
Towards Better Structured Pruning Saliency by Reorganizing Convolution

Xinglong Sun1, 2, Humphrey Shi2, 3

1Stanford Univeristy, 2SHI Labs @ Georgia Tech & UIUC & U of Oregon, 3Picsart AI Research (PAIR)

Abstract

We present SPSRC, a novel, simple and effective frame-
work to extract enhanced Structured Pruning Saliency
scores by Reorganizing Convolution. We observe that per-
formance of pruning methods have gradually plateaued re-
cently and propose to make better use of the learned con-
volutional kernel weights simply after a few steps of trans-
formations. We firstly re-organize the convolutional oper-
ations between layers as matrix multiplications and then
use the singular values and the matrix norms of the trans-
formed matrices as saliency scores to decide what chan-
nels to prune or keep. We show both analytically and em-
pirically that the long-standing kernel-norm-based channel
importance measurement, like L1 magnitude, is not precise
enough possessing a very obvious weakness of lacking spa-
tial saliency but can be improved with SPSRC. We conduct
extensive experiments across different settings and config-
urations and compare with the counterparts without our
SPSRC along with other popular methods, observing ob-
vious improvements. Our code is available at: https:
//github.com/AlexSunNik/SPSRC/tree/main.

1. Introduction

Convolutional neural networks (CNNs) [31] have seen
great success in computer vision in the recent years, es-
pecially in fundamental vision tasks such as image clas-
sification [6, 30], object detection [18, 40] and segmenta-
tion [4, 45]. While a plethora of new model architectures
have been developed or continue to be proposed, convolu-
tional operations usually stay a constant component in such
architecture designs. Hence, how to effectively compress
convolutional layers in deep neural networks for efficient
storage and computation has been a very active research
area, and various approaches have been proposed and de-
veloped [7] over the years.

In general, neural network compression techniques can
be categorized [7] into pruning [2,16,17,32,36,42], quanti-
zation [5,44,61], low-rank factorization [8,38,64] or knowl-
edge distillation [23, 28, 41]. In this paper, we will focus

on network pruning, the class of techniques where certain
parts of model parameters are discarded to reduce model
storage and computation while retaining accuracy as much
as possible. Network pruning methods can be further di-
vided into unstructured pruning and structured pruning. Un-
structured pruning methods [13, 16, 17, 32, 33, 55, 56] re-
moves individual neurons or weight connections of less im-
portance without consideration for where they occur within
each tensor. It can reduce the number of parameters by
more than 90% without harming much accuracy. However,
it additionally requires sparse BLAS libraries or even spe-
cialized hardware [15] and may not improve performance
on commodity hardware until a large fraction of weights
has been pruned [49]. On the other hand, structured prun-
ing methods [12, 36, 42, 47, 48, 51–53, 57, 59] prune pa-
rameters under structure constraints. It involves pruning
weights in groups, for example removing convolutional fil-
ters. Structurally-pruned models preserve dense computa-
tions thus enjoy immediate performance improvement with-
out specialized hardware or library support. Our proposed
work falls within the structured pruning category, identifies
an everlasting issue of saliency score used in many struc-
tured pruning works [20, 36, 47, 52], and proposes a novel
framework to better measure the saliency score used for
pruning channels.

For structured network pruning, the most representative
works are aiming at pruning channels (also called filters or
kernels) in convolutional layers, i.e. to identify the best set
of filters to discard, which should yield the highest com-
pression ratio with the lowest decrease in accuracy. Channel
pruning methods usually try to assign the best saliency score
(also called importance score) to each channel and perform
pruning based on these importance measurements. Existing
channel pruning methods usually either explicitly calculate
the channel importance scores based on some intrinsic prop-
erties of the pre-trained models (i.e. property-based) or get
the scores implicitly by including the pruning requirement
as part of the model training process (i.e. learning-based).
Property-based methods [24, 28, 36, 37, 47, 52] are usually
easy to implement and can sometimes provide useful in-
sights into understanding pre-trained models. Learning-
based methods [1, 22, 39, 42], though often better in accu-

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2204

racy, have many constraints and are difficult to be utilized
in scenarios where specialized training is infeasible.

Despite the diversity of different kinds of pruning meth-
ods proposed these years, works like [10] have also dis-
covered that they all lead to very similar accuracy-sparsity
tradeoffs. Performance of standard pruning methods have
gradually plateaued these years, and an increasing number
of works began to focus on directions like hardware-aware
pruning [27, 34, 52] and reducing the training cost [11, 63].
Following the joint efforts to exceed the limits of stan-
dard pruning works, in this work, we introduce SPSRC,
a novel, simple and effective framework to extract better
structured pruning saliency scores by a few simple steps of
reorganizing convolution. Ever since works like L1 [36],
convolution-kernel-based pruning scores have been widely
adopted in many methods [20, 47, 52]. However, we study
and find that some everlasting issues exist with such meth-
ods: (1) theoretical works and analysis of pruning effec-
tiveness are very limited since convolution itself does not
exhibit a clear information flow (2) the current scores do
not capture the spatial saliency of a convolution kernel. For
example, in case of zero-padded convolution, we use the
central element of the kernel more often than the other el-
ements, and we should weigh it more when calculating a
pruning score. We aim to solve (1) and (2) simultane-
ously by introducing a transformation step to reorganize
convolutional kernels at each layer as matrix multiplication.
Many matrix analysis and decomposition methods hereby
become useful to extract information. We argue that this
organization step is significantly helpful to extract better
importance measurement of each channel from the trained
weights. From Singular Value Decomposition(SVD) of the
reorganized matrices, we observe that the singular values
of the transformed convolution matrix could serve as a re-
liable measurement and hint of channel importance. We
thus propose three variants: SPSRC-frobenius, SPSRC-
spectral, and SPSRC-nuclear corresponding to employing
different norms of the transformed matrix as pruning metric.
We demonstrate both analytically(3.4.1) and empirically(4)
that the weaknesses of the convolution-kernel-based meth-
ods like the popular L1 [36] can be solved by SPSRC reor-
ganization for more accurate importance measurement.

We conduct extensive experiments to verify our as-
sumptions. We performed compression on three popu-
lar network architectures, VGGNet [54], ResNet [19], and
DenseNet [25], and evaluate on three different benchmarks,
CIFAR-10 [29], CIFAR-100 [29], and ImageNet [50]. The
results demonstrate that SPSRC obtains better channel im-
portance measurement and successfully improves the pre-
vious convolution-kernel-based scores [20, 36, 47]. We also
include extensive ablation studies to further validate the ef-
fectiveness of our method.

We summarize our contributions as follows:

• We identify everlasting intrinsic issues of the long-
standing convolution-kernel-based pruning scores like
lacking spatial saliency.

• We propose a novel, simple, and effective channel
pruning framework to transform convolution kernels at
each layer into a matrix multiplication for better anal-
ysis and saliency score measurement, addressing the
above identified issue.

• We conduct extensive experiments and show the effec-
tiveness of SPSRC across many different settings and
configurations.

2. Related Works

There have been various channel pruning methods pro-
posed in recent years, either exploiting different properties
of the trained model or devising a novel learning paradigm
to adaptively make pruning decisions. We separate channel
pruning methods into two categories based on the evalua-
tion of the importance scores.

2.1. Property-based Methods

The importance scores are calculated based on the intrin-
sic properties of the models. These methods can directly
operate on a pre-trained model without modifications of the
target function or optimization settings. Therefore, they are
usually easy to implement and have more universal appli-
cations. However, pruning is usually followed by a large
decrease in accuracy, which is then compensated by addi-
tional retraining or finetuning epochs.

Hu et al. [24] proposes a data-driven method to prune
filters with high sparsity in activations. Li et al. [36] as-
sumed the channels with small absolute sum of convolu-
tion kernels are less important thus should be removed first.
A similar assumption is also made in unstructured prun-
ing [13, 16]. Molchanov et al. [47, 48] takes the first-order
gradient into account when evaluating the channel impor-
tance scores to maximally preserve model loss [46]. He
et al. [21] removed the layers closest to the geometric me-
dian of all channels to maximize the representation ability
of the model. Similar to He et al. [19], Lin et al. [37] pro-
posed another data-driven method, arguing that filters gen-
erating low-rank features should be pruned first. Some lat-
est methods like HALP [51, 53] consider hardware-aware
pruning. They leveraged property importance scores like
Taylor [47] and solved a constrained optimization problem
under a given hardware inference latency target.

2.2. Learning-based Methods

The calculation of the importance scores usually in-
volve a learning process to make adaptive pruning deci-
sions. These methods often encode the pruning requirement

2205

...

Convolutional Layer 1Input Image Feature Maps

......

Input Features

...

Convolutional Layer i Output Features

...... "dog"

Pre-trained overparametric model

BatchNorm

&& Activation

BatchNorm

&& Activation

...

Output Features

Reorganization

...

Input Features
Convolutional Layer i

Flattened Input

Flattened Output

... Sort

Channel Selection

Prune

Our proposed channel pruning method

Reorganized Weight Matrices

Input Image

......

Input Features

...

Pruned Convolutional Layer i Slimmed Output Features

...... "dog"
RetrainingBatchNorm

&& Activation

Compressed Model

...

...

...

...

Figure 1. Schematics of our proposed method. Example of pruning a certain layer is shown here. We first reorganize the convolution
kernel weights connecting the feature maps to a set of matrices. Then, we choose channels based on the norms of these matrices, creating
a thinner compressed model. We additionally retrain the model to compensate for the accuracy loss.

as part of the objective function and perform joint optimiza-
tion.

He et al. [22] enforced sparsity regularization into the
training objective and used group LASSO to push all the
weight parameters corresponding to the same channel to-
wards zero simultaneously during training. Liu et al. [42]
trained the model with channel sparsity regularization and
removed filters with small scaling factors in the BN layer.
Huang et al. [26] added mask parameter as scaling factors,
and filters corresponding to a scaling factor of zero are re-
moved. Lin et al. [39] used adversarial learning to aid the
channel selection.

3. The Proposed Method

3.1. Notation and Formulation

Suppose we’re given a model with K convolutional lay-
ers. Let’s consider the ith convolutional layer and represent
the input feature maps at the ith layer as I(i) and the output
feature maps at the ith layer as O(i). Moreover, suppose
I(i) ∈ RNi×hi×wi and O(i) ∈ RNi+1×hi+1×wi+1 , where Ni

and Ni+1 represent the number of input and output channels
and (hi, wi) and (hi+1, wi+1) represent the input and out-
put feature map size. We can then represent the weights at
the ith layer as W (i) ∈ RNi+1×Ni×ki×ki , where ki denotes
the kernel size. We can also represent the jth filter corre-

sponding to the jth output channel, O(i)
j ∈ Rhi+1×wi+1 , as

W
(i)
j ∈ RNi×ki×ki .
We can thus show the convolution operation taken at the

ith layer by writing the relation between the mth output
channel and Ni input channels as:

O(i)
m =

Ni∑
n=1

I(i)n ∗W (i)
m,n (1)

Obviously, we have Ni+1 such equations with m taking
value from 1 to Ni+1.

Now, suppose that we only want to keep P output fea-
ture maps in O(i). Our goal is thus to devise an importance
function, importance(.), such that we can decide whether
to keep O

(i)
m by evaluating importance(W

(i)
m), keeping P

output channels that have the highest importance scores.

We can see that such pruning affects two convolutional
layers. After pruning, the shape of tensor W (i) becomes
(P,Ni, ki, ki), and the shape of tensor W (i+1) becomes
(Ni+2, P, ki+1, ki+1). Furthermore, the number of opera-
tions at the ith layer is reduced by O(PNik

2
i hi+1wi+1),

and the number of operations at the (i+1)th layer is reduced
by O(PNi+2k

2
i+1hi+2wi+2), bringing the total operation

reduction to O(P (Nik
2
i hi+1wi+1 +Ni+2k

2
i+1hi+2wi+2)).

2206

1 2 3 4 5 6 7 8 9
Kernel Position

0

500

1000

1500

2000

2500

3000

N
um

be
r o

f C
on

v
Fi

lte
rs

Spatial Saliency Analysis

Figure 2. Times of each kernel location being the salient position.

3.2. Spatial Saliency

Now, we analyze a very intrinsic but also everlasting is-
sue of many convolution-kernel-based pruning scores [20,
36,47,52]: the lack of consideration of spatial saliency. We
consider a spatial position in a convolution kernel more im-
portant if it has a larger norm than other positions. Fol-
lowing the above notations, a regular filter kernel is rep-
resented as W

(i)
m ∈ RNi×ki×ki . The norm at position

x is calculated by ∥W (i)
m [x]∥ =

√∑Ni

n=1 |W
(i)
m,n[x]|2, for

x = 1, 2, 3, ..., k2. We examine the ResNet34 model and
plot a histogram of the times of each kernel location be-
ing the salient position in Figure 2. We limit the scope to
3 × 3 kernel at this point. We could easily observe that the
central kernel element gets to be the salient position most
frequently among the filters, weighing more than the sur-
rounding neighbors. Intuitively, in the case of zero-padding
convolution, we do use the central elements more often than
the edge and corner elements during computation. This also
aligns with the findings in the very latest paper [3].

Equipped with the above knowledge, we can easily ob-
serve that standard convolution-kernel-based scores do
not take this spatial saliency into consideration. For
example, L1 score [36] can be represented as ∥K∥2 =∑3

i=1

∑3
j=1 k

2
ij , which assigns uniform weights over all

positions. Motivated by this, we propose the following
reorganization mechanism to better measure the channel
saliency. We also provide another detailed comparison in
the following Sec.3.4.1

3.3. Reorganization of Convolution

In order to better analyze the pre-trained weights W (i)

for importance calculation, we reorganize the convolu-
tion operation to a matrix multiplication. Specifically, we
transform the convolution filter W (i)

m,n to matrix A
(i)
m,n and

rewrite equation 1 as:

⃗
O

(i)
m =

Ni∑
n=1

A(i)
m,n

⃗
I
(i)
n (2)

*

0 0 0 0 0

0 0 0

0 0 0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

0 0

0 0

0 0 0 0 0

Figure 3. Example of reorganization of convolution to matrix mul-
tiplication.

, where
⃗
I
(i)
n ∈ Rhiwi and

⃗
O

(i)
m ∈ Rhi+1wi+1 rep-

resent the flattened input and output feature maps, and
A

(i)
m,n ∈ Rhi+1wi+1×hiwi represents the transformed con-

volution matrix.
We can further reduce equation 2 by removing the sum-

mation as follows:

⃗
O

(i)
m = [A

(i)
m,1, A

(i)
m,2, ..., A

(i)
m,Ni

][
⃗
I
(i)
1 ,

⃗
I
(i)
2 , ...,

⃗
I
(i)
Ni

]⊤ (3)

=
ˆ

A
(i)
m

ˆI(i) (4)

, where
ˆ

A
(i)
m ∈ Rhi+1wi+1×Nihiwi represents a single ma-

trix constructed by stacking weight matrices A
(i)
m,n, and

ˆI(i) ∈ RNihiwi represents a single vector constructed by
stacking feature vectors I(i)n . Figure 3 provides an illustra-
tion of such process.

3.4. Decomposition and Metrics
Through Singular Value Decomposition(SVD), we can

rewrite Equation 4 as:

ˆ
A

(i)
m =

r∑
k=1

σkukv
⊤
k (5)

⃗
O

(i)
m =

r∑
k=1

σkukv
⊤
k

ˆI(i) (6)

, where r denotes the rank of matrix
ˆ

A
(i)
m , and σk, uk, vk

represent the singular value, left singular vector, and right

singular vector of
ˆ

A
(i)
m respectively. We can see here that the

set of singular values, {σk|1 ≤ k ≤ r}, can serve as reliable
measurement and hint of information richness and channel
importance. We thus intuitively propose three metrics and
name them as: SPSRC-frobenius, SPSRC-spectral, and
SPSRC-nuclear. Note that in the following analysis, for

simplicity, we denote
ˆ

A
(i)
m simply by A.

3.4.1 Frobenius Norm

After the reorganization, we could simply use the frobe-
nius norm of matrix A to compute saliency score. Formally,

2207

frobenius norm is defined as:

∥A∥F =
√

trace(ATA) =

√√√√ r∑
k

σ2
k =

√∑
i=1

∑
j=1

A2
i,j (7)

We can see that the frobenius norm of the weight matrix
A is simply the square root of the squared sum of all of its
elements.

Note that the squared sum of the elements in A is not
equal to the scaled squared sum of the convolution kernel
filter which is employed in L1 [20, 36]. However, we can
notice from the example shown in Figure 3 that, while cal-
culating the squared sum of A, more central elements of the
convolution kernel get more weighted. Concretely, for the
weight matrix shown in Figure 3, we can write the square
of its frobenius norm as:

∥Afig∥2F = 9k2
22 + 6k2

23 + 6k2
21 + 6k2

32 + 6k2
12

+4k2
13 + 4k2

31 + 4k2
33 + 4k2

11 (8)

, whereas the kernel squared sum metric employed in L1
and SFP [20, 36] can be written as:

∥K∥2 =

3∑
i=1

3∑
j=1

k2
ij ̸= 1

C
∥Afig∥2F ,∀C ∈ R (9)

We can note that the more central elements of the convo-
lution kernel are considered more important while evaluat-
ing the frobenius norm of the transformed matrix, address-
ing the issue identified in Sec. 3.2.

3.4.2 Spectral Norm

Besides the Frobenious norm, we also explore the other
norm choices on the transformed convolution matrix. For-
mally, spectral norm, or operator norm, is defined as:

∥A∥op =
√

σmax(AHA) =
√

σmax(ATA) = σmax(A) (10)

, which is simply the largest singular value of the weight
matrix A. It represents the magnitude of the most dominant
component after decomposition of A. Another way to look
at it is to consider the amount of change A brings to the
input feature vector ˆI(i). Recall equation 4 and consider
a perturbation △Î added on the input feature vectors ˆI(i)

which also results a change in the output vector,
⃗

O
(i)
m :

⃗
O

(i)
m +△ ⃗

O
(i)
m = A(ˆI(i) +△Î) (11)

⃗△O
(i)
m = A△Î (12)

∥ ⃗△O
(i)
m ∥22 = ∥A△Î∥22 ≤ ∥A∥2op∥△Î∥2 (13)

Thus, we can see that the larger the spectral norm of the
matrix, the larger the output can change as input changes.
Intuitively, ∥A∥op implies the sensitivity of the convolu-
tional layer. By keeping the most sensitive channels that
have the highest spectral norm of their corresponding con-
volution matrix, we keep the model at its highest potential.

3.4.3 Nuclear Norm

Another intuitive choice of pruning metric is the nuclear
norm of the weight matrix A, which is formally defined as:

∥A∥∗ = trace(
√
A∗A) =

r∑
k=1

σk(A) (14)

∥A∥∗ can be also viewed as a convex envelope of the rank
function rank(A). We utilize it to estimate the magnitude

and importance of the output feature vector
⃗

O
(i)
m .

3.5. Pruning Procedure

We described our pruning method as a four-step
procedure. For each layer: first, we calculated
importance(W

(i)
j) for the jth output channel by evaluat-

ing the norm of its transformed matrix; next, we sort the
output channels based on their importance scores; then, we
keep P (i) channels by selecting ones with the highest im-
portance scores; finally, we make additional removal in the
BN and next convolutional layer to match the shape of the
output of the pruned channel.

Notably, we performed all of our experiments in a
single-shot manner. We pruned channels at all the layers
at once and only perform a single retraining session. Al-
gorithmic description of SPSRC can be found in Algorithm
1.

4. Experiments

We conduct extensive experiments to validate SPSRC.
We compare with many other compression methods, includ-
ing both property-based and learning-based. We trained
with various pruning configurations to demonstrate SP-
SRC’s superiority with different compression ratios. We
refer to them as the first, second, or third pruning config-
uration in later discussion based on the compression ratios
and the order they appear in the result tables(Table 1, 2, 3,
4, and 5) for different models. Moreover, through ablation
studies, we show that SPSRC is indeed an effective channel
pruning method to reduce the model size, keeping the most
essential part of the model. We also include direct compar-
isons with L1 [36] in all experiments to demonstrate that a
simple transformation by SPSRC is effective and provides
much better channel importance measurement than naively
employing the convolution kernels.

4.1. Benchmarks and Evaluation Protocols

We demonstrated our result on CIFAR-10 [29], CIFAR-
100, and ImageNet [50], showing SPSRC ’s superiority
on both small and large dataset. We studied the perfor-
mance on different network architectures, including VGG-
16-bn [54], ResNet-56 [19], ResNet-34, ResNet-50, and

2208

Algorithm 1 Proposed Algorithm: SPSRC
Input:model,prune layers,prune ratios,
fm sizes
Output:new model
▷ model is the trained network with K layers,
prune layers represents the list of indices of lay-
ers we try to prune, and prune ratios represents the list
of ratio of removed channels at each layer, and fm sizes
represents the list of feature map sizes. new model is the
compressed and thinner model we return after pruning

1: new model← model
2: for i← 1 to K do
3: if i not in prune layers then continue
4: end if
5: W ← model.convs[i].weight
6: W

′ ← model.convs[i+1].weight
7: N ←W .num in channels
8: M ←W .num out channels
9: scores← [] //Saliency Scores

10: os, is← fm sizes[i+ 1],fm sizes[i]
11: for m← 1 to M do
12: A← Null
13: for n← 1 to N do
14: Am,n ← ToMat(Wm,n, os, is)
15: A← ConCat(A,Am,n)
16: end for
17: score← norm(A)
18: scores.append(score)
19: end for
20: indices← argsort(scores)
21: kept ratio← 1− prune ratios[i]
22: kept inds← indices[: kept ratio]
23: new model.convs[i]←W [kept inds, :]
24: new model.convs[i+1]←W

′
[:,kept inds]

25: end for
26: finetune(new model)
27: return new model

DenseNet-40 [25] to demonstrate SPSRC’s success on net-
work with plain structure, residual connections, and dense
modules.

We showed Top-1% accuracy for CIFAR-10 and CIFAR-
100 for the recovered accuracy. For ImageNet, we show
both Top-1% and Top-5% accuracies. In terms of evaluation
of compression, we adopted two widely used metrics: Float
Points Operations (FLOPs) and the number of parameters.

We used PyTorch to implement our method. For
all of the experiments, we used Stochastic Gradient De-
scent(SGD) for optimization with weight decay of 0.0005
and momentum of 0.9.

MODEL TOP-1%↑ FLOPS(M)↓ PARAMS(M)↓
DENSE 93.51 321.35 14.73

L1 [36] 93.40 211.62 5.26
ZHAO ET AL [65] 93.18 195.73 3.94
SPECTRAL(OURS) 93.78±0.05 211.62 5.26
NUCLEAR(OURS) 93.81±0.03 211.62 5.26
FROBENIUS (OURS) 93.82±0.07 211.62 5.26
ENERGYAWARE [60] 93.48 107.33 2.81
HRANK [37] 92.34 111.51 2.64
SSS [26] 93.02 187.05 3.87
GAL - 0.05 [39] 92.03 194.13 3.31
GAL - 0.1 [39] 90.73 176.13 2.63
SPECTRAL (OURS) 93.90±0.05 186.83 2.77
NUCLEAR (OURS) 93.77±0.09 186.83 2.77
FROBENIUS (OURS) 93.74±0.11 186.83 2.77

Table 1. Results on CIFAR-10 with VGG16-BN. We separated the
table with dashline based on compression ratios.

4.2. Results on CIFAR-10

All of the following experiments conducted on CIFAR-
10 are on a single RTX 2080 Ti GPU. We trained all the
baseline(unpruned) networks from scratch with SGD opti-
mizer and batch size set to 128. For VGG16-bn, we
trained a total of 164 epochs and an initial learning rate of
0.1, decaying by 10 at 81th and 122th epoch. For ResNet-
56, we trained a total of 200 epochs and an initial learning
rate of 0.1, decaying by 10 at the 60th, 120th, and 160th

epoch. For DenseNet-40, we trained a total of 350 epochs
and an initial learning rate of 0.1, decaying by 10 at the
150th and 250th epoch. For finetuning after pruning, we
used the same optimization setting as the baseline network
training but with initial learning rate set to 0.001, decaying
by 10 at the 20th epoch.
VGG-16 In terms of pruning configuration, we pruned on
exactly the same set of layers as L1 [36] for a fair com-
parison but with a larger pruning ratio. In Table 1, we
demonstrated results of two different pruning configura-
tions, retrained for 20 and 70 epochs respectively after prun-
ing. Specifically, we observed that the model pruned with
spectral norm achieves a recovered accuracy of 93.9, even
higher than the baseline accuracy by nearly 0.4%, with a
large reduction in the number of parameters(81.33%) and
FLOPs(41.86%). This is a significant improvement com-
pared to 93.02 [26], 92.03 [39], and 90.73 [39], pruned with
similar or even fewer reduction ratios in parameters.

ResNet-56 In terms of pruning configuration, same as
[20,36], we do not consider pruning of the projection short-
cuts for simplification. In Table 2, we demonstrated results
of three different pruning configurations, retrained for 50,
80, and 80 epochs respectively after pruning. Table 2 shows
that SPSRC is higher in accuracy than other methods with
similar compression ratios with all of the three pruning con-
figurations. Specifically, as we pruned out more parame-
ters, the superiority of SPSRC becomes more significant.
Compared with He et al. [22], we achieved 63.95% FLOPs

2209

MODEL TOP-1%↑ FLOPS(M)↓ PARAMS(M)↓
DENSE 93.59 129.32 0.85

HRANK [37] 93.52 91.43 0.72
L1 [36] 93.06 93.63 0.73
SPECTRAL(OURS) 93.4±0.01 89.22 0.73
NUCLEAR(OURS) 93.52±0.01 89.22 0.73
FROBENIUS (OURS) 93.46±0.01 89.22 0.73
HRANK [37] 93.17 64.66 0.49
NISP [62] 93.01 83.67 0.49
GAL - 0.6 [39] 92.98 80.70 0.75
SPECTRAL (OURS) 92.82±0.02 73.66 0.47
NUCLEAR (OURS) 93.19±0.01 73.66 0.47
FROBENIUS (OURS) 92.89±0.03 73.66 0.47
HRANK [37] 90.72 33.50 0.27
HE et al. [22] 90.8 63.88 -
GAL - 0.8 [39] 90.36 51.47 0.29
SPECTRAL (OURS) 91.55±0.01 46.62 0.3
NUCLEAR (OURS) 91.65±0.01 46.62 0.3
FROBENIUS (OURS) 91.62±0.01 46.62 0.3

Table 2. Results on CIFAR-10 with ResNet56. We separated the
table with dashline based on compression ratios.

MODEL TOP-1%↑ FLOPS(M)↓ PARAMS(M)↓
DENSE 94.82 282.04 1.04

ENERGYAWARE [60] 94.62 167.41 0.66
HRANK [37] 94.24 167.41 0.66
GAL - 0.01 [39] 94.29 182.92 0.67
SPECTRAL(OURS) 94.64±0.04 168.82 0.59
NUCLEAR(OURS) 94.53±0.10 168.82 0.59
FROBENIUS(OURS) 94.69±0.07 168.82 0.59

Table 3. Results on CIFAR-10 with DenseNet40. We separated
the table with dashline based on compression ratios.

MODEL TOP-1%↑ FLOPS(M)↓ PARAMS(M)↓
DENSE 73.33 321.40 14.77

L1 [36] 72.83 211.64 5.29
SPECTRAL(OURS) 73.16±0.03 211.64 5.29
NUCLEAR(OURS) 72.83±0.04 211.64 5.29
FROBENIUS(OURS) 72.69±0.08 211.64 5.29
L1 [36] 71.85 186.85 2.77
SPECTRAL(OURS) 71.89±0.02 186.85 2.77
NUCLEAR(OURS) 71.85±0.07 186.85 2.77
FROBENIUS(OURS) 71.74±0.05 186.85 2.77

Table 4. Results on CIFAR-100 with VGG16-BN. We separated
the table with dashline based on compression ratios.

reduction(v.s. 50.6%) with recovered accuracy 91.65(v.s.
90.8). Compared with GAL [39], we achieved 63.95%
FLOPs reduction(v.s. 60.2%) and 64.71% parameters re-
duction(v.s. 65.9%) with recovered accuracy 91.65(v.s.
90.36).
DenseNet-40 In Table 3, we demonstrated result of SPSRC
on DenseNet-40. We finetuned the model for 40 epochs
after pruning. As shown in Table 3, SPSRC is higher in ac-
curacy than all other competitive methods with similar or
smaller compression ratios.

MODEL TOP-1%↑ TOP-5%↑ FLOPS(G)↓ PARAMS(M)↓
DENSE 73.27 91.43 3.76 21.88

L1 [36] 72.17 90.89 2.82 19.47
LCCN [9] 72.99 91.19 2.83 -
TAYLOR [47] 72.83 - 2.93 17.26
SPECTRAL(OURS) 72.94±0.10 91.12 2.82 19.47
NUCLEAR(OURS) 73.18±0.05 91.33 2.82 19.47
FROBENIUS(OURS) 73.04±0.11 91.23 2.82 19.47
SFP [20] 71.83 90.33 2.22 -
SPECTRAL(OURS) 71.98±0.11 90.57 2.30 17.88
NUCLEAR(OURS) 72.12±0.05 90.56 2.30 17.88
FROBENIUS(OURS) 72.02±0.08 90.59 2.30 17.88

Table 5. Results on ImageNet with ResNet34. We separated the
table with dashline based on compression ratios.

METHOD TOP-1%↑ FLOPS(G)↓ FPS(IM/S)↑
DENSE [34] 76.2 4.1 1019

EAGLEEYE-1G [34] 74.2 1.0 2429
GREG-2 [58] 73.9 1.3 1514
DSNET [35] 74.6 1.2 –
POLARIZE [66] 74.2 1.2 –
METAPRUNING [43] 73.4 1.0 2381
DMCP [14] 74.1 1.1 –
HALP-30% [53] 74.3 1.0 2755
HALP-SPSRC(OURS) 75.0±0.1 1.1 3007

Table 6. Results on ImageNet with ResNet50 for hardware-aware
pruning. We instantiated our method SPSRC on top of HALP.

4.3. Results on CIFAR-100

All of the following experiments conducted on CIFAR-
100 are on a single RTX 2080 Ti GPU.
VGG16 Training and optimization setting of the baseline
network is the same as that of VGG16-bn for CIFAR10.

In Table 4, we demonstrated results of two different
pruning configurations retrained for 50 and 70 epochs re-
spectively after pruning. Table 4 demonstrates that, with
both pruning configurations, SPSRC is higher in accuracy
than other methods with similar compression ratios.

4.4. ImageNet

All of the following experiments conducted on ImageNet
are on eight RTX 2080 Ti GPUs with parallel training.
ResNet-34 For a fair comparison, we performed pruning
on the official torchvision version model(73.27% Top-1 ac-
curacy). We also tried the model trained from scratch and
observed similar accuracy. We followed the same optimiza-
tion setting as PyTorch official example, with batch size
256, momentum 0.9, and weight decay 0.0001. For retrain-
ing, we used the same optimization setting as the baseline
model training but with the initial learning rate set to 0.001,
decaying by 10 every 10 epochs. We propose two prun-
ing configurations for ResNet-34 on ImageNet. For both
configurations, we retrained the model for 30 epochs and
observed that the model achieved the best accuracy around
the 23th epoch. Table 5 demonstrates that, with both prun-
ing configurations, SPSRC is higher in accuracy than other
methods with a similar compression ratio.

2210

0 20 40 60 80

Baseline

Spectral

Nuclear

Frobenius

Random

Spectral-Rev

Nuclear-Rev

Frobenius-RevPr
un

in
g

Co
nf

ig
ur

at
io

n
1 93.51

92.80

92.47

92.39

13.33

10.00

10.00

10.00

(a)

90.0 90.5 91.0 91.5 92.0 92.5 93.0 93.5 94.0

Baseline

Spectral

Nuclear

Frobenius

Random

Spectral-Rev

Nuclear-Rev

Frobenius-Rev

93.51

93.78

93.81

93.82

93.33

92.36

92.67

92.58

(b)

0 20 40 60 80
Pre-Finetuning Top-1 % Accuracy

Baseline

Spectral

Nuclear

Frobenius

Random

Spectral-Rev

Nuclear-Rev

Frobenius-RevPr
un

in
g

Co
nf

ig
ur

at
io

n
2 93.51

49.91

54.33

56.14

10.00

10.00

10.00

10.00

(c)

0 20 40 60 80
Post-Finetuning Top-1 % Accuracy

Baseline

Spectral

Nuclear

Frobenius

Random

Spectral-Rev

Nuclear-Rev

Frobenius-Rev

93.51

93.90

93.77

93.74

93.33

10.00

10.00

10.00

(d)

Figure 4. Ablation studies results. We demonstrated both pre-finetuning and post-finetuning accuracies on models pruned with both
configurations. Check 4.2 and Table 1 for detail of pruning configurations.

4.4.1 ResNet50 & Hardware-Aware Pruning

Here, we demonstrate that our framework can also be com-
bined with the latest state-of-the-art hardware-aware prun-
ing framework HALP [53] to yield better results. Notably,
HALP leveraged Taylor importance score [47], which is for-
mulated as a product of gradient and magnitude of kernel
weights. While instantiating SPSRC, we apply the reorga-
nization to the final product which also considers gradient
info. Results can be found in the Table 6. We improve
HALP obviously with SPSRC, surpassing its Top-1 by 0.7
and FPS by around 300 IM/S.

4.5. Ablation Studies

We performed ablation studies on CIFAR-10 with
VGG16. We showed the results in Figure 4. We demon-
strated results of random pruning and pruning with the op-
posite of our metric(labeled with ”-Rev” postfix in Figure
4) to show the effectiveness of SPSRC. For the opposite of
our metric, filters with larger spectral, nuclear, or frobenius
norm after reorganization are removed first. We showed re-
sults for both the first and second pruning configuration with
same compression settings as described in 4.2 and Table 1.

With 34.15% FLOPs reduction and 64.29% parame-
ters reduction, as shown in sub-figure (a) of Figure 4, SP-
SRC still retains decent accuracy (around 92.5%) even be-
fore finetuning. However, for random pruning and pruning
with reverse metric, the accuracy drops sharply to 13.33%
and 10%. The appearance of exactly 10.00% Top-1 ac-
curacy(expected random guess accuracy on CIFAR-10) is
because the network consistently produces zero due to in-
significant weights, making the network predict one class
regardless of the input. This phenomenon can also be seen
in other sub-figures. After finetuning, we can see from sub-
figure (b) that SPSRC even surpasses the baseline accuracy.
Random pruning, though performing worse than SPSRC
and the baseline, is better than pruning with the reverse met-
ric.

With 41.86% FLOPs reduction and 81.33% parameters
reduction, as shown in sub-figure (c) of Figure 4, accuracy
of SPSRC drops to around 54% before finetuning. How-
ever, for pruning randomly and pruning with the reverse
metric, the accuracy drops to 10%. Interestingly, we ob-
serve that, even with finetuning, the network pruned with
the reverse metric can not improve as shown in sub-figure
(d). The gradients are negligible, causing the network to be
stuck at a very bad local optimum and consistently predict-
ing one class regardless of the input. We even elongated
retraining to 80 epochs and gradually increase the learn-
ing rate to 1 but still did not observe any improvement on
test accuracy for reverse SPSRC. As expected, the model
pruned randomly can recover with randomly kept impor-
tant channels but performed worse than the baseline and
SPSRC.

5. Conclusions

In this paper, we present a novel channel pruning frame-
work called SPSRC, which employs the norm of the weight
matrices after reorganization of convolution to matrix mul-
tiplication. We identify intrinsic and everlasting issues in
previous methods which directly extract information from
the plain convolution kernels like lack of convolution ker-
nel spatial saliency information. We both theoretically and
empirically demonstrate why this reorganization step helps
us obtain better importance measurement of each channel.
We conducted extensive experiments to show the efficiency
and superiority of SPSRC compared to the other channel
pruning methods. We hope that our work provide a new
direction for pruning works in the future. In the follow-
ing works, we will analyze the reorganized matrices from
convolution kernels more deeply and conduct other types of
compression, including tensor decomposition, after a more
thorough theoretical analysis.

2211

References
[1] Ali Alqahtani, Xianghua Xie, Mark W Jones, and Ehab Essa.

Pruning cnn filters via quantifying the importance of deep
visual representations. Computer Vision and Image Under-
standing, 208:103220, 2021. 1

[2] Davis W. Blalock, Jose Javier Gonzalez Ortiz, Jonathan
Frankle, and John V. Guttag. What is the state of neural net-
work pruning? In Proceedings of the 3rd MLSys Conference,
2020. 1

[3] Jierun Chen, Shiu-hong Kao, Hao He, Weipeng Zhuo, Song
Wen, Chul-Ho Lee, and S-H Gary Chan. Run, don’t walk:
Chasing higher flops for faster neural networks. In CVPR,
2023. 4

[4] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs. IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 40(4):834–848,
2017. 1

[5] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Wein-
berger, and Yixin Chen. Compressing neural networks with
the hashing trick. In International Conference on Machine
Learning(ICML), pages 2285–2294. PMLR, 2015. 1

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 1

[7] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie. Model compres-
sion and hardware acceleration for neural networks: A com-
prehensive survey. Proceedings of the IEEE, 108(4):485–
532, 2020. 1

[8] Emily L. Denton, Wojciech Zaremba, Joan Bruna, Yann Le-
Cun, and Rob Fergus. Exploiting linear structure within con-
volutional networks for efficient evaluation. In Neural Infor-
mation Processing Systems(NIPS), pages 1269–1277, 2014.
1

[9] Xuanyi Dong, Junshi Huang, Yi Yang, and Shuicheng Yan.
More is less: A more complicated network with less infer-
ence complexity. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
5840–5848, 2017. 7

[10] Gale et el. The state of sparsity in deep neural networks.
arXiv preprint arXiv:1902.09574, 2019. 2

[11] Hou et el. Chex: channel exploration for cnn model com-
pression. In CVPR, 2022. 2

[12] Lin et el. Channel pruning via automatic structure search.
2020. 1

[13] Jonathan Frankle and Michael Carbin. The lottery ticket hy-
pothesis: Finding sparse, trainable neural networks. In In-
ternational Conference on Learning Representations (ICLR),
2019. 1, 2

[14] Shaopeng Guo, Yujie Wang, Quanquan Li, and Junjie Yan.
Dmcp: Differentiable markov channel pruning for neural
networks. In CVPR, pages 1539–1547, 2020. 7

[15] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz,
and W. J. Dally. Eie: Efficient inference engine on com-
pressed deep neural network. In 2016 ACM/IEEE 43rd

Annual International Symposium on Computer Architecture
(ISCA), pages 243–254, 2016. 1

[16] Song Han, Jeff Pool, John Tran, and William J. Dally.
Learning both weights and connections for efficient neural
networks. Neural Information Processing Systems (NIPS),
2015. 1, 2

[17] Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal
brain surgeon and general network pruning. In IEEE interna-
tional conference on neural networks, pages 293–299. IEEE,
1993. 1

[18] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969, 2017. 1

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition (CVPR), pages 770–778, 2016. 2, 5

[20] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi
Yang. Soft filter pruning for accelerating deep convolutional
neural networks. In International Joint Conference on Artifi-
cial Intelligence(IJCAI), pages 2234–2240, 2018. 1, 2, 5, 6,
7

[21] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi
Yang. Filter pruning via geometric median for deep con-
volutional neural networks acceleration. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR, pages 4340–4349, 2019. 2

[22] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning
for accelerating very deep neural networks. In Proceedings
of the IEEE International Conference on Computer Vision
(ICCV), pages 1389–1397, 2017. 1, 3, 6, 7

[23] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distill-
ing the knowledge in a neural network. Neural Information
Processing Systems (NIPS), 2014. 1

[24] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang.
Network trimming: A data-driven neuron pruning approach
towards efficient deep architectures. CoRR, abs/1607.03250,
2016. 1, 2

[25] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017. 2, 6

[26] Zehao Huang and Naiyan Wang. Data-driven sparse struc-
ture selection for deep neural networks. In Proceedings of the
European Conference on Computer Vision (ECCV), pages
304–320, 2018. 3, 6

[27] Ryan Humble, Maying Shen, Jorge Albericio Latorre, Eric
Darve, and Jose Alvarez. Soft masking for cost-constrained
channel pruning. In European Conference on Computer Vi-
sion, pages 641–657. Springer, 2022. 2

[28] Jianbo Jiao, Yunchao Wei, Zequn Jie, Honghui Shi, Ryn-
son WH Lau, and Thomas S Huang. Geometry-aware distil-
lation for indoor semantic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition(CVPR, pages 2869–2878, 2019. 1

[29] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 2, 5

2212

[30] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Advances in neural information processing systems,
25:1097–1105, 2012. 1

[31] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
1

[32] Yann LeCun, John S Denker, Sara A Solla, Richard E
Howard, and Lawrence D Jackel. Optimal brain damage.
In Neural Information Processing Systems(NIPs), volume 2,
pages 598–605. Citeseer, 1989. 1

[33] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S.
Torr. Snip: single-shot network pruning based on connec-
tion sensitivity. In International Conference on Learning
Representations(ICLR)-Poster, 2019. 1

[34] Bailin Li, Bowen Wu, Jiang Su, and Guangrun Wang. Ea-
gleeye: Fast sub-net evaluation for efficient neural network
pruning. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceed-
ings, Part II 16, pages 639–654. Springer, 2020. 2, 7

[35] Changlin Li, Guangrun Wang, Bing Wang, Xiaodan Liang,
Zhihui Li, and Xiaojun Chang. Dynamic slimmable network.
In CVPR, pages 8607–8617, 2021. 7

[36] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. In In-
ternational Conference on Learning Representations(ICLR)-
Poster, 2017. 1, 2, 4, 5, 6, 7

[37] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang,
Baochang Zhang, Yonghong Tian, and Ling Shao. Hrank:
Filter pruning using high-rank feature map. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition(CVPR), pages 1529–1538, 2020. 1, 2, 6,
7

[38] Shaohui Lin, Rongrong Ji, Chao Chen, Dacheng Tao, and
Jiebo Luo. Holistic cnn compression via low-rank decompo-
sition with knowledge transfer. IEEE transactions on pattern
analysis and machine intelligence(TPAMI), 41(12):2889–
2905, 2018. 1

[39] Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang,
Liujuan Cao, Qixiang Ye, Feiyue Huang, and David Doer-
mann. Towards optimal structured cnn pruning via genera-
tive adversarial learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR, pages 2790–2799, 2019. 1, 3, 6, 7

[40] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In European con-
ference on computer vision (ECCV), pages 21–37. Springer,
2016. 1

[41] Yifan Liu, Ke Chen, Chris Liu, Zengchang Qin, Zhenbo
Luo, and Jingdong Wang. Structured knowledge distil-
lation for semantic segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition(CVPR), pages 2604–2613, 2019. 1

[42] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,
Shoumeng Yan, and Changshui Zhang. Learning efficient

convolutional networks through network slimming. In Pro-
ceedings of the IEEE International Conference on Computer
Vision(ICCV), pages 2736–2744, 2017. 1, 3

[43] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin
Yang, Kwang-Ting Cheng, and Jian Sun. Metapruning: Meta
learning for automatic neural network channel pruning. In
ICCV, pages 3296–3305, 2019. 7

[44] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu,
and Kwang-Ting Cheng. Bi-real net: Enhancing the per-
formance of 1-bit cnns with improved representational ca-
pability and advanced training algorithm. In Proceedings of
the European conference on computer vision (ECCV), pages
722–737, 2018. 1

[45] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 3431–3440, 2015. 1

[46] Ekdeep Singh Lubana and Robert P. Dick. A gradient
flow framework for analyzing network pruning. CoRR,
abs/2009.11839, 2020. 2

[47] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Fro-
sio, and Jan Kautz. Importance estimation for neural net-
work pruning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
11264–11272, 2019. 1, 2, 4, 7, 8

[48] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila,
and Jan Kautz. Pruning convolutional neural networks for
resource efficient inference. In International Conference on
Learning Representations(ICLR)-Poster, 2017. 1, 2

[49] Jongsoo Park, Sheng R. Li, Wei Wen, Ping Tak Peter Tang,
Hai Li, Yiran Chen, and Pradeep Dubey. Faster cnns with
direct sparse convolutions and guided pruning. In Inter-
national Conference on Learning Representations(ICLR)-
Poster, 2017. 1

[50] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015. 2, 5

[51] Maying Shen, Lei Mao, Joshua Chen, Justin Hsu, Xinglong
Sun, Oliver Knieps, Carmen Maxim, and Jose M Alvarez.
Hardware-aware latency pruning for real-time 3d object de-
tection. In 2023 IEEE Intelligent Vehicles Symposium (IV),
pages 1–6. IEEE, 2023. 1, 2

[52] Maying Shen, Hongxu Yin, Pavlo Molchanov, Lei Mao,
Jianna Liu, and Jose M Alvarez. Halp: hardware-aware la-
tency pruning. arXiv preprint arXiv:2110.10811, 2021. 1, 2,
4

[53] Maying Shen, Hongxu Yin, Pavlo Molchanov, Lei Mao,
Jianna Liu, and Jose M Alvarez. Structural pruning via
latency-saliency knapsack. NeurIPS, 2022. 1, 2, 7, 8

[54] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition. In
Yoshua Bengio and Yann LeCun, editors, International Con-
ference on Learning Representations (ICLR), 2015. 2, 5

[55] Xinglong Sun. Pruning for better domain generalizability.
arXiv preprint arXiv:2306.13237, 2023. 1

2213

[56] Xinglong Sun, Ali Hassani, Zhangyang Wang, Gao Huang,
and Humphrey Shi. Disparse: Disentangled sparsifica-
tion for multitask model compression. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12382–12392, 2022. 1

[57] Xinglong Sun, Maying Shen, Hongxu Yin, Lei Mao, Pavlo
Molchanov, and Jose M Alvarez. Towards dynamic sparsifi-
cation by iterative prune-grow lookaheads. 2022. 1

[58] Huan Wang, Can Qin, Yulun Zhang, and Yun Fu. Neural
pruning via growing regularization. In ICLR, 2021. 7

[59] Paul Wimmer, Jens Mehnert, and Alexandru Condurache.
Interspace pruning: Using adaptive filter representations
to improve training of sparse cnns. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12527–12537, 2022. 1

[60] Seul-Ki Yeom, Kyung-Hwan Shim, and Jee-Hyun Hwang.
Toward compact deep neural networks via energy-aware
pruning. arXiv preprint arXiv:2103.10858, 2021. 6, 7

[61] Haichao Yu, Haoxiang Li, Humphrey Shi, Thomas S Huang,
and Gang Hua. Any-precision deep neural networks. In
AAAI, 2021. 1

[62] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I
Morariu, Xintong Han, Mingfei Gao, Ching-Yung Lin, and
Larry S Davis. Nisp: Pruning networks using neuron impor-
tance score propagation. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 9194–9203, 2018. 7

[63] Xin Yuan, Pedro Savarese, and Michael Maire. Growing effi-
cient deep networks by structured continuous sparsification.
ICLR, 2021. 2

[64] Xiangyu Zhang, Jianhua Zou, Xiang Ming, Kaiming He, and
Jian Sun. Efficient and accurate approximations of nonlinear
convolutional networks. In Proceedings of the IEEE Con-
ference on Computer Vision and pattern Recognition(ICCV),
pages 1984–1992, 2015. 1

[65] Chenglong Zhao, Bingbing Ni, Jian Zhang, Qiwei Zhao,
Wenjun Zhang, and Qi Tian. Variational convolutional neural
network pruning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 2780–2789, 2019. 6

[66] Tao Zhuang, Zhixuan Zhang, Yuheng Huang, Xiaoyi Zeng,
Kai Shuang, and Xiang Li. Neuron-level structured prun-
ing using polarization regularizer. NeurIPS, 33:9865–9877,
2020. 7

2214

