods are modality and task specific. Building
methods that can work with multiple modalities is a rel-
atively recent research direction [25, 36, 37, 46, 62, 105].
Learning tasks together with a unified network can lead
to regularization effects, as a large amounts of shared pa-
rameters are trained to perform varied tasks, and hence are
more likely to extract meaningful representations from data
without overfitting to one task or modality. It can also aid
in utilizing available labelled data from different domains,
hence potentially eliminating the cost and effort of labelling
large amounts of data in a specific modality for a specific
task. With the ability of sharing knowledge from multi-
ple modalities (e.g. image, video, depth map and speech)
from different domains (e.g. visual, acoustic, textual), the
modality agnostic learning frameworks have been shown

to provide better robustness [1, 28] to traditional unimodal
networks. We contribute to that line of work, and develop
a framework that can learn embeddings in a shared space
from different modalities and also deliver high generaliza-
tion performance. Specifically, we propose to learn embed-
dings from distinct modalities with modality specific en-
coders, and process them with a shared transformer back-
bone. The transformer backbone maps the input embed-
dings to a shared embeddings space. The network is then
trained in an end-to-end manner.

Prior works towards generalized modality agnostic
learning can be categorized into following three approaches.
(i) Methods which directly take multiple heterogeneous
modalities (image, 3D, audio) as input, without separate en-
coders for each modality, and directly learn representations
from them [36, 37]. (ii) Methods that take representations
from modality specific encoder as input and learn general-
ized modality specific embeddings using a common objec-
tive in the latent space [7], and, (iii) Methods which aim
at sharing knowledge among different modalities by keep-
ing either a common encoder [25] or separate encoders [1].
The first two approaches generally target modality agnostic
input representation, which lend them capability to keep the
network definition same for different modalities. However,
such networks, in general, can be trained on one modality
at a time, and hence do not facilitate cross modal knowl-
edge sharing. On the other hand, the third approach facili-
tates jointly training networks on multiple modalities. Our
work is closer to the third set of approaches. Specifically,
similar to [7], the proposed method employs different en-
coder for each modality. Similar to [25] we share knowl-
edge among modalities, and train on multiple modalities se-
quentially allowing embeddings to generalize across modal-
ities. Unlike [25], we do not limit our method to a specific
subset of modalities. and train on multiple modalities in a
sequential manner. Further, we do not assume any corre-
spondence between the training data i.e. paired training sets
across modalities, which is different from previous works,
e.g. [1], where correspondence in data among modalities is
assumed.
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Our proposed framework, OmniVec, consists of the fol-
lowing components: (i) a modality specific encoder, (ii)
a shared backbone network, and (iii) task specific heads
where tasks can be any machine learning task. The frame-
work facilitates end-to-end training. In simple terms, Om-
niVec works as follows. For a given task and a modality
we select a modality compatible encoder and an appropri-
ate task head. We attach the encoder and task heads to, the
beginning and end of the shared backbone network respec-
tively. Then to train on another modality, we replace the
encoder while keeping the backbone same. If the task is
to be changed as well, we replace the task head. To fur-
ther facilitate learning of better representations and cross-
modal information sharing, we train the network numerous
tasks. We borrow the motivation from earlier works where
it has been shown that training networks on multiple related
tasks can provide better generalization [103]. Similar im-
provements, in generalization, have been reported for multi-
modal multi-task learning as well [16,34,59,69]. However,
we do not train in a traditional multi-task setting, where all
tasks are available together and are trained for together. In-
stead, we train the network in a sequential manner, i.e. we
train on different tasks, one after another.

Motivated by empirical observations and previous works
indicating that robustness of multi-task mechanisms de-
pends on the complexity of tasks selected for joint train-
ing [59, 71], we propose to group the tasks based on the
extent of information exploited by the task across differ-
ent modalities, e.g., a semantic segmentation task forces the
network to embed more local information in the learned rep-
resentation, as compared to a classification task [15]. In
addition to grouping the tasks, we also construct training
data by mixing samples from each modality for a particular
task. We train the network by replacing modality encoder
for each modality, while keeping the task heads and back-
bone network same. Based on earlier works indicating that
self-supervised pretraining helps networks in better exploit-
ing multiple modalities [16, 24], we pretrain the network
with masked pretraining.

In summary, we make the following contributions.
(i) We propose a novel method to learn embeddings from
many modalities. The method has a common backbone to
process the different modalities and perform different tasks.
Specifically, we show that the proposed method works with
RGB images and videos, depth images, point clouds, au-
dio, speech and text data. (ii) We propose a novel train-
ing mechanism to allow learning using multiple tasks from
both spatial (e.g. image, 3D point clouds, depth maps) and
temporal (e.g. video, audio, speech, text) data. Owing to
the common backbone of the method, and a synchronous
training mechanism, the method shares knowledge between
different modalities and tasks, resulting in improved perfor-
mance and generalization. (iii) The proposed method al-

lows for infusing cross domain information in the feature
vectors, i.e. allowing embeddings from text data to be close
to similar data in image domain. (iv) We propose an iter-
ative training mechanism by mixing modalities and group-
ing tasks. Different from earlier works, we also propose
to perform self supervised masked pretraining across vi-
sual as well as non visual modalities. (v) With exhaustive
experiments on numerous popular benchmarks across, we
show that the proposed framework achieves state-of-the-art
results or performs close to the competing methods. (vi)
We also study the generalization ability of the proposed
framework by demonstrating the robust performance of the
learned embeddings on unseen tasks. (vii) We conduct an
extensive ablation study to demonstrate the impact of the
design choices.

2. Related Works
In this section, we discuss similar works and various sim-

ilar paradigms to our work. We begin with transformers,
which are basis of our work, and then move to methods
which work with multiple modalities. Among methods that
work with multiple modalities, many of them work on uti-
lizing the modalities simultaneously, while others propose
networks which take the modalities as input, one at a time.
Transformers. Transformers were proposed originally for
Natural Language Processing tasks [78]. The main contri-
bution of this work was to demonstrate the effectiveness of
multi-head attention in representing long-range correlation
between words. Owing to the popularity of transformers in
NLP tasks [49], attempts were made to extend it to vision
tasks. Early work in this direction [14, 53, 93] involved uti-
lizing features from convolutional neural networks. How-
ever, with vision transformers [19], transformers obtained
an ability to process raw images and achieved performance
competitive to CNNs. After that, transformers have domi-
nated nearly all the vision related tasks [41]. As transform-
ers have demonstrated robust performance across modali-
ties, recent methods across various modalities use them to
solve various tasks [21, 49, 63, 64, 91]
Multi-modal methods. Majority of the current multimodal
methods use modality specific feature encoders [2, 38, 39,
62, 88] and are hence concerned with methods of feature
fusion with their proposed architectures. In general the net-
works for different modalities differ from each other and
can not be easily used together without architectural mod-
ifications. They also need to decide on when to fuse the
features from various modalities, when to fine-tune, how
to pre-train etc. [90]. Such problems inhibits extending
networks such as transformers to be applied as a common
backbone across multiple domains such as point clouds, au-
dio and images.
Common network for multiple modalities. Recently,
many methods have been proposed which learn from multi-
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ple modalities [7, 8, 25, 37]. Among the most popular, how-
ever recent, are methods that do not have separate encoders
for each modality. Such methods generally transform the in-
put raw data to a common input representation prior to gen-
erally being processed by a transformer network. Among
them, the perceiver and similar methods [8,36,37] have tried
to learn from multiple modalities together without separate
encoders. Perceiver architecture works by cross-attention
among a set of latent queries. Similarly, hierarchical per-
ceiver [8] builds upon it proposes to group the input ar-
ray while preserving the locality structure. On the other
hand, methods such as data2vec [7] use modality specific
encoders. Other methods such as Omnivore [25] have a
common encoder. However, Omnivore is limited to only vi-
sual modalities (image, depth map, video). Then, methods
such as VATT [1] have a common backbone for each text,
image and audio. However, it processes each modality in-
dependently using a transformer. Such methods which learn
from multiple modalities have been shown to provide better
robustness [1, 28]. Our methods largely overlaps with the
motivation of such methods, however, it differs from such
methods in that earlier methods operate on training for one
task or one modality at a time, while we learn by training on
multiple modalities and multiple tasks while using a single
common backbone architecture.
Multi-task learning. We have discussed many methods
that attempt at learning from multiple inputs. As discussed
in the previous section, recent years have seen many meth-
ods that work with multiple modalities. PerceiverIO [36]
extends Perceiver [37] and enables learning multiple tasks
using the same network architecture. While PerceiverIO
can also learn multiple tasks at a time using a single archi-
tecture, generally multiple networks are used [102]. Many
techniques [7, 16, 25, 34, 59] learn from multiple modali-
ties and from their raw representation and apply to multiple
tasks.
Multi-modal masked pretraining. Methods such as [52,
84, 92] use masked pre-training. Masked pretraining has
shown to improve the performance of deep networks net-
works for various modalities and tasks [1,6,7,24,31,98] and
motivated by such works we also use masked pre-training
as a self supervised step leveraging large amounts of data
available. However, different from earlier works, we per-
form masked pre-training on multiple modalities and multi-
ple datasets on the same common backbone.

3. Approach
We now describe our framework for learning multiple

tasks in multiple modalities with a common backbone net-
work, allowing for cross modality knowledge sharing. The
overview of the proposed framework is shown in Figure 1.
The network comprises six building blocks, i.e. modality
encoders, meta token block, projection block, transformer,

Modality Domain Network

Image Visual Vision Transformer (ViT) [19]
Depth maps Visual Vision Transformer (ViT) [19]
Video Visual Video Vision Transformer (ViViT) [4]
3D point clouds Visual Simple3D-former [82]
Audio Auditory Audio Spectrogram Transformer (AST) [27]
Text Language BERT [18]

Table 1. Modality Encoders. We select transformer based modal-
ity encoders for evaluating OmniVec framework

vectorizer and task heads. We now explain each block in
detail.

3.1. OmniVec Framework

Modality Encoder. The modality encoder takes as input,
one modality at a time and extracts feature embedding for
each of the modalities. In the proposed framework, the
modality encoder can be a transformer, convolutional neural
network or can directly use raw signals [1]. As we do not
assume any specific structure for the modality encoder, the
proposed framework allows incorporating any appropriate
deep network as a modality encoder.

For current work, we use domain specific transformer
based encoders for each of the modalities as shown in Ta-
ble 1 followed by a common backbone network. It is worth
noting that each of the networks in visual and auditory do-
main is based on Vision Transformer architecture i.e. image
and depth directly use ViT, video (ViViT) differs from ViT
in input tokenization that extends 2D patches to 3D (spatio-
temporal mapping), audio (AST) transformers differ from
ViT only in input representation i.e. uses log-mel spectro-
grams instead of images, Simple3D-former for point cloud
uses a 2D ViT transformer as the base network with modi-
fied positional embeddings and tokenization approach. We
use a standard BERT transformer for textual data. We train
each of these models from scratch.
Meta Tokens. We extract meta tokens from the input
modalities. This meta representation is a vector that en-
codes the type of modality (I), size of temporal dimension
(T ), height (H), width (W ) in spatial dimension, number
of channels (C) and length or number of tokens (L). In
general, the meta tokens can also hold additional informa-
tion to make the framework adapt to additional modalities.
The value in each of these representation variables is con-
ditioned on the type of modality e.g. non spatial data may
have H , W only with the other non-spatial parameter set as
a special token, denoting lack of such information.
Projection Layer. The projection layer inputs the interme-
diate representations from the modality encoder network
and is conditioned on the meta tokens. It then converts
the input representation to patches that are provided as in-
put to the subsequent transformer network. We obtain n-
dimensional vector for each patch by applying linear pro-
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Figure 1. OmniVec: The pro-
posed method takes data from
one of the modalities and pass
it through the modality encoder
and combine it with the meta
token and then pass through the
projection layer to embedd the
feature onto a common embed-
ding space. Then it is passes
through the common backbone
of Transformer layers which is
then vectorized by the vector-
izer. Finally, the task heads are
used for task specific outputs.

jection. Similar to ViT [19], this projection is applied with
a learnable weight Wip ∈ Rt·h·w·c·l×n for each modality
i. The meta tokens make the projection layer adaptable to
varying number and dimensions of input patches and gen-
erate latent representations compatible with the subsequent
transformer network. For instance, we represent RGB im-
ages as I ∈ R1×h×w×3×1 with t=1 frames and c=3 chan-
nels. Similarly, we represent video as V ∈ Rt×h×w×3×1

with t frames (t > 1) and c = 3 channels, depth as
D ∈ R1×h×w×4×1 with c = 4 channels, point cloud as
P ∈ R1×1×1×3×l with l points, audio as A ∈ Rt×h×w×c×1

with spectrogram input, and text as L ∈ R1×1×1×1×l with
l tokens. Each patch x is processed independently and pro-
jected to an embedding e followed by a LayerNorm [5]
Transformer. The transformer network is the common
part of the framework and is in effect a ‘bottleneck‘ block.
While different modalities may arrive here through differ-
ent encoders, they all have to pass through this transformer
network. The transformer network inputs the patches gen-
erated by the projection layer and outputs features. While
the OmniVec framework can use any standard transformer
architecture, we use [18] as our backbone architecture. In
our transformer network, the multi head attention involves
standard self-attention [78], and GeLU [33] activation prior
to the MLP layer.
Vectorizer The vectorizer layer takes patches from the
transformer network as input, and outputs embeddings for
the original data point. It outputs a single embedding e =
f(X) for an input X. We name the output embeddings of
the vectorizer as Omni Embeddings, as these embeddings
constitute knowledge from multiple tasks and modalities
due to forward pass from the transformer block where cross
modality and cross task information is infused.

For our implementation, we concatenate the output
patches and pass them through a linear layer to obtain a
d-dimensional embedding. At the time of training, we use
the outcome of vectorizer as input to subsequent task heads.
However, using the outcome of vectorizer as input to task
heads is optional as the task head may also directly take in-

put patches from the previous transformer bottleneck. Once
the model has been trained, the output from vectorizer can
be used for fine-tuning and evaluation on downstream tasks.
Task Heads The final parts of network, the task heads are∑

Tih independent networks which learn task h for every
ith modality. The task heads can generally be any computer
vision, natural language processing or other modality spe-
cific task. We experiment with classification (image, video,
audio, text), segmentation (image, point clouds) etc. We de-
scribe them in Section 4.

3.2. Training OmniVec Framework

We train the OmniVec Framework in two stages. First we
perform masked pretraining. Then we fine tune the network
on multiple modalities. Both these stages are described be-
low.
Masked Pretraining. We pretrain the network with masked
autoencoders [1, 24]. Specifically, for an input with N
patches, we mask K patches, and feed non-masked patches
and their positions to the encoder. For each modality, we
use the encoder from Table 1 followed by our bottleneck
transformer that outputs per patch embeddings i.e. we keep
a shared bottleneck transformer encoder for each of the
modalities. Similar to [1,32], the per patch embeddings are
concatenated with K replicas of learnable mask tokens re-
sulting in N embeddings. We add corresponding positional
embeddings to each of the N embeddings, and pass to the
decoder. We use the same masking strategy for modalities
from visual and auditory domains. For textual data, we fol-
low [66] and randomly permute the sentences [95] and use
a small fraction f of tokens as predicted tokens, followed
by utilizing 8:1:1 strategy of BERT [18] for constructing
mask tokens. The training objective is to minimize the re-
construction error between the input and decoder outputs.
For image, video, point clouds and audio spectrogram in-
put, we minimize l2 distance between the K predicted and
target patches. For visual inputs, the input samples are nor-
malized to zero mean and unit variance. For textual data,
we use the permuted language modelling of XLNet [95] as
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Method/Dataset Supp. Modalities
Cross-
Modal
sharing

Masked
pretrain-
ing

Supp.
Tasks

AudioSet
(A+V.)

AudioSet
(A) SSv2 GLUE ImageNet1K Sun RGBD ModelNet40

Omni-MAE [24] Image, Video No Yes Class. - - 73.4 - 85.5 - -
Perceiver [37] Modality Agnostic No No Class. 43.4 38.4 - - 78.6 - -
Heirarchical Perceiver [8] Modality Agnostic No No Class. 43.8 41.3 - - 81.0 - 80.6
data2vec [7] Modality Agnostic No Yes Class. - 34.5 - 82.9 86.6 - -
Omnivore [25] Image, Video, Depth map Yes No Class. - - 71.4 - 84.0 65.4 -
VATT [1] Image, Video, Audio, Text Yes Yes Class. - 39.4 - - - - -
Perceiver IO [36] Modality Agnostic No No Multiple - - - - 79.0 - 77.4

OmniVec (pretrained)
Image, Video, Audio, Text,
Depth map, Point Clouds Yes Yes Multiple 48.6 44.7 80.1 84.3 88.6 71.4 83.6

Table 2. Comparison of OmniVec framework with similar methods that work on multiple modalities. We compare OmniVec with
masked pretraining with the best reported results from respective publications of the compared methods. Supp. Tasks and Supp. Modalities
indicate Supported Tasks and Supported Modalities by respective networks. In Supported (Supp.) Tasks, Class. indicates classification.

the objective.
Training on multiple modalities and tasks. For training
the network on multiple modalities and tasks, we introduce
modality mixing and task grouping. We train our model
using a collection of h tasks Ti,h for ith modality. We
group tasks into simple and dense tasks and refer to it as
task grouping. We categorize the tasks into two categories
namely, simple and dense based on the complexity of the
dataset and outputs i.e. classification task predicts a single
label for a given input, irrespective of the size of the input,
therefore we refer it as a simple task. However, a segmenta-
tion or depth prediction task, requires each pixel to be pre-
dicted, and hence we refer it as a dense task. We detail each
of the tasks, the datasets used to train them and their task
grouping in Section 4.

As we do not assume any correspondence between data
from various modalities, we propose mixing samples from
all datasets for a particular task to share knowledge between
various modalities. An alternative approach would be to
construct mini-batches from each dataset separately. How-
ever, we found it performs poorly compared to mixing sam-
ples from modalities. We refer this strategy of constructing
mini-batches as modality mixing. Specifically, for a partic-
ular task h belonging to a type of task t (simple, dense), for
each modality i, we extract sample st,i,h from the datasets.

After task grouping and modality mixing, we train the
network in an end-to-end manner iteratively for simple
and dense tasks. Specifically, we train the network for
E epochs, we train the network for v1 epochs with mini-
batches from simple tasks and v2 for dense tasks. We con-
tinue training the network in iterative manner i.e. switching
between simple and dense tasks for E epochs.

4. Experiments

Masked pretraining. We do masked pretraining us-
ing the modality mixing as described in Section 3.
We use AudioSet (audio) [23], Something-Something v2
(SSv2)(video) [30], English Wikipedia (text), ImageNet1K
(image) [17], SUN RGB-D (depth maps) [67], ModelNet40

(3D point cloud) [87] for pretraining the network. As we
perform autoencoder based pre-training, we do not group
the tasks, and instead uniformly sample data from each
of the datasets and modalities. Further, we randomly se-
lect patches for masking. For image, video and audio, we
randomly mask 90% of the patches. For point cloud, we
mask 80% of the patches, and for text we mask 95% of the
patches. Further, we keep f = 5% of the tokens as predicted
tokens (unlike 15% in [95]). We perform pretraining for
2000 epochs.
Modality Encoder. For modality specific encoders, we use
the networks from Table 1. We use the same network con-
figurations for these networks as in corresponding publi-
cations. We pretrain the model using masked pretraining
as described in Section 3, followed by training on specific
modalities as per task groups and modality mixing. For dif-
ferent tasks on a modality, we keep the modality encoder
same, while changing the task heads with appropriate loss
functions. We train modality encoders for E = 900 epochs
with 2 consecutive epochs each for simple and dense task
groups.
Datasets for training on multiple modalities and tasks.
After masked pre-training, we fine tune the network on mul-
tiple tasks across modalities. The datasets and their corre-
sponding task groups and modality are given in Table 7.
Task Heads. For classification tasks, we use standard clas-
sification head from ViT [19] while use [4] for video clas-
sification and [27] for audio classification. For image and
point cloud segmentation tasks, we use the segmentation
head from [61]. For text summarization, we use a 3-layered
transformer.

We provide more implementation details in the supple-
mentary material.

4.1. Results

Comparison of pretrained OmniVec with similar meth-
ods. Table 2 compares OmniVec model with masked pre-
training to various similar methods. The table also indicates
the modalities supported by various methods (Col.-Supp.
Modalities), and that if the method supports sharing knowl-
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Method/Dataset iNaturalist
2018

Places
365

Omni-MAE [24] 78.1 59.4
Omnivore [25] 84.1 59.9

EfficientNet B8 [73] 81.3 58.6
MAE [32] 86.8

MetaFormer [97] 87.5 60.7
InternImage [81] 92.6 61.2

OmniVec 93.8 63.5

Table 3. iNaturalist-2018 and
Places-365 top-1 accuracy.

Method/Dataset Kinetics-400
Omnivore [25] 84.1

VATT [1] 82.1
Uniformerv2 [47] 90.0
InternVideo [83] 91.1

TubeViT [58] 90.9
OmniVec 91.1

Table 4. Kinetics-400 top-1
accuracy.

Method/Dataset Moments
in Time

VATT [1] 41.1
Uniformer v2 [47] 47.8

CoCa [96] 47.4
CoCa-finetuned [96] 49.0

OmniVec 49.8

Table 5. Moments in time
top-1 accuracy.

Method/Dataset ESC50
AST [27] 85.7

EAT-M [22] 96.3
HTS-AT [10] 97.0
BEATs [55] 98.1

OmniVec 98.4

Table 6. ESC50 top-1 ac-
curacy.

Task Dataset Modality Task Group
Image Recognition iNaturalist-2018 [77] Image Simple
Scene Recognition Places-365 [104] Image Dense

Video Action Recognition Kinetics-400 [40] Video Simple
Video Action Recognition Moments in Time [54] Video Dense
Audio Event Classification ESC50 [57] Audio Simple
Point Cloud Segmentation S3DIS [3] Point Cloud Dense

Text Summarization DialogueSUM [13] Text Dense
Point Cloud Classification ModelNet40-C [87] Point Cloud Simple

Table 7. List of tasks and corresponding datasets for task
group based training after masked pretraining. We assign each
task to a task group (simple, dense) based on complexity of the
dataset and output.

edge between modalities (Col.-Cross-Modal sharing). Fur-
ther, it also details the learning objectives by these methods.
The table reports results on six benchmark datasets on seven
tasks as AudioSet supports two tasks (audio only, and audio
with video). These datasets are used to perform masked pre-
training on the OmniVec model as described in Section 3.
It can be observed that the proposed OmniVec model out-
performs all the compared methods on all the datasets. It is
important to note that, we do not fine tune on any of these
datasets specifically while other methods, in general, fine
tune the results, mostly using a linear layer with softmax
classification. This demonstrates the robustness of the pro-
posed model and its ability to learn generalized embeddings
without task specific fine-tuning.
Comparison to state-of-the-art. For comparison with state
of the art methods, we performed masked pretraining of
OmniVec followed by training on multiple modalities and
task groups as described in Section 3. We discuss the com-
parison on each modality below.
(i) Image Table 3 shows state of the art on image datasets.
We compare with multi-modal methods (Omni-MAE, Om-
nivore) and specialized methods (MetaFormer, InternIm-
age). We surpass the state of the art on iNaturalist with
a top-1 accuracy of 93.8%, compared to InternImage’s
92.6%. On Places-365, we beat all competitors, achieving
61.6% accuracy versus InternImage’s 61.2%. Moreover, we
best Omnivore by ∼ 7% on iNaturalist and ∼ 3% on Places-
365. Our results either match or surpass modality-specific
methods in image classification, and outperforming unified
learning methods.

(ii) Video Table 4 and Table 5 show comparison against
state of the art methods on Kinetics-400 and Moments in
Time datasets.We observe that we outperform all the com-
peting methods on Moments in Time dataset while perform
same as the state of the art method InterVideo i.e. 91.9 top-1
accuracy.
(iii) Audio Table 6 highlights our comparison with top-
performing methods on the ESC50 dataset. OmniVec out-
performs competing methods, achieving an accuracy of
98.4%, significantly higher than the Audio Spectrogram
Transformer (AST) at 85.7%. While most compared meth-
ods utilize supervised pretraining on AudioSet, we adopt
masked pretraining without accessing labels. This suggests
OmniVec’s proficiency in learning from related tasks across
different modalities, emphasizing its effectiveness in cross-
modal knowledge transfer.
(iv) Point Cloud. Table 9 and Table 10 compare against
state of the art methods on ModelNet40-C and S3DIS
datasets respectively. On ModelNet40-C, we evaluate a
classification task, while on S3DIS we evaluate semantic
segmentation. On both the datasets, we outperform the
competing method. This demonstrates that the proposed
method is able to robust performance with the shared back-
bone network across tasks.
(v) Text Table 11 shows state of the art on DialogueSUM
dataset for text summarization. OmniVec surpasses other
methods in three out of four metrics and comes in second
on the R-L metric. Despite utilizing significantly fewer
datasets for text (only two) in comparison to visual tasks
(ten datasets), OmniVec demonstrates strong performance.
This suggests OmniVec’s capacity to bridge the modality
gap [48] across distinct domains in the latent space, even
when the data distribution is skewed.

4.2. Ablations

Impact of task grouping and modality mixing. Table 8
shows the effect of task grouping and modality mixing. We
evaluate four network variations: (i) OmniVec-1 without ei-
ther of task grouping and modality mixing, (ii) OmniVec-2
with just task grouping, (iii) OmniVec-3 with only modality
mixing, and (iv) OmniVec-4 combining both. OmniVec-
1 uses masked pretraining on single datasets. OmniVec-
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Method Task Grouping Modality Mixing AudioSet (A+V.) AudioSet (A) SSv2 GLUE ImageNet1K Sun RGBD ModelNet40
OmniVec-1 (baseline) ✗ ✗ 37.5 36.3 62.6 57.5 70.2 59.8 68.5
OmniVec-2 ✓ ✗ 42.6 40.1 73.5 69.5 79.8 66.4 75.2
OmniVec-3 ✗ ✓ 39.2 39.4 70.2 68.8 77.3 65.5 72.2
OmniVec-4 ✓ ✓ 48.6 44.7 80.1 84.3 88.6 71.4 83.6

Table 8. Impact of various training strategies on OmniVec. We report results with and without each of task grouping and modality
mixing. The results are reported with masked pretraining only. We observe that individually, both task grouping and modality mixing
improve the results over the baseline method. However, there combination outperforms individual performance using these mechanisms.

Method/Dataset Model
Net40C

PointNet++ [60] 0.236
DGCN+PCM-R [100] 0.173

PCT + RSMIx [45] 0.173
PCT + PCM-R [72] 0.163

OmniVec 0.156

Table 9. ModelNet40-C Error Rate.

Method/Dataset S3DIS
PointTransformer+CBL [74] 71.6
StratifiedTransformer [44] 72.0

PTv2 [86] 72.6
Swin3D [94] 74.5

OmniVec 75.9

Table 10. Stanford Indoor Dataset mIoU.

Method R-1 R-2 R-L B-S
CODS [85] 44.27 17.90 36.98 70.49
SICK [42] 46.2 20.39 40.83 71.32
OmniVec 46.91 21.22 40.19 71.91

Table 11. DialogueSUM text summarization
ROGUE scores.

2 groups tasks by modality, OmniVec-3 mixes modalities
randomly, and OmniVec-4 follows the settings from Sec-
tion 3. Comparatively, OmniVec-1 lags behind the others.
Both OmniVec-2 and OmniVec-3 outperform OmniVec-1
by around 30% to 45%, showing their efficacy. However,
OmniVec-4, which combines both approaches, performs
better, emphasizing the benefits of integrating tasks and
modalities.
Influence of size of the modality encoder. We evalu-
ated the impact of enlarging the base modality encoder to
the scale of our suggested network, using modality-specific
data. This change slightly improved performance. For
example, on ImageNet1K, the top-1 accuracy went from
88.5% with the base ViT [19] to 89.1% with the aug-
mented ViT having a similar parameter count, while Om-
niVec achieved 92.4%. These findings suggest that even
with enhancements, the augmented base modality encoder
still lags significantly behind OmniVec, highlighting Om-
niVec’s advantage of leveraging information from multiple
modalities.
Fine-tuning with the same datasets after masked pre-
training and comparison to state-of-the-art. In Table 13,
we show the results of fine-tuning the OmniVec-4 model on
each of the datasets that was used for masked pretraining.
As during masked pretraining, we use the standard train sets
for each of these datasets for fine-tuning.

It can be observed from the results that OmniVec
achieves better performance on each dataset than existing
state of the art method. As we are using same backbone
(OmniVec-4) for each of these datasets, it shows the robust-
ness of the embeddings and the capacity of the network to
adapt to different tasks and distribution of dataset.

4.3. Generalization Ability

Generalization on unseen datasets. We evaluate the per-
formance of the learned embeddings on unseen datasets.

Specifically, we show results on the tasks of fine grained im-
age classification (Oxford-IIIT Pets [56]), Video Classifica-
tion (UCF-101 [68], HMDB51 [43]), 3D point cloud classi-
fication (ScanObjectNN [76]), 3D point cloud segmentation
(NYUv2 [65]) and text summarization (SamSum [26]). Our
findings, tabulated in Table 12 [rows 1-6], demonstrates that
even without fine-tuning, OmniVec surpasses most state-
of-the-art methods. Further, while the pretrained OmniVec
slightly underperformed on ScanObjectNN (92.1%) com-
pared to PointGPT’s 93.4%, when fine-tuned, OmniVec
achieved 96.1% accuracy, outperforming PointGPT. This
shows OmniVec’s generalizability on datasets where it is
exposed to analogous tasks.

Generalization on unseen tasks - Monocular Depth Pre-
diction on KITTI Depth Prediction Benchmark. We
fine tune the network for the task of depth prediction on
KITTI Depth Prediction benchmark [75]. Our network has
not seen such image to image style transfer tasks. The re-
sults on KITTI depth prediction benchmark are shown in
Table 12 (row 7). We outperform the state of the method
VA-DepthNet [50] i.e. 10.44 iRMSE on VA-DepthNet cf.
10.2 for OmniVec. As can be observed from Figure 2, the
depth maps obtained by OmniVec are able to better capture
the details near edges.

Cross-domain generalization. Following prior work [1],
we evaluate on the task of zero-shot text-to-video retrieval.
The results are reported in Table 12. On the YouCook2
dataset, our pretrained OmniVec surpasses the state of the
art in zero-shot retrieval, achieving a Recall@10 of 64.2%
compared to VideoCLIP’s 63.1%. On MSR-VTT, when
compared with SM [99], our fine-tuned OmniVec embed-
dings yield a Recall@10 of 89.4% against SM’s 90.8%.
With just pretraining, SM has a Recall@10 of 80%, slightly
above our 78.6%. SM utilizes large-scale pretraining on in-
ternet scale data, while OmniVec uses much less data. Fur-
ther, the second-best MSR-VTT method [11] achieves only
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Dataset Modality Task Metric OmniVec (Pre.) OmniVec (FT.) SOTA
UCF-101 Video Action Recognition 3-Fold Accuracy 98.7 99.6 99.6 (VideoMAE V2-g [79])
HMDB51 Video Action Recognition 3-Fold Accuracy 89.21 91.6 88.1 (VideoMAE V2-g [79])

Oxford-IIIT Pets Image Fine grained classification Top-1 Accuracy 97.4 99.2 97.1 (EffNet-L2 [20])
ScanObjectNN 3D Point Cloud Classification Accuracy 92.1 96.1 93.4 (PointGPT [9])

NYU V2 RGBD Semantic Segmentation Mean IoU 58.6 60.8 56.9 (CMN [51])
SamSum Text Meeting Summarization ROGUE(R-L) 51.2 54.6 50.88 (MoCa [101])

KITTI RGB Depth Prediction iRMSE - 10.2 10.4 (VA-DepthNet [50])
YouCook2 Video+Text Zero Shot Text-to-Video Retrieval Recall@10 64.2 70.8 63.1 (VideoCLIP [89])
MSR-VTT Video+Text Zero Shot Text-to-Video retrieval Recall@10 78.6 89.4 80.0(Pre.)/90.8(FT)(SM [99])

Table 12. Generalization performance of OmniVec on unseen datasets (Oxford-IIIT Pets, UCF-101, HMDB51, ScanObjectNN, NYUv2
Seg, SamSum), unseen tasks (KITTI Depth Prediction) and cross-domain generalization (YouCook2, MSR-VTT). Pre. indicates network
with pretraining only, FT indicates network finetuned on training set of respective datasets. See supplementary for more detailed results.

Figure 2. Qualitative results on test set of KITTI Depth Prediction. Ground truth is not available. For an RGB input image (left), the
outputs from VA-DepthNet [50](middle) and OmniVec (right) are shown. See supplementary material for more qual. results.

Dataset Metric OmniVec SOTA
AudioSet(A) mAP 54.8 53.3 (MAViL [35])

AudioSet(A+V) mAP 55.2 51.2 (CAV-MAE [29])
SSv2 Top-1 Acc 85.4 77.3 (MVD [80])

ImageNet1K Top-1 Acc 92.4 91.1 (BASIC-L [12])
Sun RGBD Top-1 Acc 74.6 67.2 (Omnivore [25])
ModelNet40 Overall Acc 96.6 95.4 (GeomGCNN [70])

Table 13. Comparison with state of the art after fine tuning on
respective training sets.

73.9% Recall@10 (see supplementary), which is behind our
pretrained OmniVec.

5. Conclusion and Limitations
Conclusion. We proposed OmniVec, a unified data and
task agnostic learning framework with a single backbone.
The main idea behind OmniVec is that modalities in dif-
ferent domains can aid learning process. Further, we also
proposed a novel training mechanism by grouping tasks
and constructing mini batches by mixing inter-modality
datasets. With experiments on 22 datasets spanning across

image, video, point cloud, depth, audio, text; we show that
the proposed framework is highly generalizable along with
being extremely robust. It can also generalize well to seen
tasks with different data distribution as well as can adapt to
unseen tasks effectively. We also studied the cross-domain
knowledge sharing by evaluating a zero shot video-text re-
trieval task. We achieve state of the art or close to state of
the art performance on all the evaluated datasets.

Limitations. OmniVec trains on unpaired multi-modal
data, but paired data, though better, is expensive to obtain.
The method employs multiple encoders per modality, in-
creasing computational demands. Future research may ad-
dress these computational challenges in unified networks.

Societal Impact. Modality agnostic techniques enhance
realistic data cloning, risking misinformation and identity
theft. These networks, syncing various modalities and us-
ing extensive internet data, amplify privacy, security, and
bias concerns.
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