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Abstract

Detecting the salient objects in a remote sensing image
has wide applications. Many existing deep learning methods
have been proposed for Salient Object Detection (SOD) in
remote sensing images with remarkable results. However,
the recent adversarial attack examples, generated by chang-
ing a few pixel values on the original image, could result in
a collapse for the well-trained deep learning model. Differ-
ent with existing methods adding perturbation to original
images, we propose to jointly tune adversarial exposure and
additive perturbation for attack and constrain image close
to cloudy image as Adversarial Cloud. Cloud is natural and
common in remote sensing images, however, camouflaging
cloud based adversarial attack and defense for remote sens-
ing images are not well studied before. Furthermore, we de-
sign DefenseNet as a learnable pre-processing to the adver-
sarial cloudy images to preserve the performance of the deep
learning based remote sensing SOD model, without tuning
the already deployed deep SOD model. By considering both
regular and generalized adversarial examples, the proposed
DefenseNet can defend the proposed Adversarial Cloud in
white-box setting and other attack methods in black-box
setting. Experimental results on a synthesized benchmark
from the public remote sensing dataset (EORSSD) show the
promising defense against adversarial cloud attacks.

1. Introduction

The computer vision and artificial intelligence have many
applications in the remote sensing domain, such as hy-
perspectral image classification [1, 2], cross-view geoloca-
tion [3-5], scene classification [6, 7], aerial-view object de-
tection [8, 9], change detection [10, 11], and so on. Remote

*Co-corresponding authors: Yuewei Lin (ywlin@bnl.gov), Hongkai Yu
(h.yul9@csuohio.edu).

sensing Salient Object Detection (SOD) aims to extract the
salient objects in an aerial-view image, leading to potential
benefits to the above applications.

For remote sensing images, some SOD methods have
been proposed [12, 13] by using deep learning based archi-
tecture, whose efforts are mainly concentrated on typical con-
text learning [13] and multi-scale feature aggregation [12].
However, in some scenarios, these deep learning based re-
mote sensing SOD models might suffer from the attacks by
the adversarial examples on deep neural networks. Recent
research [14] shows that the adversarial noises can be added
to fool the deep learning based SOD models, leading to the
low SOD performance. For example, by adding a small
portion of adversarial noises on the original remote sensing
image between the image acquisition and data processing,
e.g., during the communication, the salient objects in the
remote sensing image might be hided to some extent by the
deep SOD model. This kind of malicious attack exposes a
potential security threat to the remote sensing.

Many researches have been proposed for the adversarial
examples based attack and defense in deep learning [15-18].
Meanwhile, some attack and defense researches have been
proposed for remote sensing tasks, such as the remote sens-
ing scene classification [19]. Different with existing methods
adding the perturbation on the original image, we propose
to generate Adversarial Cloud as attack to the deep learning
based remote sensing SOD model. Cloud is widely common
in remote sensing images [20]. However, cloud based ad-
versarial attack and defense for remote sensing images has
not been well studied. The proposed Adversarial Cloud has
realistic appearance close to a normal cloud, which might be
difficult to be perceived but will be malicious in the remote
sensing applications.

In this paper, we propose a novel DenfenseNet to defend

the proposed Adversarial Cloud attack to preserve the ad-
vanced SOD performance. In general, the adversarial attack
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Figure 1. (a) Illustration of the proposed defense against the adversarial cloud attacks for remote sensing salient object detection. (b)
Performance (F Measure) of the proposed DefenseNet against different adversarial cloud attacks. Bigger area means better defense.

and defense networks will be trained with an adversarial deep
learning by iteratively training the Adversarial Cloud and
DenfenseNet. However, the already deployed deep remote
sensing SOD model is kept unchanged to simplify the real-
world setting. Thus, the proposed DefenseNet is designed
as a learnable pre-processing technique to preserve the SOD
performance. In specific, the adversarial examples will go
through the DefenseNet to become clean examples as the in-
put to SOD models. Based on the publicized remote sensing
SOD dataset (EORSSD [13]), we build a benchmark by syn-
thesizing the Adversarial Cloud to test the performance of
attack and defense for the SOD problem in the remote sens-
ing images. As shown in Fig. 1 (b), our proposed method
could defend different adversarial attack methods. Experi-
mental results on the built benchmark show the effectiveness
and accuracy of the proposed method. The contributions of
this paper are summarized as follows.

» This paper proposes a novel attack method by jointly tun-
ing adversarial exposure and additive perturbation and
constraining image close to cloudy image as Adversarial
Cloud for the SOD in remote sensing images.

* This paper proposes a novel DefenseNet as learnable pre-
processing against the adversarial cloud attack for safety-
ensured SOD in remote sensing images, without tuning
the already deployed deep learning-based SOD model.

* By considering both regular and generalized adversarial
examples, the proposed DefenseNet can defend the pro-
posed Adversarial Cloud in white-box setting and other
attack methods in black-box setting.

2. Related Work
2.1. Salient Object Detection for Remote Sensing

Salient object detection (SOD) is to automatically extract
the salient objects in an image. Many existing methods
are proposed for SOD in natural images, while the SOD in
remote sensing images is more challenging due to the unique,
complex and diverse environments [12]. SOD in satellite
or drone images has wide applications, such as building
extraction [21], Region-of-Interest extraction [22], airport
detection [23], oil tank detection [24], ship detection [25].

2.2. Adversarial Attack

There are two types of adversarial attacks: white-box at-
tacks, where the adversary has full access to the target model,
including its parameters, i.e., the model is transparent to the
adversary, and black-box attacks, where the adversary has
little knowledge of the target model. As the white-box at-
tacks are usually more destructive than black-box ones in
practice, the literature more focuses on the white-box at-
tacks. Among these white-box attacks, Szegedy er al. [26]
used a box-constrained L-BFGS method to generate effec-
tive adversarial attacks for the first time. After that, the
fast gradient sign method (FGSM) [15] used the sign of the
gradient to generate attacks, with /,,-norm bound. Several
variants of FGSM were proposed, e.g., Kurakin et al. [27] ap-
plied FGSM iteratively and designed basic iterative method
(BIM), and Dong et al. [28] integrated the momentum into
the model. As a multi-step attack method, the projected
gradient descent (PGD) was proposed in [29]. Carlini and
Wagner [30] proposed the so-called CW attack which is a
margin-based attack. More recently, Croce et al. introduced
a parameter-free attack named AutoAttack [31], which is an
ensemble of four diverse attacks, including two proposed
variants of PGD attacks and two existing complementary
attacks, i.e., FAB [32]. DeepFool [33] were proposed to fool
deep classification networks.

2.3. Adversarial Defense

With the development of adversarial examples, studies on
how to defend against those attacks and improve the robust-
ness of the neural networks emerge. Among them, the most
effective and widely used defense model is adversarial train-
ing (AT), although the most straightforward way is simply by
attaching a detection network to detect and reject adversarial
examples [34]. AT based models, which aim to minimize
the loss function to the strongest adversarial attacks within a
constraint, were first proposed by [15]. After that, a number
of defending methods [18,29,35-40] based on adversarial
training were proposed. For example, [35] and [36] built a
triplet loss to enforce a clean image and its corresponding
adversarial example has a short distance in feature space.
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plus cloud mask M, the synthesized cloudy image 1 could be obtained, and the DefenseNet is a learnable pre-processing for the SOD
network. Right side: Ng, M are Gaussian noises for the Attack Generalization Module (AGM).

3. METHODOLOGY
3.1. Cloud Synthesizing for Remote Sensing

Given a clean remote sensing RGB image I € RH*W >3,
we aim to simulate a cloudy image via I = Cloud(I, E, M),
where E € RP*Wx1 i an exposure matrix to define ex-
posure degree, M € R#*Wx1 ig a cloud mask to simulate
clouds, and Cloud(-) represents the cloudy image synthesis
function. Inspired by [20], the cloud mask M can be synthe-
sized via a summation of multi-scale random noises, and is
defined as

M =) R(f(2%)) /2", 0]

where f represents a randomizing function, R denotes a
resize process and s is a scale factor. f produces random
noises with the image size 2° followed by being resized by
R. s is a natural number with range € [1, log,N], where
N = H x W is the image size. Given a clean image I,
exposure matrix E, and cloud mask M, we could synthesize

a cloudy image I via
I=Clud(LEM)=IGEG(1-M)+M, (2

where © denotes pixel-wise multiplication.

With this cloudy image synthesis, we could study the
effects of cloud from the viewpoint of adversarial attack by
tuning the exposure matrix E and cloud mask M to render
the synthesized cloudy images to fool the deep learning
based SOD models. Later, we also employ these adversarial
examples, obtained by the proposed attack method, to study
the defense performance.

3.2. Network Architecture

In this section, we show the whole pipeline of adversar-
ial cloud attack (AdvCloud) and DefenseNet as attack and
defense stages to fully explore the cloud effects to a de-
ployed deep SOD model in Fig. 2. In the attack stage, given

a clean image I, an exposure matrix E, a cloud mask M,
a pre-trained deep remote sensing SOD model ¢(-), and a
well-trained discriminator D, we aim to generate adversarial
cloudy image examples via the proposed AdvCloud. Then,
we analyze how the synthetic adversarial cloudy images
hurt the SOD performance. As the other main step of the
pipeline, we perform defense process, i.e., DefenseNet, as a
pre-processing stage for the adversarial images to generate
cloud-removed images as defense for the SOD model. The
proposed DefenseNet can avoid retraining the deep SOD
model and make the salient object detector process adaptive
to cloudy images.

3.3. Adversarial Cloud based Attack

In general, adversarial attack fails a deep model by adding
an imperceptible noise-like perturbation to an image under
the guidance of the deep model. In this work, we propose a
novel adversarial attack method, i.e., AdvCloud, to generate
adversarial cloudy remote sensing images that can fool the
SOD model to verify the robustness of the SOD model.

By intuition, we can tune E and M to generate adversarial
cloudy images. Specifically, given I, E, M, and a pre-trained
SOD detector ¢(-), we aim to tune the E and M under a
norm constraint by

arg nl\}lax J(¢(Cloud(I, E, M)), y),
E,

subject to ||M — M|, < em, |E — Eo|lp < €&, 3)

where J (-) is the loss function of the SOD model ¢(-) under
the supervision of the annotation label y. We set €g and ey
as the bound under L, around their initialization (i.e., Eqg
and M) for the parameters EE and M to avoid the clean
image I being changed significantly and we set p = oo
Similar to existing perturbation based adversarial attacks
(e.g., [29]), the object function, i.e., Eq. (3), can be optimized
by gradient descent-based methods. In specific: @ We ini-
tialize Eq as a mask with all elements as 1 and set M via
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Eq. (1). Then, we get the initial synthesized cloudy image
by Eq. (2). ® We feed the synthesized image to the SOD
model ¢(-) and calculate the SOD loss ¢. ® We perform
back-propagation to obtain the gradient of E and M with
respective to the loss function. @ We calculate the sign of
the gradient to update the variables E and M by multiplying
the sign of their gradients with the corresponding step sizes
for the next iteration, which is formulated to

¢ = J(¢(Cloud(L, E;, M), y),
M1 = M; + am - sign(Vm, (£)),
Ei11 = E; + ag - sign(VEg, (¢))), “

where ay and ap represents the step sizes, and ¢ €
{0,1,..., K — 1} is the iteration number. & We gener-
ate a new adversarial cloudy image and loop from @ to @
for K iterations.

Let us redefine I as the generated adversarial cloudy
image, to make it with close visualization to the normal
cloudy image, we also incorporate a discriminator D to align
the distribution of normal cloudy images and adversarial
cloudy images to avoid artifacts which might be introduced
by Eq. (3). The inputs of the discriminator are an adversarial
cloudy image I and a normal cloudy image I.., obtained by
I. = Cloud(I, M) = I®(1— M)+ M, then the adversarial
training loss of the discriminator D is

Lp(1L) = Br.~x.[log(D(1))]
+ Eq_x[log(1 — DD))], ®)
where I, and I are instances from normal cloudy images set
X, and adversarial cloudy images set X, respectively. The
whole attack pipeline, incorporating AdvCloud and discrim-
inator D, is trained on the training set of the remote sens-
ing SOD dataset EORSSD [13]. The above setting has an
assumption for a reliable discriminator D ahead for the fol-
lowing inference stage. Specifically, we alternatively freeze
adversarial parameters E, M and the discriminator D to op-
timize the other one to get a reliable discriminator D in the
training set of EORSSD before the following inference.
For the inference stage of the proposed AdvCloud attack,
we attack the testing set of EORSSD guided by the pre-
trained discriminator D and the SOD detector ¢(+). Given
a clean image I from the testing set of EORSSD, exposure
matrix E and cloud mask M, a well-trained discriminator D,
and a SOD detector ¢(-), we tune E and M for K iterations
based on back-propagation, while the optimization function
Eq. (3) is reformulated to

arg max(J (¢(Cloud(I, E, M)),y) — L (L, 1)),
E,M

subject to ||M — MOHP < em, ||E — E()Hp < €g, 6)

which means the adversarial cloudy image I could fail the
SOD detector and have the realistic cloud appearance and
pattern close to normal cloudy images. Then, the updating
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Figure 3. Structure of the proposed DefenseNet.

process of variables E and M, in Eq. (4), is reformulated to

¢ = j(qS(Cloud(L Ei, Mz))7 y)7
M1 =M, + oy - sign(Va, (0 — Lo(1, 1)),
Eit1 = E; + o - sign(Ve, (¢ — Lp(1,1.)))). ™

After obtaining the updated E and M for each image from
the testing set of EORSSD, we can get the corresponding
adversarial cloudy images via Eq. (2).

Novelty of AdvCloud: The conventional attack methods
first synthesize the normal cloudy image (original image +
normal cloud) and then add perturbations to the synthesized
image. Differently, our AdvCloud employs a novel approach
to jointly optimize the adversarial cloud mask and exposure
matrix during the Cloud Synthesizing for Remote Sensing.
Moreover, our AdvCloud integrates constraints that ensure
the modified images retain characteristics akin to normal
cloudy images.

3.4. Defense against Adversarial Cloud

The proposed AdvCloud attack can easily hurt the SOD
performance, while performing defense against adversar-
ial attack is an effective way to alleviate such performance
drop. In this section, we propose a DefenseNet as a learn-
able pre-processing for adversarial cloudy images to acquire
cloud-removed images for SOD models to improve the ro-
bustness. The proposed DefenseNet contains the two follow-
ing branches as the inputs.

Vanilla AdvCloud Branch. Given the updated adversar-
ial attack variables E and M, we can obtain an adversarial
cloudy image I. Then, it is the first-branch input to the De-
fenseNet to perform the reconstruction for adversarial cloud
removal. This is a simple vanilla defense setting to make
DefenseNet see the proposed AdvCloud attack to defend it.

Generalized AdvCloud Branch. To benefit a black-box
defense which makes DefenseNet robust to other cloud based
adversarial examples generated by different attack methods
never seen before, we design an Attack Generalization Mod-
ule (AGM) to include the generalized AdvCloud images. We
use two different levels of Gaussian noise to simulate the
changes produced by the gradient-based learned exposure
matrix (E) and cloud mask (IM) under a specified budget.
Specifically, we add Gaussian noise Ng = wg - N'(-) and Ny
=wwm - N (+) to E and M respectively to obtain E, and M,
so as to extend the distribution space of parameters around
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the gradient direction, where A/ (-) is a standard Gaussian
random noise generation function in the range of [-1, 1].
Then, we could acquire a generalized adversarial cloudy
image ig with the generalized E, and M, via Eq. (2), i.e.,

I, = Cloud(I, E,, M,), ®)

as the second-branch input to the DefenseNet.

DefenseNet Loss. We feed adversarial cloudy images
T and ig to the DefenseNet to output the cloud-removed
images I’ = DefenseNet(I; #) and I, = DefenseNet(I,; §)
respectively, where # means the parameter of DefenseNet.
In the defense stage, the output cloud-removed images are
optimized by the image reconstruction loss function L, and
regularization loss item L,.4. The objective loss function is
shown below:

L: = LT(I,v I) + LT(I;NI) + WLTGQ(I,aI;)v (9)

where I is the clean image for Iand ig, and w is the balance
weight which is set t0 0.1, and L, and L,..4 loss functions
are both implemented as L loss.

The whole algorithm flow for the defense against the
Adversarial Cloud based attack for remote sensing salient
object detection is summarized in Algorithm 1.

Algorithm 1 Defense algorithm against the Adversarial
Cloud based attack for remote sensing SOD.
Input: Clean images from the training set of EORSSD [13]
, em = 0.03, eg = 0.06, iteration K = 10, oy = 0.003,
ag = 0.015, a pre-trained remote sensing SOD detector
&(-) [13], and a discriminator D pre-trained on training set.
Output: Adversarial Cloudy Images, parameter 6 for De-
fenseNet.
1: repeat
2:  Attack Step:
* Initial cloudy image synthesizing by Eq. (2) with
E() and Mg.
*  Solve Eq. (6) via Eq. (7) to obtain optimal E and
M with K iterations for each image to learn the
corresponding adversarial cloudy image I
3:  Defense Step:
e Obtain the generalized adversarial cloudy image
I, via AGM and Eq. (8).
* Solve Egq. (9) via AdamW optimizer [41] to
obtain optimal 6 via I, I, from the optimal E
and M.
4: until convergence or maximum epochs reached.

4. Experiments
4.1. Experimental Setting

Benchmark Datasets: To evaluate the salient object de-
tection in remote sensing images, we use the public EORSSD

@) (b) (©) NG (e)
Figure 4. Example images of EORSSD, EORSSD., EORSSD with

AdvCloud. (a) clean image of EORSSD, (b) synthesized normal
cloud, (c) clean image with normal cloud leading to EORSSD., (d)
proposed AdvCloud, () EORSSD with the proposed AdvCloud.

dataset [13] to perform experiments. Using each clean image
in EORSSD dataset, we generate its corresponding image
with the normal cloud, leading to a new synthetic dataset
named EORSSD.. Similarly, adding the cloud-like attack to
each clean image of EORSSD dataset, we could generate a
new adversarial attacked cloudy image. Figure 4 shows some
example images of EORSSD, EORSSD,., and EORSSD with
AdvCloud.

Evaluation Metrics: We evaluate the remote sensing
salient object detection performance using F-measure (Fg),
Mean Absolute Error (MAE) score and S-measure (S,,),
same as those in [13].

Comparison Methods: For the attack experiment, we
compare the proposed AdvCloud method with five additive
perturbation based attack methods on the EORSSD,. dataset,
i.e., FGSM [15], MIFGSM [28], PGD [29], VMIFGSM [44],
and NIFGSM [45]. The maximum perturbation for these
comparison methods is set to be 8 pixel values in [0, 255].
These comparison attack methods are applied on the testing
images of EORSSD..

For the defense experiment, we compare our proposed
DefenseNet with JPEG Compression [42], FFA-Net [43],
and DefenseNetrr 4 (using FFA-Net as the backbone). The
defense methods are all trained on EORSSD with AdvCloud
generated by attacking DAFNet [13] which aims to remove
the adversarial attack to obtain a clean image.

For evaluating the generalization ability of the proposed
attack and defense methods, we additionally employ three
SOD detectors, i.e., BasNet [46], U?Net [47], and RR-
Net [48]. All SOD models are trained on EORSSD dataset
until convergence. Since the proposed AdvCloud are gen-
erated based on cloud, to ensure fairness in evaluating the
effectiveness of different SOD models in attacking and de-
fending against adversarial examples, the performance of
four SOD models should treat the EORSSD, as the starting
point for attacking rather than EORSSD.

Implementation Details: The SOD Network to be at-
tacked is the deep learning based remote sensing salient
object detection network DAFNet [13] pre-trained on the
clean training images of EORSSD dataset. For the proposed
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Normal FGSM

AdvCloud attack, we set eyy = 0.03 (8 pixel values in [0,
255]), eg = 0.06, and the generalization random noise range
of wwm, wg are 0.05 and 0.1, respectively. The input image
is resized to 256 x 256. We use the AdamW optimization
algorithm [41] for the network training with the following
hyperparameters: learning rate as 0.0001, batch size as 8,
and total epoch as 100. All the experiments were run on a
single NVIDIA RTX 3090 GPU card.

4.2. Experimental Results

Attack Result. Table 1 shows the quantitative SOD per-
formance for the baseline attack. When the dataset is clean,
i.e., no cloud is added, the target SOD network, DAFNet [13],
achieves 0.9049 overall F-measure on EORSSD dataset. Af-
ter normal clouds are added to the EORSSD dataset, the
F-measure decreases to 0.8253. When the proposed Adv-
Cloud is added to the EORSSD dataset, the SOD network

PGD

s B

VIMFGSM NIFGSM AdvCloud

is misled by the adversarial examples and the F-measure
is 0.2572. This demonstrates that the proposed AdvCloud
severely reduces the performance of the SOD network. Fur-
thermore, we compare the proposed AdvCloud with other
attack methods, as shown in Table 1. It shows that each at-
tack method could effectively reduce the SOD performance
Moreover, the white-box attacks on DAFNet can be effective
to other SOD detectors with varying degrees of decline.

Figure 5 shows the qualitative comparisons among differ-
ent attack methods and their corresponding SOD map. Due
to the attack, some objects predicted by the SOD model are
ignored (a, b, d) and misidentified (c) in Fig. 5. As we can
observe, the proposed attacked image is very similar to the
normal cloud in human perception compared to that from
other attack methods. We can see visible defect and moire
on the attacked images by other attack methods in Fig. 6.
Therefore, the proposed AdvCloud is more visually close to
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Table 1. Baseline SOD performance before and after attacks. We mark white-box attacks with * and highlight the best performance in red.

The gray part shows the black-box attacks with other SOD models.

Attack Performance DAFNet [13] BasNet [46] U2Net [47] RRNet [48]
MAE 1 Fs | Swmd | MAEt Fsl Sml | MAET Fsl Snml | MAET Fsl  Snl
Clean Image 0.0060 0.9049 0.9058 0.0162  0.8071  0.8871 | 0.0157  0.7890  0.8516 | 0.0077  0.9086  0.925
Normal cloud 0.0126 0.8253 0.8540 0.0295  0.7270  0.8352 | 0.0359 0.6170 0.7410 | 0.0100 0.8345 0.8917
FGSM 0.0432* 02880* 0.5773* | 0.0381  0.5974 0.74838 | 0.0441  0.5027 0.6743 | 0.0202  0.6815  0.7937
MIFGSM 0.0497*  0.1292*%  0.5247* | 0.0452 05176  0.7063 | 0.0461  0.4666 0.6611 | 0.0208  0.6344  0.7695
PGD 0.0680*  0.1376*  0.5166* | 0.0401  0.5860 0.7478 | 0.0426 0.5142 0.6869 | 0.0169 0.7026  0.8060
E‘) VMIFGSM 0.0497 *  0.1326*  0.5267 * | 0.0463 0.4924 0.6952 | 0.0463 0.4564 0.6561 0.0245  0.5807 0.7416
£ NIFGSM 0.0472*%  0.1519*  0.5360 * | 0.0439  0.5176  0.7108 | 0.0456  0.4698 0.6623 | 0.0213  0.6354  0.7735
£ AdvCloud w/o Noise 0.0256*  0.6583*  0.7556* | 0.0311  0.7080  0.8198 | 0.0373  0.5930 0.7286 | 0.0120  0.8018  0.8671
AdvCloud w/o Exposure Matrix | 0.0484 *  0.4265*  0.6435* | 0.0317 0.7026  0.8145 | 0.0379  0.5953 0.7265 | 0.0116  0.8103  0.8765
AdvCloud 0.0714* 0.2572* 05609 * | 0.0361 0.6396 0.7771 | 0.0404  0.5504 0.7072 | 0.0143  0.7484  0.8370
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Figure 7. Comprehensive defense peer)rmance across various SOD mZ)dels (DAFNet, BasNet, U2Nez RRNet), in which each columvn
represents the mean testing performance under different attack and defense scenarios. The EORSSD and EORSSD.. represent each detector’s
performance under clean image and normal cloudy image (both without attack); the Mean Attack column shows the mean attacked
performance under FGSM, MIFGSM, PGD, VMIFGSM, NIFGSM, and AdvCloud attacks trained with DAFNet; and the subsequent
columns show the mean defense results by JPEG, FFA-Net, DefenseNet, and DefenseNetr r 4, respectively. The gray stripes indicate the
machine learning based DAFNet-trained black-box defenses on other SOD models.

normal cloud but with very competitive attack performance.

Defense Result. Table 2 shows the detailed defense per-
formance under different attack methods across various SOD
models. It shows that the defense methods effectively im-
prove the SOD performance after applying defense methods
to adversarial examples generated by the attack strategies in
Table 1. The Fig. 7 shows the comprehensive/summarized
defense on all attack strategies with different SOD models.
We can clearly see that the proposed defense method, i.e., as
a pre-processing step, achieves better Fg and S,,, gains com-
paring with FFA-Net. The proposed DefenseNet could not
only predominantly defend the proposed AdvCloud attack
(i.e., white-box defense) but also effectively defend other at-
tack methods (i.e., black-box defense). As shown in Table 2,
the F3 performance gain by the proposed DefenseNet and
DefenseNetrr 4 can be generalized to defend other attack
methods. Despite the proposed defense method never sees
the adversarial attack images created by other attack meth-
ods during training, the proposed defense method trained on

AdvCloud still achieves better generalization performance
to defend against other attack methods, with the help of the
proposed AGM.

Ablation Study for Proposed DefenseNet. The pro-
posed DefenseNet has two input branches, i.e., regular attack
image branch and generalized attack image branch. Table 3
shows both the regular attack branch and the generalized at-
tack branch contribute to the final defense SOD performance,
where the best defense performance is obtained when com-
bining the two branches. If the branch of generalized attack
is removed, it will lead to more significant defense perfor-
mance drop. The DefenseNet contain AGM module can
provide a promising and effective solution for generative
defense on different adversarial attacks.

Discussion about Defense on Normal Cloudy Images.
The DefenseNetrr 4’s performance in defense remote sens-
ing SOD was assessed using normal cloudy images of
EORSSD.. The results in Table 4 indicate that the pro-
posed defense mechanism is capable of effectively defend-
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Table 2. Detailed defense performance across various SOD models. DefenseNetrm means the proposed DefenseNet using FFA-Net as
backbone. All attacks are trained with DAFNet, and the gray part highlights the black-box defense to different attacks on other SOD models.

Defense Performance DAFNet [13] BasNet [46] U2Net [47] RRNet [48]
MAE| Fgzt Sm?T | MAE] Sm1 | MAE] Fgt Smt | MAEL Fgt Sput
FGSM 0.0332 05084 0.6756 | 0.0380 0.5848 0.7410 | 0.0427 05112 0.6790 | 0.0204 0.6780  0.7900
MIFGSM 0.0421 03409 0.6117 | 0.0434 05147 07082 | 0.0451 04625 0.6599 | 0.0205 0.6278 0.7681
Q  PGD 0.0323 05205 0.6939 | 0.0396 0.5851 0.7479 | 0.0418 0.5136 0.6874 | 00170 0.6874 0.8049
£  VMIFGSM 0.0485 02710 0.5745 | 0.0464 04868 0.6926 | 0.0459 04518 0.6531 | 0.0242 0.5818 0.7413
NIFGSM 0.0422 03575 0.6139 | 0.0433 05211 0.7088 | 0.0447 04671 0.6628 | 0.0215 0.6262 0.7685
AdvCloud 0.0242 06228 0.7486 | 0.0363 0.6334 0.7756 | 0.0401 0.5524 0.706 | 0.0144 0.7353 0.8312
FGSM 0.0260 0.6468 0.7548 | 0.0250 0.7182 0.8247 | 0.0237 0.6776 0.7865 | 0.0159 0.7668 0.8414
3 MIFGSM 0.0569 04534 0.6651 | 00265 07017 0.8154 | 0.0237 06776 0.7865 | 0.0160 0.7476 0.8352
S PGD 0.0213 07244 0.8039 | 0.0265 07017 0.8154 | 0.0209 07210 0.8106 | 0.0126 0.7963 0.8656
5  VMIFGSM 0.0762 03268 0.5917 | 0.0302 0.6689 0.7954 | 0.0260 0.6523 0.7704 | 0.0194 0.6912  0.8040
& NIFGSM 0.0516 04698 0.6689 | 0.0165 07508 0.8345 | 0.0241 0.6762 0.7844 | 0.0165 07508 0.8345
AdvCloud 0.0128  0.8226 0.8572 | 0.0193 07496 0.8549 | 0.0173 0.7644 0.8368 | 00111 0.8365 0.8952
FGSM 0.0292 05993 0.7300 | 0.0363  0.6260 0.7725 | 0.0360 0.5846 0.7264 | 0.0190 0.7015  0.8092
5 MIFGSM 0.0535 04077 0.6427 | 0.0331 0.6607 0.7907 | 0.0322 0.6168 0.7485 | 0.0174 0.7185 0.8170
Z  PGD 0.0244  0.6861 0.7799 | 0.0332 0.6557 0.7873 | 0.0306 0.6439 0.7653 | 0.0139 0.7722  0.8529
£ VMIFGSM 0.0692 03017 05838 | 0.0354 0.6280 07711 | 0.0334 05972 0.7367 | 0.0205 0.6722  0.7909
*  NIFGSM 0.0484 04318 0.6518 | 0.0332 0.6557 0.7873 | 0.0330 0.6112 0.7441 | 00180 0.7210 0.8182
AdvCloud 0.0145 07965 0.8443 | 0.0180 07826 0.8710 | 0.0165 07768 0.8462 | 0.0102 0.8423 0.8971
FGSM 0.0224 06995 0.7821 | 0.0316 0.6891 0.8095 | 0.0354 0.6072 0.7363 | 0.0136  0.7901  0.8561
$  MIFGSM 0.0255 0.6488 0.7618 | 0.0279 07145 0.8244 | 0.0301 0.6479 0.7637 | 0.0138 0.7788  0.8551
9 PGD 00149 07778 0.8313 | 0.0260 0.7294 0.8357 | 0.0288 0.6689 0.7781 | 0.0122 0.7971  0.8692
5  VMIFGSM 0.0393  0.5338  0.6962 | 0.0291 0.6894 0.8113 | 0.0313 0.6278 0.7528 | 0.0159 0.7419 0.8306
& NIFGSM 0.0259 0.6512 0758 | 0.0276 07097 0.8227 | 0.0313 0.6378 0.7580 | 0.0139 0.7860  0.8573
AdvCloud 0.0130 0.8178 0.8592 | 0.0171 07924 0.8761 | 0.0169 0.7834 0.8486 | 0.0097 0.8586 0.9031

Table 3. Ablation study for the SOD performance of DefenseNet to different attacks on DAFNet. DefenseNet!: DefenseNet w/o Generalized

AdvCloud, DefenseNet': DefenseNet w/o Vanilla AdvCloud. The

white-box defense to the attacks seen in training is shown in blue.

Attack Methods DefenseNett DefenseNet’ DefenseNet

) MAE | Fg 1 Sm T MAE | Fg 1 Sm T MAE | Fg T Sm T
FGSM [15] 0.0373 04734 0.6652 | 0.0279 0.6161 0.7395 | 0.0260 0.6468 0.7548
MIFGSM [28] 0.0554  0.3144 0.5966 | 0.0600 0.4010 0.6399 | 0.0569 0.4534 0.6651
PGD [29] 0.0400  0.5256 0.6986 | 0.0267 0.6770 0.7783 | 0.0213  0.7244  0.8039
VMIFGSM [44] 0.0659  0.2271 05535 | 0.0754 0.2844 0.5760 | 0.0762  0.3268 0.5917
NIFGSM [45] 0.0517 03187 0.6004 | 0.0553 0.4027 0.6386 | 0.0516 0.4698 0.6689
Proposed AdvCloud | 0.0249  0.7033  0.8011 0.0182  0.7477 0.8227 | 0.0128 0.8226  0.8572
Mean \ 0.0459  0.4271  0.6526 \ 0.0439  0.5215 0.6992 \ 0.0408  0.5740 0.7236

Table 4. Defense SOD performance of normal cloudy images of
EORSSD.. with the SOD detector DAFNet.

Methods MAE| Fg? S T

Clean Image 0.0060 0.9049 0.9058
Normal Cloud 0.0126  0.8253 0.8540
JEPG Compression [42] | 0.0139 0.7913  0.8367
DefenseNet 0.0171  0.7747 0.8315
FFA-Net [43] 0.0144  0.8079 0.8492
DefenseNetp 4 0.0126  0.8320 0.8620

ing against anonymous types of attacks, while maintaining
strong performance on normal images. This suggests that
our defense method is reliable and effective in both attack
and non-attack scenarios.

5. Conclusion

In this paper, we proposed a new Adversarial Cloud
to attack the deep learning based remote sensing salient

object detection model, meanwhile a new DefenseNet as
pre-processing defense is proposed to purify the input im-
age without tuning the deployed remote sensing deep SOD
model. To study this research problem, we synthesized new
benchmarks EORSSD,. with normal clouds and the EORSSD
with the adversarial cloud based attacks. The extensive ex-
periments on four SOD models show that the proposed De-
fenseNet could well pre-process the attacked cloudy images
as defense against different adversarial attack methods with-
out changing the deployed remote sensing deep SOD model,
while the SOD performance on the remote sensing normal
cloudy images without attack is still promising.
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