
NeRFEditor: Differentiable Style Decomposition for 3D Scene Editing

Chunyi Sun, Yanbin Liu, Junlin Han, Stephen Gould
Australian National University

{chunyi.sun, yanbin.liu, junlin.han, stephen.gould}@anu.edu.au

Abstract

We present NeRFEditor, an efficient learning framework
for 3D scene editing, which takes a video as input and out-
puts a high-quality, identity-preserving stylized 3D scene.
Our goal is to bridge the gap between 2D and 3D editing,
catering to a wide array of creative modifications such as
reference-guided alterations, text-based prompts, and user
interactions. We achieve this by encouraging a pre-trained
StyleGAN model and a NeRF model to learn mutually con-
sistent renderings. Specifically, we use NeRF to generate
numerous (image, camera pose)-pairs to train an adjustor
module, which adapts the StyleGAN latent code for gen-
erating high-fidelity stylized images from any given view-
ing angle. To extrapolate edits to novel views, i.e., those
not seen by StyleGAN pre-training, while maintaining 360◦

consistency, we propose a second self-supervised module
that maps these views into the hidden space of StyleGAN.
Together these two modules produce sufficient guidance for
NeRF to learn consistent stylization effects across the full
range of views. Experiments show that NeRFEditor outper-
forms prior work on benchmark and real-world scenes with
better editability, fidelity, and identity preservation.

1. Introduction
Imagine if we can take a short video and generate an ed-

itable 3D scene. This ability will facilitate interesting appli-
cations in game and movie products, e.g., freely editing an
identity-preserving character in real scene according to vari-
ous user demands. Current techniques require 3D modeling
expertise and long development times per scene, which is
infeasible for real-time and customized editing.

Motivated by this, existing attempts push current tech-
niques towards 3D consistent and real-time editing, as sum-
marized in Tab. 1. Using existing latent space manipulation
techniques, 2D GANs [8, 13, 25] can produce stylized im-
ages from multiple camera poses. However, these 2D meth-
ods are confined to the training pose distribution (in-domain
poses) and cannot ensure 3D consistency. 3D-aware synthe-
sis methods [1, 2, 7, 20] can generate multiview-consistent

NeRF

StyleGAN

G’
“red hair”

“tanned skin” G’

Step1: NeRF guided
StyleGAN finetuning

Step2: StyleGAN guided
3D scene editing

F … G

(b) StyleGAN image generation

…

(c) Mutual guided training

(a) NeRF image rendering

Figure 1. Method overview. (a) NeRF can render images from
different views but focuses on a single scene. (b) StyleGAN can
generate high-quality images but lacks generation control and is
restricted to a small range of viewing angles. (c) We propose
two modules (highlighted in the orange box) for a pre-trained
StyleGAN to generate highly controllable stylized images from in-
domain views and out-of-domain views, which can provide guided
images to fine-tune the NeRF to achieve 3D scene editing.

images using unstructured 2D images for training. Since
their primary goal is not free-view editing, they experience
noticeable quality degradation when extrapolating to un-
seen camera views (out-of-domain poses). Directly editing
the neural radiance field (NeRF) is a promising direction for
full scene editing. However, existing NeRF editing meth-
ods [15, 34] only support basic shape and color editing of
simple objects. These approaches demand diverse 3D real-
scene data for training, which is expensive to obtain.

In this paper, we present NeRFEditor, an efficient learn-
ing framework for 3D editing of real scenes, which sup-
ports diverse editing types to produce high-fidelity, identity-
preserving scenes. Our framework leverages the novel-view
synthesis capability of NeRF and the well-behaved latent
space of a pre-trained StyleGAN model (Fig. 1). The for-
mer ensures 3D-consistent scene editing, while the latter fa-
cilitates flexible manipulation and high-quality generation.
However, it is not straightforward to incorporate a 3D ren-
dering model (NeRF) and a 2D generative model (Style-
GAN) into a unified learning framework.

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

7306

To generate view-consistency guided stylized images
from any camera view, we design two additional learnable
modules for StyleGAN. First, a latent code adjustor is de-
vised that takes camera pose as an input and re-renders the
image from the target view by manipulating the latent code
of StyleGAN. In the latent code adjustor, we introduce a
differentiable decompositor to decompose the pre-trained
StyleGAN latent space W into an orthogonal basis. Then,
the adjustor disentangles the pose from other styles to gen-
erate multiview stylized images to guide NeRF rendering.
Second, to maintain 3D style consistency across different
views (i.e., editing human clothing color in the frontal view
while preserving a coherent 3D style across all angles), it
is essential to address the limitation of StyleGAN in gen-
erating images for poses outside its training domain. We
aim to enable the adaptation of in-view edited styles to out-
of-domain poses. To achieve this, we introduce an inno-
vative component termed the hidden mapper. This mod-
ule maps novel-view images to the hidden feature space of
StyleGAN. We develop a self-supervised training algorithm
for the hidden mapper so that StyleGAN can adapt its gen-
erative ability to out-of-domain views (i.e., camera poses
not seen during StyleGAN training).

For 3D-consistent scene editing, we use the above-
generated in-domain and out-of-domain stylized images to
finetune an adapted conditional NeRF model. The result-
ing model can extrapolate a wide variety of 2D edits to 3D
scenes, such as text-prompt editing, image-guided editing,
interactive editing, and style transfer. It outperforms prior
work on standard evaluation metrics and image fidelity.

To sum up, we make the following contributions:

• We propose an efficient framework for 3D scene edit-
ing, which only takes a few minutes on a single GPU.
A summary of the features of our method over existing
approaches is given in Tab. 1.

• We design a differentiable latent code adjustor to dis-
entangle camera pose from other styles, combining
NeRF and pre-trained StyleGAN into a unified learn-
ing framework.

• We devise a self-supervised hidden mapper to facilitate
the out-of-domain style adaptation.

Our method achieves state-of-the-art results on a public
benchmark dataset and a newly-collected real-scene human
dataset. Moreover, it shows promising application poten-
tials for diverse high-quality editing types.1

2. Related Work
2D Latent Space Manipulation. Previous 2D GAN ma-

nipulation works [8, 33, 35] show that the latent space of

1Coda and dataset available from https://github.com/
Chuny1/NeRFEditor

Table 1. Compare the main features with previous works.

Method
360◦

Editing
w/o 3D

Auxiliary data
Real image

Editing
3D

Consistent
Real-time
Editing

2D GANs [8, 13, 25] ✗ ✓ ✓ ✗ ✓
3D-aware [1, 2, 7, 20] ✗ ✓ ✗ ✓ ✗
NeRF editing [15, 34] ✓ ✗ ✗ ✓ ✗
Ours ✓ ✓ ✓ ✓ ✓

pre-trained GANs can be decomposed to control the im-
age generation process for attribute editing. The viewing
direction can also be disentangled from other attributes,
which allows a GAN to produce images from different
viewing directions. However, since the training dataset
only covers a limited range of viewing angles, both the
supervised [14, 25, 27, 32] and unsupervised [8, 26, 33, 35]
manipulation methods struggle to make accurate and out-
of-domain control of viewing directions. Moreover, these
2D methods have difficulties in generating a 3D-consistent
scene. In contrast, we design a mutual NeRF-StyleGAN
learning framework, which inherits the 3D-consistent abil-
ity of NeRF and maintains the latent space manipulation
property of StyleGAN. Our framework can also extrapolate
the editing capability beyond the training viewing distribu-
tions with a novel self-supervised hidden mapper.

3D-aware Synthesis. Recent 3D-aware synthesis meth-
ods rely on NeRF [16] to generate 3D-consistent images us-
ing unstructured 2D training images. As a pioneering work,
pi-GAN [1] represents the implicit neural radiance field us-
ing a SIREN network [28] and applies the FiLM [23] con-
ditioning on SIREN, leading to view-consistent synthesis.
FENeRF [29], EG3D [2] and StyleNeRF [7] take a two-step
procedure: 1) condition a NeRF on viewpoint and style to
render a low-resolution feature map; 2) convert the map to a
high-resolution image with a CNN-based generator. These
methods encounter two problems that prevent their direct
application to real 3D scene editing: poor out-of-domain
view extrapolation and inaccurate GAN inversion. In our
method, the first problem is addressed by a well-devised
hidden mapper that can generate out-of-domain stylized im-
ages. For the second problem, our proposed differentiable
adjustor can improve the GAN inversion.

Editable NeRF. NeRF [16] encodes the radiance field of
a scene in the weights of a MLP to conduct novel-view ren-
dering. As an implicit function, NeRF is challenging to edit.
Existing works [15,34,37,41] only support editing on local
parts of objects or with simple types. EditNeRF [15] was
the first work to edit the shape and color of NeRF on local
parts of simple objects. CLIP-NeRF [34] improves Edit-
NeRF by leveraging a CLIP model to support text prompt
or exemplar images, but still on simple objects. Compared
with them, our method can edit complex scenes and objects
(e.g., human face) to generate high-fidelity 3D-consistent
images and support more diverse editing types.

3D style transfer aims at editing the 3D NeRF scene to

7307

https://github.com/Chuny1/NeRFEditor
https://github.com/Chuny1/NeRFEditor

Conditional NeRF
(Sec 3.1)

Camera Pose
(", $)

Hidden
Mapper

(Sec 3.3)

Latent Code
Adjustor
(Sec 3.2) &

minimize difference

'!

G

Figure 2. The framework of NeRFEditor. (1) The conditional NeRF is pre-trained on the original scene to produce sufficient (image,
pose) pairs. (2) The pairs are used to train a Latent Code Adjustor, which disentangles camera pose from other styles in the learned latent
space of StyleGAN. (3) To enable out-of-domain extrapolation, a Hidden Mapper maps novel-view images to the hidden feature space of
StyleGAN. Finally, conditional NeRF will be finetuned for 3D-consistent editing (Sec. 3.4).

match the style of a reference image. Previous methods
[3, 11, 18, 39] usually design a style transfer loss to guide
the rendered images from different views, which might re-
sult in unstable optimization. For our method, although the
main focus is 3D scene editing, it can perform style trans-
fer for any object category as a by-product. Meanwhile, our
method achieves more stable 3D style transfer than the pre-
vious method tailored to this task.

3. Mutual NeRF-StyleGAN Training

As shown in Fig. 2, we design an efficient learning
framework for 3D scene editing, which leverages the 3D
consistency strength of NeRF and latent space manipulation
ability of StyleGAN. To facilitate mutual training, we adapt
a conditional NeRF (Sec. 3.1) and devise two novel mod-
ules for StyleGAN: a latent code adjustor (Sec. 3.2) and a
hidden mapper (Sec. 3.3). Finally, the conditional NeRF is
finetuned for 3D-consistent style editing (Sec. 3.4).

3.1. Conditional NeRF

We start by adapting a conditional NeRF model to (1)
produce (image, pose) pairs for style manipulation in Style-
GAN and (2) use manipulated images to effectively finetune
the NeRF model for 3D consistent scene editing (Sec. 3.4).

The NeRF model is a continuous function F that maps
3D coordinates x = (x, y, z), and viewing direction v =
(θ, ϕ) to colors c = (r, g, b) and density σ. To enable the
interaction with StyleGAN for scene editing, we condition
NeRF on a style code α and an appearance code β. We
assign different style codes for the original scene (α = 0)
and stylized scene (α = 1) and assign unique appearance
codes β for each different image in the stylized guided set2.
The style code allows us to train the NeRF conditioned on
different styles and the appearance code could help further
handle the appearance inconsistency in the stylized guided

2We use frame indexes generated by COLMAP and normalize to [0,1].

set. Here, α and β are encoded into latent space by trainable
MLPs Estyle(·) and Eapp(·); x is encoded by a hash encoder
H(·) [17]; and v is encoded by position encoding R(·). The
colors c and density σ are predicted as follows:

Fdens : (Estyle(α) , Eapp(β) ,H(x)) 7→ (f , σ) ,

Fcolor : (Estyle(α) , Eapp(β) ,R(v) , f) 7→ c ,

where Fdens, Fcolor denote the density and color sub-
functions of F, f is the output hidden feature from Fdens.

3.2. Latent Code Adjustor

𝑤! = 𝑤# + V(𝑘	・d)

𝑣!
𝑣"

𝑤#

W

(a) Latent Code Adjustor (b) Style Disentangling

	{w} ∈ 𝑊
(𝜃" , 𝜙")

𝑘
𝐷

V
A
𝑑…

…
…

……

Eq. 1
𝑤!

“with beard”

“left turn”

Figure 3. Latent Code Adjustor. (a) All sampled latent code in
W are passed to an MLP (orange box) and decomposed by D to
get an orthogonal basis V . An adjustor A predicts the view-related
coordinates k of V and their strengths d. Then, an original code
w̄ is adjusted to w′. (b) An example of how the adjustor works.
Suppose the learned latent space W only contains two styles: “left
turn” and “with beard”. Hence, W is decomposed into two direc-
tions v1 and v2. Traversing over v1 only modifies pose.

After obtaining sufficient (image, pose) pairs, we employ
a pre-trained StyleGAN to generate high-fidelity stylized
images from multiple camera views. Recent works [8, 25]
found that pre-trained StyleGAN has a well-behaved la-
tent space, which involves interpretable styles such as pose,
color, expression, etc. Motivated by this, we devise a dif-
ferentiable decomposition module, named latent code ad-
justor, to disentangle the camera pose from other styles,
thereby enabling view-consistent image stylization. To en-
sure high-fidelity, we restrict the camera pose range to lie

7308

in StyleGAN’s training pose distribution [1, 20, 29]. This
range defines the in-domain camera views.

In StyleGAN, a mapping network M converts a vector
z ∈ Z (sampled from a normal distribution) into a latent
code w ∈ W . The latent code w is then passed to a gen-
erator G to generate images. To manipulate a real-world
image, GAN inversion methods are used to map the image
to the latent code, and most methods [4, 10, 31] train an en-
coder E to map an image back to the latent code. However,
the inverted latent code may not generate a nearly identi-
cal image, hindering high-fidelity manipulation. We add an
MLP layer on the top of a pre-trained encoder E to refine
the predicted latent code for better GAN inversion.

Differentiable Style Decomposition. The architecture
of the latent code adjustor is shown in Fig. 3(a). A de-
composition node D is applied on the intermediate latent
space W to get an orthogonal basis V representing differ-
ent styles. Specifically, we first sample a large batch of
z ∼ Z from the normal distribution and use the mapping
network M to get a large set {w} ⊆ W . We then com-
pute the eigen-decomposition [5] of the estimated covari-
ance matrixCOV({w}) to obtain the orthogonal basis V .

As discussed in [24], it is challenging for the inversion
method to get a good latent vector that both captures the
target image appearance and maintains edibility. Also, the
pose attributes may not be fully disentangled in the pre-
trained StyleGAN latent space W . To tackle this issue, our
additional MLP applied to latent codes w, allows the pre-
trained StyleGAN W space to be gently fine-tuned. This is
realized by differentiating the eigen-decomposition to make
all modules trained end-to-end. We explicitly derive gra-
dients using implicit differentiation [6] to efficiently back-
propagate through eigen-decomposition.3

Latent Code Adjustment. Given the orthogonal basis
V and a finetuned latent code w, image editing can be done
by constructing a new latent code w′ = w + V x, where
components of x are separate control parameters.

To perform target view editing, we need to determine the
view-related coordinates and the corresponding adjusting
strengths that need to traverse that coordinates to the target
view. Given the target pose (θ, ϕ), we first use a lightweight
classifier C to classify the view-related coordinates of x as
k = sigmoid(C(θ, ϕ)) and then use a lightweight regressor
R to predict the corresponding view-adjusting strengths as
d = R(θ, ϕ). Now, given a latent code w, we can generate
the edited image Î(θ,ϕ) of the target view by adjusting the
latent code: w′ = w + V (k · d) and Î(θ,ϕ) = G(w′).

To train the latent code adjustor, we use the unedited
frontal image Ī to obtain the latent code w̄ = E(Ī). With
the generated target view image Î(θ,ϕ) and the groundtruth
I(θ,ϕ) generated by NeRF, we employ four loss terms for

3Problem formulation and derivation are in the supplementary.

(a) StyleGAN in-domain camera manifold (b) Out of domain stylization generation

Figure 4. Full scene editing. (a) 2D alignment is applied to
GAN’s training data, and the training data is limited to a small
range of camera views. (b) Our hidden mapper can make guided
stylized images for out-of-domain views.

aug(I!)

	 𝐿"
G

I!

	

I#

	

I$%&

	

G

w!

	

w#

	

(w'()
! , w*+,-.

)

	

GG

aug aug
(w'()

! , w*+,-.
)

	

𝐿"I$%&

	

I+$%&

	

(a) Augmentation (b) Hidden Mapper Training

Figure 5. Hidden Mapper. (a) The codes are split as a geo-
metric code wgeo and a style code wstyle. Same augmentation
is applied on hidden features controlled by wgeo and style-mixed
images controlled by mixed codes (wA

geo, w
B
style). (b) After aug-

mentation, Hidden Mapper is trained with the L1 reconstruction
loss on both hidden space and image space.

training R, C and the MLP as follows:

Ltotal = L2 + Lvgg + Lid + Lreg . (1)

Here, the first three terms are the ℓ2 distance, VGG percep-
tual distance [12], and identity distance computed between
Î(θ,ϕ) and I(θ,ϕ), respectively. The last term Lreg is an en-
tropy regularization term to encourage k to be sparse, as
only few coordinates are view-related.

In-domain Stylized Set Iin. We can apply any existing
latent code editing methods [8,25] on the frontal latent code
w̄ to get wstyle. We use the latent code adjustor to gener-
ate multi-view stylized images from a single frontal image.
For the full set of in-domain images, we generate a stylized
image for every camera pose in the NeRF-guided image set.

3.3. Hidden Mapper

Despite the high-fidelity generation in the training pose
distribution, StyleGAN struggles to extrapolate to extreme
camera views beyond the training distribution, i.e., out-of-
domain views. Fig. 4(a) demonstrates how data is pro-
cessed when training the generative model. The image
is aligned and cropped based on detected key points, and
the camera manifold is restricted around the frontal face.
These two factors decide the StyleGAN cannot generate
out-of-domain view images and performs worse when ap-
proaching the boundary of the in-domain camera manifold.
Fig. 4(b) shows that the hidden mapper generates guided

7309

Algorithm 1 Self-supervised Hidden Mapper Training.

Input: Ggeo,Gstyle, image IA, styles wA, wB

FA = aug(Ggeo(w
A
geo)) # augment the hidden map

F̂A = H(aug(IA)) # predict the hidden map
Imix = Gstyle(F

A, wB
style) # generate mixed image

Îmix = Gstyle(F̂
A, wB

style) # predict mixed image
Return: loss = L1(I

mix, Îmix) + L1(F
A, F̂A)

images without limitations on camera pose and helps to
achieve 3D style consistency. We design a hidden mapper
H to tackle this limitation of StyleGAN.

Self-supervised Training. Latent codes of shallow lay-
ers generally control the geometric aspects (e.g., pose and
shape), while latent codes of deep layers control the style
attributes (e.g., skin color). Style-mixing [13] can mix the
style of two images by combining two latent codes. We se-
quentially split latent codes as (wgeo, wstyle).

Each block of StyleGAN takes as input a hidden feature
map produced by the previous block and an additional latent
code. Therefore, we can perform style-editing by mixing
the hidden maps with wstyle. Most importantly, we observe
that when we perform heavy augmentation to the hidden
map, the style can still transfer to the correct spatial location
in the image. If we can learn a function that maps images
to the hidden space of StyleGAN, we will be able to trans-
fer styles to images captured on any camera location. We
introduce a self-supervised algorithm to achieve this goal.

We represent the early layers of the generator that takes
wgeo as Ggeo and the deeper layers of the generator that
takes wstyle as Gstyle. The generation process is denoted as
F = Ggeo(wgeo) and I = Gstyle(F, wstyle). The hidden
mapper is trained to map real images to the output space of
Ggeo, which is achieved by reconstructing both the hidden
feature F and the generated image I . The training algorithm
is shown in Alg. 1 and Fig. 5.

Obtaining Out-of-domain Images. Once the hidden
mapper is trained we can easily generate out-of-domain
stylized images by first using our conditional NeRF to gen-
erate an unedited image, which is then mapped into hidden
features F . The hidden features are combined with target
editing styles wstyle to obtain the final stylized images.

3.4. 3D-Consistent Style Editing

With trained latent code adjustor and hidden mapper in
hand, our model is capable of producing stylized images
over complete 360◦ viewing angles. We use the images
Iori generated by the original scene, in-domain set Iin and
out-of-domain stylized set Iout to finetune the conditional
NeRF for 3D-consistent rendering with style edits.

To finetune conditional NeRF, we assign α = 1 for the
stylized sets and a different β ∈ [0, 1] for each stylized im-

age in Iin and Iout. To focus on editing the objects, we
calculate a foreground mask M . Then we define the fol-
lowing masked-guided losses w.r.t. colors c and density σ:

Lstyle =
∑
i,j

(ĉstylei,j ·Mi,j − cstylei,j ·Mi,j)
2
, (2)

Lbr =
∑
i,j

(σ̂style
i,j · (1−Mi,j)− σori

i,j · (1−Mi,j))
2
, (3)

Lori =
∑
i,j

(σ̂ori
i,j − σori

i,j)
2, (4)

where i, j index the image pixels, ĉ and σ̂ denote the ren-
dered colors and density, style and ori denote the stylized
and original sets. Lstyle optimizes the foreground style edit-
ing process. Lbr is background regularization to constrain
the density change in the background region. Lori is used to
avoid forgetting the original scene, which can stabilize the
training and also help background regularization.

To further handle inconsistencies in the guided training
set, we follow [19] to render the depth map d and adopt
a depth regularisation term Ldepth to smooth the stylized
scene. The final loss used for our 3D-consistent NeRF edit-
ing is:

L = (Lstyle + Lbr + Lori) + λ · Ldepth , (5)

where λ controls the strength of the depth estimation.

4. Experiments
Datasets. We evaluate NeRFEditor on two datasets:

FaceScape [36, 41]and TIFace (Tiny-scale Indoor Face col-
lection). FaceScape contains 359 different subjects, each
with 20 expressions and 120 multiview images for each ex-
pression. Images are captured in a lab environment with
the subject wearing a turban. To evaluate the editing capa-
bility for real 3D scenes, we collect TIFace, a real-world
dataset including ten different persons from a realistic envi-
ronment, without any restriction on hairstyle. Details of the
dataset collection are in the supplementary.

Evaluation Metrics. Following previous works [1,2,7],
we use various metrics to evaluate the image quality: PSNR,
SSIM, and LPIPS [40]. To quantify the 3D consistency, we
employ Pose (pose adjusting error) [2]. To evaluate iden-
tity preservation, we use ID Score [21], which measures
the confidence of classifying one image to have the same
identity as the ground truth image. Meanwhile, we use APS
(attribute-preservation score) to measure the preservation of
non-edited attributes after editing; the score is calculated by
an attribute classifier [9] pre-trained on CelebA. To com-
pare with the state-of-the-art 3D editing method (i.e., CLIP-
NeRF [34]), we also report FID and FR (face recognition
score) before and after editing. FR is the score of an image
being recognized as a human face by a pre-trained model.

7310

Source Edited View Novel Views Edited View Novel Views Edited View Novel Views

Figure 6. Interactive editing qualitative results. Our approach efficiently converts 2D edits into 3D while ensuring exceptional 3D
consistency. The first row depicts how our method manages major geometric changes (marked in green and blue boxes) to a human face
from a single view (altering facial expression, making face chubbier, shrinking nose), guaranteeing smooth and coherent geometry across
various views. The second row highlights our capacity to handle significant stylistic and geometric modifications adeptly.

Source Text-guided editing

“red cheek”“lady gaga”

“red lip” “makeup”

Figure 7. Text editing qualitative results. The results demon-
strate that our method excels in text-guided editing, ensuring 3D
consistency while preserving facial identity effectively.

Optimization Time. We measure the speed of our
method on a single RTX3070 GPU. Training required 10k
(< 2 minutes) and 20k (< 4 minutes) iterations for FaceS-
pace and TIFace, respectively. Finetuning needed a quarter
of the initial iterations. We achieved real-time rendering of
1024× 1024 images at 50 fps. Additionally, the training of
the latent code adjustor and the finetuning of the StyleGAN
took approximately 4 minutes across all datasets.

4.1. 3D Editing Results

Face Editing. As our inversion techniques work well
and our method can produce an identity-preserved image,
we can edit the frontal image with any existing image edit-
ing tools (even non-learning-based tools such as Photoshop)
and get the projected latent code w̄style. Then, we can use
our latent adjustor and hidden mapper to get stylized guided
samples and perform 3D editing.

We show some interactive face editing results on the
TIFace dataset in Fig. 6. In this case, any 2D image edit-
ing tool can be used. In Fig. 7, we show text-guided re-

Original Scene

Stylized Scene (novel views)

Figure 8. 3D Style Transfer. The style-guided image is on the
top-left corner of the stylized scene.

sults, which use the latent code w̄style generated by Style-
CLIP [22]. Our method can successfully transfer diverse
2D editings to 3D even with a large domain gap, showing
the potential for realistic applications.

Class-agnostic 3D Style Transfer. 3D style trans-
fer generates stylized images from novel views using a
style image. Utilizing a StyleGAN model trained on
wikiArt [30], we facilitate class-agnostic 3D style transfer
with a hidden mapper, as shown in Fig. 8, our method can
successfully transfer the style from a given image without
losing view consistency. Supplementary materials detail the
implementation and demonstrate the stability and effective-
ness of our method compared to the state-of-the-art method
ARF [38] with almost no failure cases.

4.2. Comparing with Generative Baselines

We first compare with the 2D manipulation and 3D-
aware baselines to demonstrate that our method can ob-
tain high-fidelity and identity-preserving image generation,
while also ensures good 3D consistency after editing.

For 2D manipulation baselines, we choose GANSpace

7311

Table 2. Comparison with generative baselines on FaceScape.

w/o Editing w Editing
ID↑ PSNR↑ SSIM↑ LPIPS↓ APS↑ Pose ↓

GANSpace [8] 44.47 27.75 0.3993 0.3848 0.8142 9.38
InterFaceGAN [25] 62.16 29.61 0.7623 0.2028 0.8592 8.48
StyleNeRF [7] 15.39 27.44 0.3482 0.4845 0.3421 30.4
EG3D [2] 43.14 29.86 0.7738 0.2369 0.7694 7.95
Ours (w/o 3D) 80.45 32.22 0.8414 0.1316 0.8840 8.42
Ours 94.59 33.71 0.8464 0.1277 0.9321 4.48

[8] and InterFaceGAN [25], both of which are able to con-
trol the pose direction. To endow them with accurate angle
adjustment ability, we augment these two methods with an
extra MLP to predict the angle distance to be adjusted. For
3D-aware baselines, we adopt two state-of-the-art methods:
StyleNeRF [7] and EG3D [2]. For our method, we report
on two variants: the model without NeRF finetuning, i.e.,
“Ours (w/o 3D)” and the whole model, i.e., “Ours.”.

Tab. 2 shows a quantitative comparison. (1) We inves-
tigate how well each method can control the camera pose.
To realize this, we restrict the pose range to StyleGAN’s
training pose domain and align the images on FaceScape.
After that, we apply each method to generate images on the
same views as the testing set. This is done without edit-
ing the latent code, denoted as w/o Editing. We measure
the ID score, PSNR, SSIM and LPIPS between the gener-
ated images and the groundtruth images. Tab. 2 demon-
strates that our method outperforms all 2D and 3D-aware
baselines, even without 3D-consistent module (Ours (w/o
3D)). (2) Then, we measure the disentanglement (APS) and
3D-consistency (Pose) capability.

According to Tab. 2, our method achieves the best APS
score and lowest Pose error. The former shows that our
method can better decompose edited attributes from non-
edited. The latter indicates that our method can perform
pose-dependent editing to ensure 3D-consistency. The qual-
itative comparisons are shown in Fig. 9. All methods, ex-
cept StyleNeRF, can create good frontal images but fail in
identity preservation compared to ours, as reflected by the
lower ID scores in Tab. 2. However, pose variations lead
to rapid degradation in baselines: GANSpace shows obvi-
ous background, InterFaceGAN has a large shift, and EG3D
results are blurry, revealing poor disentanglement between
pose and other styles. Notably, Ours (w/o 3D) has less ac-
curate pose control than Ours, underlining the importance
of the fine-tuning.

4.3. Compare with State-of-the-art 3D Editing

Here we compare against the state-of-the-art 3D editing
methods to demonstrate that our approach supports high-
fidelity editing on complex scenes.

For 3D editing, CLIP-NeRF [34] improves the previous
EditNeRF [15] and is considered state-of-the-art. On com-

G
A

N
Space

InterFace

StyleN
eR

F

EG
3D

O
urs(w

/o 3D
)

O
urs

45°30°0° 15° 45°30°0° 15°

Figure 9. Qualitative comparison with generative baselines.
The same human face is inverted by different methods to the la-
tent code for pose manipulation.

source “red lip” “beard” “thick eyebrows”

CLIPNeRF Ours CLIPNeRF Ours CLIPNeRF Ours

Figure 10. Compared to CLIP-NeRF. Our editing correctly edits
the scene with given texts and maintains the visual quality.

plex scenes, CLIP-NeRF supports color editing with text
prompts but fails to perform satisfying shape editing [34].
So we pre-define a set of color-editing texts w.r.t. the at-
tributes of the FaceScape dataset, such as tanned skin, red
lips, and blue eyes. In our method, we also define a set of
shape-editing texts to verify the broader editing capability.
For a fair comparison, we adapt CLIP-NeRF to use the same
Hash encoding and the same configurations of the density
net and color net as our method.

The comparison results in Tab.3 reveal that after color
editings, the FID score of CLIP-NeRF increases signifi-
cantly, whereas ours shows a modest shift, indicating better
image quality maintenance with our method. This advan-
tage is more pronounced with the real-world TIFace dataset,
as evidenced by a smaller FR difference (19.12 vs. 2.10).
When extended to shape editing and shape+color editing,
our method remains consistent performances, demonstrat-
ing the wider and more stable 3D editing capability. We also
outperforms CLIP-NeRF in APS and ID scores, indicating
superior attribute and identity preservation. Fig.10 visually
contrasts our method with CLIP-NeRF. Our method per-
forms accurate editings that fit the text descriptions and also
maintains the image quality, 3D consistency and identity.
For the CLIP-NeRF, although some editings can change the
image to reflect the text prompts, obvious artifacts and float-
ing noisy pixels appear around the face region.

4.4. User Study

We conducted a user study comparing human evalua-
tions of our method with baselines and 3D editing meth-
ods using 60 scenes from the FaceScape test set and Ama-

7312

Table 3. Comparing with state-of-the-art 3D editing method.

FaceScape TIFace
FID↓ FR↑ APS ID FR↑ APS ID

Before After Before After Before After
CLIP-NeRF [34] (color) 6.24 65.38 (+59.14) 85.72 69.23 (-16.49) 77.42 76.38 88.44 69.32 (-19.12) 80.96 75.79
Ours (color) 6.23 38.31 (+32.08) 85.43 81.08 (-4.35) 86.42 87.42 87.83 85.73(-2.10) 87.96 89.03
Ours (shape) 6.23 27.31 (+21.08) 85.43 81.97 (-3.46) 85.43 88.53 87.83 86.01(-1.82) 89.54 87.03
Ours (shape+color) 6.23 39.42 (+33.19) 85.43 81.34 (-4.09) 84.37 86.98 87.83 84.95(-2.88) 87.04 85.96
∗ According to [34], CLIP-NeRF fails to get satisfying shape editing results on the complex scene (also see Fig. 10).

Table 4. Statics from our user study. Reported is percentage of
workers voting for our method over the competing method.

Realistic↑ Editing Accuracy↑
Ours vs. GANSpace 99.2 80.0
Ours vs. InterFaceGAN 97.6 75.2
Ours vs. StyleNeRF 99.6 100.0
Ours vs. EG3D 97.2 96.8
Ours vs. CLIP-NeRF 98.0 94.4

Table 5. Ablation study.

removed module FID↓ FR↑ APS ID
Ours 39.42 81.34 84.37 86.98

latent code
adjustor

w/o finetuning 43.94 79.40 80.46 79.03
w/o differentiable 41.53 80.05 82.05 85.49

3D-consistent
style editing

w/o Lori 42.96 80.10 79.95 85.69
w/o Lbr 42.35 79.94 79.06 84.93
w/o Lori&Lbr 45.96 76.46 77.03 81.94
w/o Ldepth 40.00 80.97 84.38 86.05

zon Mechanical Turk. Participants assessed 360° and (-90°,
90°) rotated videos for match with text description and vi-
sual quality. Tab. 4 summarizes the results, indicating most
users rated our method highest in quality. Detailed method-
ology, including video generation and evaluation criteria, is
provided in the supplementary material.

4.5. Ablation Study

In this section, we provide ablation studies on FaceScape
to verify the effectiveness of the proposed modules, training
techniques, and loss terms.

Finetuning and differentiable decomposition play impor-
tant roles in the latent code adjustor. As shown in Tab. 5,
without finetuning applied, all metrics drop significantly,
especially the ID score. Fig. 11(b) also shows how fine-
tuning could affect identity preservation. Differentiable de-
composition could help the latent code adjustor gain more
disentangling results, which reduces the visual degradation
from the 3D-inconsistent guidance. Without decomposing
the latent vector, all metrics get worse.

In 3D-consistent style editing, all loss terms in Eqn. 5
contribute significantly to the result (Tab. 5). Without Lbr,
we will lose the constraint to the unedited region. As shown
in Fig. 11(d), there are obvious floating artifacts around the

(a) Ours (d) w/o L!"(c) w/o L#"$(b) w/o finetune (e) w/o L#"%	&	L!"

Figure 11. Visual comparison of ablation study.

(a) Ours (b) w/o Hidden Mapper

Figure 12. Ablation study of hidden mapper. (a) With hidden
mapper, we can consistently transfer style to the entire scene. (b)
W/o hidden mapper, the views outside the GAN training domain
remain the original style and result in a scene with inconsistent
styles across views.

face boundary. From Fig. 11(c), if we remove the Lori, the
constrain ability for Lbr will be decreased, since the model
tends to forget the original scene. Removing both Lbr and
Lori, the finetuning will fail and the scene will become di-
verged, thus resulting in poor visual results (Fig. 11(e)).

We also show the importance of hidden mapper in real-
world usage. In Fig. 12(b), as the color predicted by NeRF
is conditioned on the viewing direction, without guided im-
ages on the GAN out-of-domain views, we will result in a
scene with inconsistent styles from different views.

5. Conclusion

We present an efficient learning framework to bridge the
gap between 2D editing and 3D editing, which is realized
by two novel modules and a stable finetuning strategy. Our
method can successfully transfer various editing patterns to
3D scenes, including text prompts, style-mixing, interactive
warping, and style transfer. Our method outperforms all
previous 3D editing methods with more flexible control and
can support consistent editing by overcoming the domain
shift problem in 2D GAN and 3D-aware GAN using self-
supervised training techniques.

7313

References
[1] Eric Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu,

and Gordon Wetzstein. pi-gan: Periodic implicit gener-
ative adversarial networks for 3d-aware image synthesis.
2021 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 5795–5805, 2021. 1, 2, 4,
5

[2] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano,
Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas J
Guibas, Jonathan Tremblay, Sameh Khamis, et al. Efficient
geometry-aware 3d generative adversarial networks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 16123–16133, 2022. 1, 2, 5,
7

[3] Pei-Ze Chiang, Meng-Shiun Tsai, Hung-Yu Tseng, Wei-
Sheng Lai, and Wei-Chen Chiu. Stylizing 3d scene via
implicit representation and hypernetwork. 2022 IEEE/CVF
Winter Conference on Applications of Computer Vision
(WACV), pages 215–224, 2021. 3

[4] Tan M. Dinh, A. Tran, Rang Ho Man Nguyen, and Binh-Son
Hua. Hyperinverter: Improving stylegan inversion via hyper-
network. 2022 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 11379–11388, 2022.
4

[5] Benyamin Ghojogh, Fakhri Karray, and Mark Crowley.
Eigenvalue and generalized eigenvalue problems: Tutorial.
arXiv preprint arXiv:1903.11240, 2019. 4

[6] Stephen Gould, Richard Hartley, and Dylan Campbell. Deep
declarative networks. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 44(8):3988–4004, 2021. 4

[7] Jiatao Gu, Lingjie Liu, Peng Wang, and Christian Theobalt.
Stylenerf: A style-based 3d aware generator for high-
resolution image synthesis. In International Conference on
Learning Representations, 2021. 1, 2, 5, 7

[8] Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and
Sylvain Paris. Ganspace: Discovering interpretable gan con-
trols. Advances in Neural Information Processing Systems,
33:9841–9850, 2020. 1, 2, 3, 4, 7

[9] Keke He, Yanwei Fu, Wuhao Zhang, Chengjie Wang, Yu-
Gang Jiang, Feiyue Huang, and X. Xue. Harnessing synthe-
sized abstraction images to improve facial attribute recogni-
tion. In International Joint Conference on Artificial Intelli-
gence, 2018. 5

[10] Xueqi Hu, Qiusheng Huang, Zhengyi Shi, Siyuan Li,
Changxin Gao, Li Sun, and Qingli Li. Style transformer for
image inversion and editing. 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
11327–11336, 2022. 4

[11] Yihua Huang, Yue He, Yu-Jie Yuan, Yu-Kun Lai, and Lin
Gao. Stylizednerf: Consistent 3d scene stylization as stylized
nerf via 2d-3d mutual learning. 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
18321–18331, 2022. 3

[12] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
European conference on computer vision, pages 694–711.
Springer, 2016. 4

[13] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving
the image quality of stylegan. 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
8107–8116, 2020. 1, 2, 5

[14] Tejas D Kulkarni, William F Whitney, Pushmeet Kohli, and
Josh Tenenbaum. Deep convolutional inverse graphics net-
work. Advances in neural information processing systems,
28, 2015. 2

[15] Steven Liu, Xiuming Zhang, Zhoutong Zhang, Richard
Zhang, Junyan Zhu, and Bryan C. Russell. Editing condi-
tional radiance fields. 2021 IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 5753–5763, 2021. 1,
2, 7

[16] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 2

[17] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a mul-
tiresolution hash encoding. ACM Transactions on Graphics
(TOG), 41:1 – 15, 2022. 3

[18] Thu Nguyen-Phuoc, Feng Liu, and Lei Xiao. Snerf: Styl-
ized neural implicit representations for 3d scenes. ArXiv,
abs/2207.02363, 2022. 3

[19] Michael Niemeyer, Jonathan T. Barron, Ben Mildenhall,
Mehdi S. M. Sajjadi, Andreas Geiger, and Noha Radwan.
Regnerf: Regularizing neural radiance fields for view syn-
thesis from sparse inputs. 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
5470–5480, 2022. 5

[20] Michael Niemeyer and Andreas Geiger. Giraffe: Represent-
ing scenes as compositional generative neural feature fields.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11453–11464, 2021.
1, 2, 4

[21] Omkar M. Parkhi, Andrea Vedaldi, and Andrew Zisserman.
Deep face recognition. In BMVC, 2015. 5

[22] Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or,
and Dani Lischinski. Styleclip: Text-driven manipulation of
stylegan imagery. 2021 IEEE/CVF International Conference
on Computer Vision (ICCV), pages 2065–2074, 2021. 6

[23] Ethan Perez, Florian Strub, Harm De Vries, Vincent Du-
moulin, and Aaron Courville. Film: Visual reasoning with a
general conditioning layer. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 32, 2018. 2

[24] Daniel Roich, Ron Mokady, Amit H. Bermano, and Daniel
Cohen-Or. Pivotal tuning for latent-based editing of real im-
ages. ACM Transactions on Graphics (TOG), 2021. 4

[25] Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. In-
terpreting the latent space of gans for semantic face editing.
2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 9240–9249, 2020. 1, 2, 3,
4, 7

[26] Yujun Shen and Bolei Zhou. Closed-form factorization of la-
tent semantics in gans. 2021 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 1532–
1540, 2021. 2

7314

[27] Krishna Kumar Singh, Utkarsh Ojha, and Yong Jae
Lee. Finegan: Unsupervised hierarchical disentanglement
for fine-grained object generation and discovery. 2019
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 6483–6492, 2019. 2

[28] Vincent Sitzmann, Julien Martel, Alexander Bergman, David
Lindell, and Gordon Wetzstein. Implicit neural representa-
tions with periodic activation functions. Advances in Neural
Information Processing Systems, 33:7462–7473, 2020. 2

[29] Jingxiang Sun, Xuan Wang, Yong Zhang, Xiaoyu Li, Qi
Zhang, Yebin Liu, and Jue Wang. Fenerf: Face editing in
neural radiance fields. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
7672–7682, 2022. 2, 4

[30] Wei Ren Tan, Chee Seng Chan, Hernan E Aguirre, and
Kiyoshi Tanaka. Improved artgan for conditional synthesis
of natural image and artwork. IEEE Transactions on Image
Processing, 28(1):394–409, 2018. 6

[31] Omer Tov, Yuval Alaluf, Yotam Nitzan, Or Patashnik, and
Daniel Cohen-Or. Designing an encoder for stylegan im-
age manipulation. ACM Transactions on Graphics (TOG),
40(4):1–14, 2021. 4

[32] Luan Tran, Xi Yin, and Xiaoming Liu. Disentangled rep-
resentation learning gan for pose-invariant face recognition.
2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1283–1292, 2017. 2

[33] Andrey Voynov and Artem Babenko. Unsupervised discov-
ery of interpretable directions in the gan latent space. In
International conference on machine learning, pages 9786–
9796. PMLR, 2020. 2

[34] Can Wang, Menglei Chai, Mingming He, Dongdong Chen,
and Jing Liao. Clip-nerf: Text-and-image driven manip-
ulation of neural radiance fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3835–3844, 2022. 1, 2, 5, 7, 8

[35] Xianglei Xing, Tian Han, Ruiqi Gao, Song-Chun Zhu,
and Ying Nian Wu. Unsupervised disentangling of ap-
pearance and geometry by deformable generator network.
2019 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 10346–10355, 2019. 2

[36] Haotian Yang, Hao Zhu, Yanru Wang, Mingkai Huang, Qiu
Shen, Ruigang Yang, and Xun Cao. Facescape: a large-scale
high quality 3d face dataset and detailed riggable 3d face pre-
diction. In Proceedings of the ieee/cvf conference on com-
puter vision and pattern recognition, pages 601–610, 2020.
5

[37] Yu-Jie Yuan, Yang tian Sun, Yu-Kun Lai, Yuewen Ma,
Rongfei Jia, and Lin Gao. Nerf-editing: Geometry editing
of neural radiance fields. ArXiv, abs/2205.04978, 2022. 2

[38] Kai Zhang, Nick Kolkin, Sai Bi, Fujun Luan, Zexiang Xu,
Eli Shechtman, and Noah Snavely. Arf: Artistic radiance
fields. In European Conference on Computer Vision, pages
717–733. Springer, 2022. 6

[39] Kai Zhang, Nicholas I. Kolkin, Sai Bi, Fujun Luan, Zexiang
Xu, Eli Shechtman, and Noah Snavely. Arf: Artistic radiance
fields. In European Conference on Computer Vision, 2022.
3

[40] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
586–595, 2018. 5

[41] Yiyu Zhuang, Hao Zhu, Xusen Sun, and Xun Cao. Mofanerf:
Morphable facial neural radiance field. In European Confer-
ence on Computer Vision, 2022. 2, 5

7315

	. Introduction
	. Related Work
	. Mutual NeRF-StyleGAN Training
	. Conditional NeRF
	. Latent Code Adjustor
	. Hidden Mapper
	. 3D-Consistent Style Editing

	. Experiments
	. 3D Editing Results
	. Comparing with Generative Baselines
	. Compare with State-of-the-art 3D Editing
	. User Study
	. Ablation Study

	. Conclusion

