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Figure 1. We decouple the optimization of reconstruction and adversarial losses by synthesizing an image as a combination of its recon-
struction (low-frequency) and GAN residual (high-frequency) components. The GAN residual adds realistic fine details while avoiding the
pixel-wise penalty imposed by reconstruction losses.

Abstract

Current Image-to-Image translation (I2I) frameworks
rely heavily on reconstruction losses, where the output
needs to match a given ground truth image. An adversarial
loss is commonly utilized as a secondary loss term, mainly
to add more realism to the output. Compared to uncon-
ditional GANs, I2I translation frameworks have more su-
pervisory signals, but still their output shows more artifacts
and does not reach the same level of realism achieved by un-
conditional GANs. We study the performance gap, in terms
of photo-realism, between I2I translation and unconditional
GAN frameworks. Based on our observations, we propose a
modified architecture and training objective to address this
realism gap. Our proposal relaxes the role of reconstruc-
tion losses, to act as regularizers instead of doing all the
heavy lifting which is common in current I2I frameworks.
Furthermore, our proposed formulation decouples the op-
timization of reconstruction and adversarial objectives and
removes pixel-wise constraints on the final output. This al-
lows for a set of stochastic but realistic variations of any
target output image. Our project page can be accessed at
cs.umd.edu/~sakshams/grit.

1. Introduction

Generative Adversarial Networks (GANs) have had a
revolutionary impact on generative modeling and image

*Equal contributors.

Figure 2. Comparing image realism between unconditional GANs
and I2I translation. Left: Sample output from StyleGAN [15] at
1024× 1024 resolution. Right: I2I translation outputs from Gau-
GAN [32] at 256× 256 resolution. Even at a lower resolution, I2I
shows more noticeable artifacts compared to unconditional GANs.

synthesis. In their unconditional setting [7, 13, 15], GANs
map a source distribution, typically a unit Gaussian, to a tar-
get distribution (e.g., real images). At inference time, ran-
dom images can be synthesized by sampling latent codes
from the source distribution and passing them through a
generator network. To provide user control over the synthe-
sis process, Isola et al. [11] proposed a GAN-based Image-
to-Image (I2I) translation framework, which conditions the
synthesis process on an input image that describes certain
attributes of the target output. Therefore, I2I translation
learns to map images from a source domain A to a tar-
get domain B (e.g., semantic maps → scenes or sketches
→ photo-realistic images). I2I translation has since been
utilized for many problems in computer vision and graph-
ics, such as inpainting [34], colorization [49, 51], super-
resolution [20], image de-noising [4], rendering [27,28,37],
and many more [5, 41, 52].
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Figure 3. Comparison between different I2I training objectives:
Left is the input semantic layout. The following columns show the
output of networks trained with an L1 loss, VGG-based percep-
tual loss, perceptual+adversarial (GAN) losses respectively. Last
column shows the corresponding ground truth image.

While unconditional GANs [14, 17] and class-
conditional GANs [3] have reached unprecedented
visual quality, I2I translation lags behind in quality and
realism. This is despite the fact that it has more inputs and
better supervision during training. For example, Figure 2
contrasts StyleGAN [15] (unconditional) and GauGAN [32]
(I2I) which both came out around the same time and from
the same institution. Yet, there is a clear realism gap in
favor of unconditional GANs.

We are motivated by this realism gap between uncondi-
tional GANs and I2I translation. We investigate the cause
of this performance gap and trace it back to the difference
in the training objective between those two tasks. In un-
conditional GANs, the generated output is supervised only
by an adversarial loss Ladv, where a critic/discriminator net-
work learns to score how realistic the output looks. On the
other hand, I2I translation relies on cyclic [56] and cross-
cyclic [10, 23] reconstruction losses between the generated
output and available ground truth images. Thus the training
objective of I2I translation optimizes a weighted combina-
tion of both an adversarial loss, Ladv, and a reconstruction
loss, Lrec. Reconstruction losses enforce a form of pixel-
wise matching between the ground-truth image IB and the
output reconstruction ÎB . This provides a strong supervi-
sory signal which speeds up convergence significantly when
compared to unconditional GANs. However, we show that
reconstruction losses are at odds with adversarial losses,
which does not lead to a sound optimization objective and
causes visual artifacts in I2I outputs.

Figure 3 shows the effect of optimizing different objec-
tives for I2I translation. Optimizing an L1 reconstruction
alone leads to very blurry outputs. While using a VGG-
based perceptual loss [12] achieves much better results, the
output is not sharp and contains clear grid artifacts. Adding
an adversarial loss brings the output closer to the distribu-
tion of real images, but, in many cases, artifacts can be spot-
ted (e.g., around the hair, teeth and eyes). We hypothesize
that directly optimizing a reconstruction loss on the output
ignores a type of multi-modality in image synthesis, which

Figure 4. Examples of multi-modal outputs (generated by our
method) with local stochastic variations that add realism and sat-
isfy the GAN objective. Applying reconstruction losses in tradi-
tional I2I frameworks ignores this type of multi-modality and pe-
nalizes such variations, which misleads I2I training.

leads to visible artifacts. To motivate our hypothesis, Fig-
ure 4 shows how GANs improves realism by simulating fine
details found in real images, like local variations or noise
patterns found in the texture of real materials. There are
infinite realizations of such noise patterns that add realism
to the output (e.g., skin freckles, pores and wrinkles, and
linings of hair strands). However, applying a reconstruction
loss (Lrec) in traditional I2I frameworks penalizes all these
local variations and promotes a uni-modal solution where
the generated image matches the ground truth down to the
pixel level. This leads to smoothed outputs and other no-
ticeable artifacts that do not show in the unconditional GAN
setup where no reconstruction loss is applied.

In this work, we address this problem and propose a
modified architecture and training objective that relaxes the
role of reconstruction losses to act as regularizers instead
of doing all the heavy lifting which is common in current
I2I translation frameworks. Our formulation decouples
the optimization of adversarial and reconstruction losses.
This enables our network to hallucinate local variations to
add realism to the output while avoiding being penalized
by reconstruction losses. Although we investigate our
proposal in a paired I2I setting, the idea can be extended to
unpaired I2I.

We summarize our contributions as follow:

• We study the realism gap between unconditional GANs
and paired I2I translation, and shed light on an important
multi-modal aspect of image synthesis that we denote as
local spatial variations, which is overlooked and rather
penalized in traditional I2I translation formulation.

• Through the proposed approach, we use GAN Residuals
for Image-to-Image Translation (GRIT), and take the first
step towards addressing the multi-modal nature of local
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spatial variations in I2I translation. We utilize a modi-
fied architecture and training objective that models and
encourages such multi-modality.

• We provide quantitative and visual evidence on the effec-
tiveness of modeling local spatial variations in paired I2I
translation, and show that our proposed method improves
upon strong baselines.

2. Related work
Since the onset of the GAN era with the seminal work

of Goodfellow et al. [7] there have been multiple works [3,
13,16,30] to improve the synthesis quality and resolution of
images. Karras et al. [17] improved the quality of [16] by
introducing better normalization and regularization and in
the process reduced image artifacts and made inversion eas-
ier. [14] went a step further to reduce aliasing and also pro-
posed an approach which made representations equivariant
to rotation and translation. While these works try to learn
the manifold of training data to generate samples on it, there
is another synthesis task of Image-to-Image (I2I) transla-
tion which has been vastly explored and involves translat-
ing images from one domain to another. I2I translation can
be broadly grouped into two regimes based on the type of
training data, unpaired data or paired data.
Unpaired Image-to-Image Translation utilizes unpaired
training data which does not have pixel level correspon-
dence between the domains. CycleGAN [55], Dual-
GAN [46] and DiscoGAN [18] proposed one of the first
and most commonly used approaches for this involving
a cyclic loss to impose consistency between forward and
backward translation for the same image. UNIT [25] and
SCAN [24] also utilize the cyclic loss but introduce a shared
latent space and multistage coarse to fine training respec-
tively. TransGaGa [44] extends the cyclic loss to large do-
main gaps by disentangling features into appearance and
geometry latent space. On the uni-directional (non-cyclic
loss) end, approaches like DistanceGAN [2] train by main-
taining distance between pairs of samples. GcGAN [6] en-
forces constraints on geometric transformations preserving
image semantics. CUT [31] proposes a multi-layer patch
based contrastive learning approach while MUNIT [10] and
DRIT [22] disentangle representations into style and con-
tent. [33] also uses disentanglement but into texture and
structure. More recently MSPC [45] proposes a maximum
spatial perturbation consistency based regularization.
Paired Image-to-Image Translation uses paired data mak-
ing it possible to enforce pixel level correspondence. One
of the first works in this direction, Pix2Pix [11] proposed
an L1 reconstruction loss with a patch discriminator. Later,
Pix2PixHD [39] improved it with higher resolution genera-
tion using coarse to fine generator and multi-scale discrim-
inator. DNI [42] looks at decoupling reconstruction and

GAN losses but they end up training two separate mod-
els with differing objectives and then interpolating between
them by performing a weighted summation to get a balance
between both tasks. They also assume some level of corre-
lation between the parameters of the two networks for this to
work and lack quantitative evidence for the efficacy of their
approach. SPADE [32] proposed spatially-adaptive normal-
ization layer as vanilla normalization washes away semantic
information. SEAN [57] further proposed semantic region-
adaptive normalization layer to control style of each se-
mantic region separately. CoCosNet [48] jointly learns the
cross domain correspondence and image translation, where
both tasks facilitate each other and thus can be learned with
weak supervision. Later CoCosNetv2 [53] mitigated the
quadratic complexity issue in CoCosNet and enabled high-
resolution correspondence using PatchMatch [1]. Recently
DINO [38] proposed an energy based cyclic framework to
utilize the conditional input. While MoNCE [47], presents
a re-weighted patch based constrastive learning framework.
Unlike these works in our approach we disentangle the re-
construction and adversarial (GAN) loss. Additionally, we
also propose architecture modifications which enable us to
perform this disentanglement by separating the reconstruc-
tion supervised output and the residual and in the process
make better use of per-pixel spatial noise to learn more re-
alistic and diverse I2I translations.

3. Approach

The goal of reconstruction losses is to guide a gener-
ated output ÎB to resemble a target ground truth image IB .
While this is a desired behavior for I2I translation, a nega-
tive side effect is that a reconstruction loss will also penalize
high frequency deviations between ÎB and IB . Therefore,
this formulation ignores the multi-modal nature of synthe-
sizing fine-grain texture patterns, where there are infinitely
many realizations of local high-frequency details (e.g., skin
texture or the location of hair strands as shown in Figure 4).
Penalizing such local variations and promoting a uni-modal
solution thus causes artifacts and contributes to the realism
gap between unconditional GANs and I2I translation.

Through our approach GRIT, we make a first step to-
wards addressing this overlooked multi-modal aspect of im-
age synthesis, and propose to decouple the optimization of
reconstruction and adversarial losses.

We present our formulation in Section 3.1 and associated
changes to the loss function in Section 3.2. Section 3.3 dis-
cusses how to explicitly model multi-modal local variations
for paired I2I translation.

3.1. Formulation

We propose to generate an image ÎB as the composition
of two components: a reconstruction component ÎBrec, and
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Figure 5. Left: : Overview of GRIT. Our network generates the output as the composition of a reconstruction component ÎBrec and a
GAN-residual component ÎBres. An L1 reconstruction loss is applied only to the reconstruction component, while the GAN residual is
supervised only through an adversarial loss Ladv. Right: The generator’s upsampling block. We feed the encoded style latent zs through
AdaIN layers, and also add random spatial noise maps controlled by learnable weights W to the feature maps.

an adversarial GAN-residual component ÎBres. During train-
ing, this decoupling of ÎBrec and ÎBres allows the reconstruction
component ÎBrec to focus on reconstructing low-frequency
details of the target real image IB , while the GAN-residual
component ÎBres hallucinates high-frequency details that add
realism to the synthesized image ÎB . The final output is
generated as:

ÎB = C(ÎBrec, Î
B
res); ÎBrec, Î

B
res = G(IA, zs) (1)

where G(., .) is a generator network that maps an input im-
age IA along with a style latent code zs to its low- and high-
frequency components ÎBrec, Î

B
res, and C(., .) is a composition

operator that combines both output components. We im-
plement C as a simple addition. We also investigated imple-
menting it as a small CNN head that fuses ÎBrec, Î

B
res but found

that simply adding the two images works better in our case
and is more stable to train.

Figure 5 gives an overview of our architecture. We im-
plement the generator network as a U-Net [35] architecture
that consists of a content encoder EC and a decoder D. The
decoder network outputs both ÎBrec, Î

B
res. We further discuss

the decoder architecture in Section 3.3.
To model style multi-modality, we follow the litera-

ture [29,32,56] by utilizing a style encoder ES that learns to
capture the style of an input image into a latent style code
zs, which is fed to the generator G via AdaIN layers [9]
to specify the style of the output ÎB . Next, we discuss our
modification to the loss function to encourage the decompo-
sition of ÎB into its reconstruction and GAN-residual com-
ponents.

3.2. Loss function

Standard loss function of GAN-based I2I translation net-
works consists of a weighted sum of a pixel-wise recon-

struction loss Lrec and a discriminator-based adversarial
loss Ladv.

Minimizing this loss does not take into account possi-
ble local variations, as it promotes pixel-wise matching be-
tween the output ÎB and the ground truth IB , and thus only
accepts one solution and penalizes any high-frequency vari-
ations. To allow local variations, we aim to only reconstruct
the low-frequency components of a ground truth image IB ,
where low-frequency components capture the general con-
tent and style of the target output. On the other hand, we
want the generator to have the freedom to add fine-grain de-
tails, represented by high-frequency components, making
the output photo-realistic.

We achieve this by modifying the loss to apply the re-
construction loss Lrec only to the reconstruction component
ÎBrec, while the adversarial loss Ladv is applied to the final
output ÎB = C(ÎBrec, Î

B
res). Thus, our modified training ob-

jective is given by:
minL(IB , ÎB , ÎBrec) = Ladv(Î

B , IB) + λrecLrec(Î
B
rec, I

B)
(2)

With such modification, the reconstruction loss Lrec does
not backpropagate into the GAN-residual component ÎBres,
and ÎBres therefore has the freedom to hallucinate high-
frequency details that add realism to generated images with-
out being constrained to match pixel-level details of ground
truth images at training time. While the proposed loss func-
tion (Eqn. 2) allows high-frequency deviations between IB

and ÎB , this by itself does not encourage multi-modal syn-
thesis of local texture and other high-frequency details. In
the next section, we discuss how to explicitly model the
local-variations multi-modality into our network.

3.3. Multi-modal outputs

At training time, I2I translation networks peek at the tar-
get ground truth image IB and encodes it into a flattened
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Table 1. Comparison with baselines at 256× 256 resolution.

Method L1 ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

Pix2PixHD [40] 24.78 17.53 0.515 0.256 45.97
SPADE [32] 28.69 16.21 0.485 0.283 26.06
DINO [38] 51.84 12.13 0.401 0.369 37.24
MoNCE [47] 64.26 10.32 0.357 0.380 34.27
Ours 18.34 19.54 0.531 0.245 17.04

style latent code zs. However, due to the lossy nature of
such compression, it is impossible for the decoder to re-
cover pixel-level spatial information (e.g., location of hair
strands) to reconstruct IB . Driven by the adversarial loss,
the decoder hallicinates spatial patterns to bring synthesized
images closer to the manifold of real images. This requires
the decoder to devise a way to generate spatially-varying
pseudo-random numbers from the input flattened latent.
This challenge was first raised in StyleGAN [15], where
they showed that this is inefficient and consumes much of
the network capacity. To address this limitation, Karras et
al. [15] proposed to add per-pixel noise maps within each
upsampling block in the decoder to encourage synthesizing
local variations of spatial patterns.

The use of spatial noise maps however did not transfer
to the I2I translation literature. This is because, unlike un-
conditional GANs, the application of reconstruction losses
counteracts the added spatial noise by suppressing it, lead-
ing to a uni-modal output. On the other hand, decomposing
the synthesis into its reconstruction ÎBrec and GAN-residual
ÎBres components allows for naturally adapting spatial noise
maps to I2I translation by modeling local stochastic varia-
tions in the GAN-residual component. This bridges the gap
between unconditional GANs and I2I translation since ÎBres
is not affected by the reconstruction loss, and can therefore
fully utilize the added spatial noise. Adding spatial noise
maps models the local variation multi-modality, and enables
generating multi-modal output for the same target image by
sampling random noise maps.

4. Experimental evaluation

Implementation details. In the interest of space we pro-
vide details about network architecture and training hyper-
parameters in the supplementary.
Dataset. We perform our main evaluation on the
CelebAMask-HQ dataset [21]. The dataset contains 30, 000
high resolution face images along with their correspond-
ing segmentation masks which contain 19 semantic labels
and are at a 512 × 512 resolution. We use the standard
train and test splits provided by Liu et al. [26]. We also
show results on Edges2Handbags [54] which contains 137K
Amazon Handbag images and edge maps. All images and
edge maps are at 256 × 256 resolution. Unless stated oth-

Table 2. Comparison on Edges2Handbags at 256 × 256 image
resolution.

Method L1 ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

Pix2PixHD [40] 19.28 18.05 0.70 0.20 59.53
SPADE [32] 21.91 16.71 0.66 0.25 75.49
Ours 12.61 20.68 0.73 0.18 57.79

erwise, all experiments and analysis are performed on the
CelebAMask-HQ dataset [21].
Baselines. We compare our method with the following
approaches: Pix2PixHD [39], SPADE (also called Gau-
GAN) [32], DINO [38] and MoNCE [47]. We train
Pix2PixHD [39] and SPADE [32] using their official re-
leased code. For Pix2PixHD, we enable the option to train
a semantic-specific style encoder, which computes separate
style codes per semantic label. We use the outputs pro-
vided by the authors for DINO [38], and use the released
pre-trained model of MoNCE [47] and follow the authors’
instructions to generate test results on the CelebAMask-HQ
dataset. Since MoNCE and DINO are trained at 256× 256,
we train our method as well as Pix2PixHD and SPADE at
256 resolution for fair comparison. Additionally, we also
train our method, Pix2PixHD and SPADE at 512× 512 res-
olution to evaluate and compare results at high resolution.
Metrics. We evaluate using the following metrics:

• Standard reconstruction metrics such as L1, Peak Sig-
nal to Noise Ratio (PSNR), and structural similarity
(SSIM) [43] between the output and ground truth.

• LPIPS [50] which measures the perceptual similarity be-
tween the output and ground truth using AlexNet features.

• Frechet-Inception Distance (FID) [8] which is used to
measure the perceptual quality and realism of the output.

4.1. Quantitative Comparison

We provide quantitative comparison with the base-
lines in Table 1 and 2 for the CelebAMask-HQ and
Edges2handbags datasets respectively which are commonly
used in paired I2I literature. For CelebAMask-HQ dataset,
we observe that Pix2PixHD performs much better than
SPADE on reconstruction metrics like L1, PSNR, SSIM and
LPIPS for both the datasets. This is because Pix2PixHD
uses a powerful semantic-specific style encoder that en-
codes a separate style code per each semantic label and is
therefore able to match the ground truth style more accu-
rately. On the other hand, SPADE uses a VAE-based en-
coder [19] which adds robustness to noise in the style latent
space, but at the expense of faithful reconstruction of the
ground truth style. SPADE however maintains good real-
ism, and thus performs much better than Pix2PixHD on the
FID metric. While DINO [38] and MoNCE [47] are more
recent baselines, we observe they fall short in comparison
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Label Map DINO MONCE Pix2PixHD SPADE Ours Ground Truth

Figure 6. Qualitative comparison on CelebAMask-HQ dataset with DINO [38], MoNCE [47], Pix2PixHD [40] and GauGAN/SPADE [32].

Edge Map Pix2PixHD Ours Ground TruthSPADE

Figure 7. Qualitative comparison on Edges2Handbags dataset
with Pix2PixHD [40] and SPADE [32].
with Pix2PixHD and SPADE. Finally, our decoupled opti-
mization of reconstruction and adversarial losses achieves

better reconstruction error, as well as better realism (FID)
score compared to the baselines. Our reconstruction com-
ponent ÎBrec focuses on reconstructing low-frequency details
to match the general color and structure of the ground truth.
Matching low-frequency components has a direct impact
on reconstruction metrics, especially L1 and PSNR. Ad-
ditionally, unlike the baselines, our GAN residual compo-
nent ÎBres is not constrained by reconstruction losses. And
so, it has the freedom to add high-frequency details that
improves the output realism, which leads to a better FID
score. Similar trends hold for the Edges2Handbags dataset
with Pix2PixHD performing better than SPADE on all met-
rics including FID. This is because SPADE is designed for
dense spatial inputs, e.g. semantic maps, not sparse edge
maps as in the case of Edges2Handbags.

While many baselines are trained at a 256 × 256 reso-
lution, we also inspect our performance at a higher resolu-
tion of 512× 512 on the CelebAMask-HQ dataset. To pro-
vide comparative evaluation at this resolution, we choose
the Pix2PixHD and SPADE methods which are the top per-
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Table 3. Comparison with baselines at resolution of 512× 512.

Method L1 ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

Pix2PixHD [40] 24.80 17.40 0.534 0.354 24.79
SPADE [32] 31.44 15.53 0.490 0.389 20.80
Ours 19.02 19.36 0.555 0.333 16.91

forming methods at 256× 256 resolution, and retrain them
at a 512 resolution. Table 3 shows that the proposed method
consistently shows similar trends of improvement over the
baselines across all metrics. We qualitatively show exam-
ples for this resolution in the supplemental.

4.2. Qualitative evaluation

In this section we qualitatively analyze and compare syn-
thesized results between our method and the baselines. We
also look at various aspects of our approach through visual
results to understand different components better.

4.2.1 Comparison with Baselines

Figure 6 shows qualitative comparison with the baselines
on the CelebAMask-HQ dataset. Our method clearly im-
proves over the baselines in terms of both realism, as well
as matching the ground truth style. We note that our results
could show some style deviations from the ground truth
style (e.g., lip color in the second row), we are still notice-
ably better than the baselines. We observe that the added
GAN residual can sometimes cause such slight deviation
from the reconstructed color, since it is not constrained by
the reconstruction loss. While DINO captures the structure
well, it loses out on realism and on matching colors and
textures to the ground truth image. MoNCE shows more
details due its patch based nature during training, but again
is not able to faithfully capture the style and structure well.
Pix2PixHD and SPADE both generate reasonable results,
but we observe that SPADE results look more realistic, al-
though not faithfully matching the ground truth style. Our
output on the other hand generates high quality and real-
istic samples while making sensible light deviations which
capture the true nature of real world data.

We show results on Edges2Handbags dataset in Figure 7
where we observe similar trends as the Pix2PixHD output
looks better than SPADE and has fewer artifacts while ours
looks the most faithful. As can be seen from the figure
our method generates the color, texture and structure bet-
ter compared to the other approaches.

4.2.2 Standard Deviation of Spatial Noise

In our approach we utilize spatial noise by adding it to the
feature maps at each upsampling block. This along with the
decoupled objective lets the network learn to generate varia-
tions of local information which preserves the structure and
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Figure 8. Examples of local stochastic variations. Top to bottom
rows represent the input image, one sample output, standard devi-
ation of each pixel over 20 different outputs for the same sample,
and ground truth image respectively.

content but introduces diversity in the generated samples.
Here we analyze the variations generated for multiple sub-
jects over 20 different spatial noise samples for each of them
to understand the stochasticity better. Figure 8 shows pixel-
wise standard deviation over the different translation results
generated by varying the spatial noise on CelebAMask-HQ
dataset. It can be see that highest deviation occurs in regions
corresponding to hair, around eyes, lips and nose. These
regions can be considered high-frequency locations as they
usually contain multiple edges and have the most variations.
By visualizing the standard deviation we are able to verify
that the network is able to understand and model these re-
gions better and generate sensible variations.

4.3. Ablation

We perform ablation our approach to show the ef-
fect of sequentially introducing each component using the
CelebAMask-HQ dataset. These results are highlighted in
Table 4. The first row shows the performance of a vanilla
I2I framework which utilizes a U-Net [35] based genera-
tor with a reconstruction and GAN loss on the output. The
second row corresponds to introducing spatial noise which
lets the model learn to generate local variations. It should
be noted that introducing spatial noise on its own does not
realize its full potential as the reconstruction loss can fight
back and teach the network to ignore it in order to improve
on the pixel-wise reconstruction loss. This is where the role
of residuals comes in, which can be seen in the third row.
Introducing the GAN residuals along with the spatial noise
gives a considerable boost in performance, as while the re-
construction losses supervise the reconstructed output, the
GAN loss supervises the combined output and lets the net-
work learn residuals which can better capture details in the
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Table 4. Ablation of different components of our approach.

Method L1 ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

U-Net [35] 21.68 18.25 0.504 0.222 20.24
+ spatial noise 20.93 18.55 0.520 0.219 21.41
+ GAN residuals (ours) 18.34 19.54 0.531 0.245 17.04

image. We also compare the VGG and L1 loss as possible
choices for supervising the reconstruction and show results
in the supplemental supporting our choice for L1.

Figure 9. Examples of the different outputs of our method along
with the input label map and ground truth image.

4.4. Understanding the GAN Residuals

While Figure 8 shows examples of the different out-
puts generated by our network, namely, the reconstructed
and residual images followed by the final combined im-
age. Here we try to understand what kind of information
these images hold. As can be seen from Figure 9 the re-
constructed image encodes most of the structure and con-
tent of the image. It looks like a low-frequency and smooth
image while the the residual seems to contain a lot of high-
frequency information around the hair, eyes, beard, lips etc.
where a lot of edges and variation occur. As can be seen
in the combined output, adding these two gives a realistic
image which resembles the ground truth.

We refer to the GAN residuals being high-frequency by
capturing local variations. Here we verify this by comput-
ing the frequency spectrum of the images in a similar man-
ner as Schwarz et al. [36] who use azimuthal averaging over
the spectrum in normalized polar coordinates. In Figure 10
we show the average over all the synthesized outputs corre-
sponding to the test set for CelebAMask-HQ dataset. It can
be seen how the the reconstruction (orange) encodes higher
magnitude for the low-frequencies with a complete cutoff
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Figure 10. We visualize the frequency spectrum and high-
light that the reconstructed image contains higher magnitude of
low-frequency information while the residual captures the high-
frequency more. By combining these, the resulting image has a
spectrum closer to the ground truth image. The y-axis denotes the
spectral density which is measures the magnitude of a particular
frequency while the x-axis corresponds to the frequency relative
to the maximum frequency corresponding to fnyq .

at mid-to-late frequencies. On the other hand the resid-
ual (blue), encodes more of the high-frequency information.
Combining both of them (green) is much closer to the fre-
quency spectrum of the ground truth (red).

5. Conclusion
We propose a novel approach for paired image-to-Image

translation by highlighting the disconnect between the re-
construction and adversarial losses which are at odds with
each other. Based on this insight we decouple the re-
construction and adversarial loss in the proposed approach
which enable it to have the freedom to learn local variations
better and generate more realistic translations. Through
both quantitative and qualitative results we highlight the ef-
ficacy of the proposed approach and achieve state-of-the-art
performance on paired I2I task on both CelebAMask-HQ
and Edges2Handbags datasets. We show results and com-
pare at both 256 × 256 and 512 × 512 resolutions which
shows that the proposed method can generate higher reso-
lution images too. We also analyze the diversity in image
synthesis that our method introduces using the spatial noise
and highlight its relation to high-frequency. Further, we an-
alyze the residuals and the reconstructed output and visu-
ally show the importance of having a combination of these
to give the final output along with their frequency analy-
sis. Although we investigated our proposal in a paired I2I
setting, the idea can be extended to unpaired I2I.
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ferred neural rendering: Image synthesis using neural tex-
tures. ACM Trans. Graph., 2019. 1

[38] Konstantinos Vougioukas, Stavros Petridis, and Maja Pantic.
Dino: A conditional energy-based gan for domain transla-
tion. Int. Conf. Learn. Represent., 2021. 3, 5, 6

[39] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. High-resolution image syn-
thesis and semantic manipulation with conditional gans. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 8798–8807, 2018. 3, 5

[40] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. High-resolution image syn-
thesis and semantic manipulation with conditional gans. In
IEEE Conf. Comput. Vis. Pattern Recog., 2018. 5, 6, 7

[41] Xiaolong Wang and Abhinav Gupta. Generative image mod-
eling using style and structure adversarial networks. In Eur.
Conf. Comput. Vis., 2016. 1

[42] Xintao Wang, Ke Yu, Chao Dong, Xiaoou Tang, and
Chen Change Loy. Deep network interpolation for con-
tinuous imagery effect transition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1692–1701, 2019. 3

[43] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004. 5

[44] Wayne Wu, Kaidi Cao, Cheng Li, Chen Qian, and
Chen Change Loy. Transgaga: Geometry-aware unsu-
pervised image-to-image translation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 8012–8021, 2019. 3

[45] Yanwu Xu, Shaoan Xie, Wenhao Wu, Kun Zhang, Mingming
Gong, and Kayhan Batmanghelich. Maximum spatial pertur-
bation consistency for unpaired image-to-image translation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 18311–18320, 2022.
3

[46] Zili Yi, Hao Zhang, Ping Tan, and Minglun Gong. Dual-
gan: Unsupervised dual learning for image-to-image trans-
lation. In Proceedings of the IEEE international conference
on computer vision, pages 2849–2857, 2017. 3

[47] Fangneng Zhan, Jiahui Zhang, Yingchen Yu, Rongliang Wu,
and Shijian Lu. Modulated contrast for versatile image syn-
thesis. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 18280–18290,
2022. 3, 5, 6

[48] Pan Zhang, Bo Zhang, Dong Chen, Lu Yuan, and Fang Wen.
Cross-domain correspondence learning for exemplar-based
image translation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
5143–5153, 2020. 3

[49] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful
image colorization. In Eur. Conf. Comput. Vis., pages 649–
666. Springer, 2016. 1

[50] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 586–595, 2018. 5

[51] Richard Zhang, Jun-Yan Zhu, Phillip Isola, Xinyang Geng,
Angela S Lin, Tianhe Yu, and Alexei A Efros. Real-time
user-guided image colorization with learned deep priors.
ACM Trans. Graph., 36(4):119, 2017. 1

[52] Zhifei Zhang, Yang Song, and Hairong Qi. Age progres-
sion/regression by conditional adversarial autoencoder. In
IEEE Conf. Comput. Vis. Pattern Recog., 2017. 1

[53] Xingran Zhou, Bo Zhang, Ting Zhang, Pan Zhang, Jianmin
Bao, Dong Chen, Zhongfei Zhang, and Fang Wen. Cocosnet
v2: Full-resolution correspondence learning for image trans-
lation. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 11465–11475,
2021. 3

[54] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and
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