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Abstract

Conditional GANs are frequently used for manipulating
the attributes of face images, such as expression, hairstyle,
pose, or age. Even though the state-of-the-art models suc-
cessfully modify the requested attributes, they simultane-
ously modify other important characteristics of the image,
such as a person’s identity. In this paper, we focus on solv-
ing this problem by introducing PluGeN4Faces, a plugin to
StyleGAN, which explicitly disentangles face attributes from
a person’s identity. Our key idea is to perform training on
images retrieved from movie frames, where a given person
appears in various poses and with different attributes. By
applying a type of contrastive loss, we encourage the model
to group images of the same person in similar regions of
latent space. Our experiments demonstrate that the modifi-
cations of face attributes performed by PluGeN4Faces are
significantly less invasive on the remaining characteristics
of the image than in the existing state-of-the-art models.

1. Introduction

Modern generative models, such as StyleGAN [14, 15,
16], produce high-quality images, which are frequently in-
distinguishable from real ones. One of the current chal-
lenges is to introduce the functionality for manipulating the
attributes of existing images. In the case of face images, we
would like to modify the expression, the type of facial hair,
or even the gender of the person in the photo.

Although the state-of-the-art conditional generative
models, such as PluGeN [32] or StyleFlow [3], are capa-
ble of modifying selected face attributes, there is no guar-
antee that only requested attributes are changed. Experi-
ments show that modifications of intended attributes often

affect other attributes as well as the identity of a person. It
means that the latent space used for modifications is so en-
tangled that manipulating only selected attributes indepen-
dently from other characteristics of the image is impossible.

input gender glasses hair beard smile

Figure 1. Sample effects of attributes manipulation performed by
PluGeN4Faces.

There may be various reasons why existing models can-
not create disentangled latent representation. In this paper,
we argue that the conditional generative models are usually
trained on generated (fake) images and they have never seen
images representing the same person with different combi-
nations of attributes. To introduce the information about the
person’s identity, we need to perform training on real im-
ages instead of generated ones only.

Working with real images is straightforward in
autoencoder-based generative models, but there appear no-
table problems in the case of GANs since there is no built-
in method for encoding images into the GAN latent space.
The problem is especially challenging for StyleGAN archi-
tecture because of the structure of its style space. While
generated images are identified by a single style code w ∈
W ⊂ R512, not every image can be accurately mapped
into W [1]. To overcome this issue, most techniques (em-
ploying the encoder or gradient-based optimization) per-
form the search in the extended style space Wk

∗ , where
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Figure 2. Explicit disentanglement of attribute and identity fea-
tures performed by PluGeN4Faces. While each labeled attribute
is modeled as an individual latent dimension, the contrastive loss
allows us to group latent codes representing images of the same
person in similar regions of the space.

a style code consists of k different 512-dimensional style
vectors w1, . . . ,wk ∈ R512 (typically k = 18) – one for
each layer of the StyleGAN architecture that can receive
input via AdaIn [1, 30, 35]. Operating on the whole set
of style codes significantly increases the dimensionality of
latent codes and theoretically makes the complexity of the
problem more challenging.

In this paper, we introduce PluGeN4Faces (Plugin
Generative Networks for Faces), a plugin model for dis-
entangling the latent space of StyleGAN in the case of face
images. PluGeN4Faces provides full control on manipulat-
ing face attributes so that the modification of the requested
attributes has a minimal effect on the identity of a person
and the remaining face attributes (including background),
see Figure 1 for sample results. PluGeN4Faces works as
a plugin to pre-trained StyleGAN, which means that it does
not change the weights of StyleGAN but only transforms its
style space into a disentangled one. In consequence, a train-
ing process is extremely simple and absorbs limited compu-
tational resources.

In contrast to competitive models, PluGeN4Faces is
trained on face images retrieved from movie frames, which
can present a given person in various poses and with dif-
ferent attributes. The information about a person’s iden-
tity is used in PluGeN4Faces by employing a contrastive
loss. Namely, we encourage the model to group images
of the same person in similar regions of latent space, see
Figure 2. To use real images in training, we implement
PluGeN4Faces as a conditional invertible normalizing flow,
where the condition represents the identifier of the style
code. In other words, PluGeN4Faces transforms every style
code wi, for i = 1, . . . , k, by the flow conditioned on the
index i. In this way, we are able to implement a compact

disentanglement module operating on real images.
We evaluate PluGeN4Faces on face images retrieved

from the FFHQ database as well as movie frames. We
show that PluGeN4Faces allows for effective manipulation
of face attributes. Moreover, the applied modifications pre-
serve the person’s identity to a significantly greater extent
than in competitive models. The presented sample results
are supported by the quantitative analysis, which confirms
the advantage of PluGeN4Faces over related models.

The contribution of the paper is summarized as follows:
• We introduce a plugin to StyleGAN for manipulating

the attributes of real images. In contrast to existing
models, it is trained on real images encoded into Style-
GAN style space using the encoder network.

• We improve the representation disentanglement in
conditional generative models by applying a type of
contrastive loss, which explicitly encodes the person’s
identity. In consequence, the manipulation of the re-
quested attributes is less invasive on the remaining im-
age characteristics (including person’s identity).

• The proposed solution is evaluated in a strict quanti-
tative way, which allows for a fair comparison with
related models. The proposed metrics together with
our sample results clearly demonstrate the advantage
of PluGeN4Faces over competitive methods.

Our code is available at: https://github.com/
gmum/plugen4faces. Demo app is available at:
https://gmum.ii.uj.edu.pl/plugen/.

2. Related work
Conditional VAE (cVAE) is one of the first methods

of including additional label information in a generative
model [17], which has been successfully applied in a va-
riety of disciplines including image generation [18, 28, 33].
However, the independence of latent codes and labels is
not assured, which has a negative impact on the genera-
tion quality. Conditional GAN (cGAN) is an alternative
that is able to produce examples of significantly better qual-
ity [4, 12, 22, 24, 25] , but the training of the model is more
difficult [19]. Fader Networks [20] overcome this limita-
tion by combining components of cVAE and cGAN, as they
use both encoder-decoder architecture and the discrimina-
tor, which predicts the image attributes from a correspond-
ing latent vector obtained from the encoder. As with pre-
vious methods, Fader Networks does not preserve the dis-
entanglement of attributes, moreover, the training is even
more difficult than that of standard GANs.

While the described approaches focus on creating con-
ditional generative models from scratch, recent work fre-
quently focuses on manipulating the latent codes of pre-
trained networks. In this scenario, data complexity is not
that big of a limitation, hence flow models can be easily
applied. StyleFlow [3] and PluGeN [32] operate on the la-
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tent space of GAN using a normalizing flow module: con-
ditional CNF [9] and NICE [7], respectively. While Style-
Flow is adapted to work only on StyleGAN [16], PluGeN
demonstrates great results also with other models and in dif-
ferent domains. For StyleGAN, they are both trained using
latent codes sampled from latent space W and attributes of
images that correspond to them. Competitive approaches
include [8, 10, 23, 29]. InterFaceGAN [26] aims to ma-
nipulate various properties of the facial semantics via lin-
ear models applied to the latent space of GANs. Hijack-
GAN [31] goes beyond linear models and designs a proxy
model to traverse the latent space of GANs.

Along with the latent codes manipulation techniques,
methods of embedding examples into the GAN latent space
can be used to allow manipulation of existing examples.
There are two main embedding approaches: (i) an encoder
network that maps an image into the latent space [30], (ii)
an optimization algorithm that iteratively improves a latent
code so that it produces a desired image [1, 2, 36]. More-
over, combinations of these two approaches exist, in which
the encoder outputs an approximate embedding that is then
improved by the optimization algorithm [34]. These meth-
ods allow us to train our model using real images, which
are encoded into the extended StyleGAN latent space Wk

∗
that enables manipulation of existing images. As shown in
[1], the use of Wk

∗ latent space instead of W reduces the
alteration of the original image.

3. Identity-aware disentanglement

Overview PluGeN4Faces is a conditional invertible nor-
malizing flow module (cINF), which is attached to the style
space of StyleGAN. It transforms the style codes of pre-
trained StyleGAN into a disentangled space so that:

• the labeled attributes are modeled by the individual la-
tent coordinates,

• images of the same person are grouped in similar re-
gions of the latent space.

While realizing the first of the above conditions allows us
to edit the values of requested attributes, the second one
prevents severe changes in the image during attribute ma-
nipulation.

In this section, we first review the StyleGAN architec-
ture and recall the way of encoding real images into its style
space. Next, we present a probabilistic structure of Plu-
GeN4Faces, and cINF mapping function. We discuss the
training procedure and the inference phase.

StyleGAN architecture StyleGAN architecture [15] con-
sists of two main parts: (a) a mapping network that trans-
forms latent codes z ∈ Z sampled from Gaussian noise
N (µ, I) to the style vectors w ∈ W , (b) a synthesis net-
work that creates an image from the style code replicated

several times. The replicated style codes represent the in-
puts to subsequent layers of the synthesis network.

Instead of manipulating latent codes z ∈ Z , we usually
operate on the style space W to perform attribute modifi-
cation, which was shown to be significantly more disentan-
gled [3]. However, it is well-known that not all real im-
ages can be encoded into the StyleGAN’s style space W
[35]. A typical approach for coping with this issue is to ex-
tend the search space and look for k different style codes
(w1, . . . ,wk) ∈ Wk

∗ , which together could synthesize the
original input [1, 30]. Each wi represents the input to the
i-th layer of the synthesis network. Even though a sequence
of style codes from the extended style space does not reflect
any latent code z, it allows for the convenient reconstruc-
tion and manipulation of real images. One can design an
encoder [30] or implement a gradient-based procedure for
embedding real images into the extended style space. In
this paper, we employ an encoder network.

Probabilistic structure of PluGeN4Faces We assume
that every image x is described by the composition of the
attribute and non-attribute vectors (c, s), where c ∈ C =
(C1, . . . , CM ) and s ∈ S = (S1, . . . , SN−M ). While each
attribute variable ci ∈ Ci contains information about the se-
lected attribute, the non-attribute vector s is used to describe
the remaining characteristic of data including background
and personal identity in the case of face images. To con-
trol the value of every attribute independently of each other,
a factorized form of the probability distribution of the ran-
dom vector (C,S) is assumed. Given a vector of true labels
y = (y1, . . . , yM ), the conditional distribution of (c, s) is
defined by

pC,S|Y=y(c, s) =

M∏
i=1

pCi|Yi=yi
(ci)·pS(s) , for (c, s) ∈ RN .

In the above formula, the i-th label yi affects only the i-th
attribute variable Ci. As a parametric form of pCi|Yi=yi

, we
use a 1-dimensional Gaussian density N (yi, σ). By chang-
ing the condition Yi = yi, we modify the mean of the Gaus-
sian. The distribution of the non-attribute vector is modeled
as a multivariate standard Gaussian density N (0, IN−M ).
The non-attribute vector s is responsible for covering infor-
mation about a person’s identity, image background, etc.,
so images presenting the same person should have similar
values of s.

Invertible mapping To realize the above parameteriza-
tion, a two-way mapping between the style space of the pre-
trained StyleGAN and the disentangled space (C,S) has to
be established. Since we work with real images (not only
generated ones), we employ the StyleGAN encoder [30],
which produces a sequence of style codes {w1, . . . ,wk} ∈
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Wk
∗ representing a given image x in the subsequent layers

of the StyleGAN synthesis network. Thus, we need to map
a sequence of style codes (wi)

k
i=1 (representing a single im-

age x) into a sequence of the attribute and non-attribute vec-
tors (ci, si)

k
i=1. To find such an invertible transformation,

we use a conditional INF (cINF), which is parametrized by
the identifier of the style code. More precisely, the cINF,
F : RN → RN , takes the style code wi and the index of
i-th layer as a condition and returns a disentangled repre-
sentation of wi as (ci, si) = F(wi|layer = i). Here, both
ci = (ci1, . . . , c

i
M ) and si = (si1, . . . , s

i
N−M ) are vectors

corresponding to a given wi.

Training The conditional INF is trained by minimizing
the negative log-likelihood taken over all style codes. Given
a sequence of style codes (wi)

k
i=1 representing an image x

with labels y, we aim at minimizing:

−
k∑

i=1

log pWi|Y=y(wi) =

−
k∑

i=1

 M∑
j=1

log pCj
i |Yi=yi

(cji ) + log pSi(si)+

log

∣∣∣∣det ∂F−1(wi|layer = i)

∂wi

∣∣∣∣) , (1)

where (ci, si) = F−1(wi|layer = i) are the attribute and
non-attribute vectors describing the i-th style code wi (in
the i-th StyleGAN layer).

In addition to the negative log-likelihood minimization,
which focuses on modeling labeled attributes, we introduce
a contrastive loss responsible for the explicit encoding of the
face identity. Thanks to the contrastive loss, manipulating
the labeled attributes will have a minimal effect on changing
other attributes (including identity) of the face image.

To construct our contrastive loss, we take n images
x1, . . . ,xn of a given person and encode them into the style
space of StyleGAN using the encoder network. Such im-
ages can be retrieved from subsequent frames of movies.
For each image, the encoder produces a sequence of style
codes, which represent the input to subsequent layers of
StyleGAN generator. For transparency, we restrict our at-
tention to the l-th layer in the following description. For n
images, we have n style codes w1, . . . ,wn, in which wi is
the representation of xi in the l-th layer (we drop the index
of the layer for simplicity). Making use of conditional INF,
we find a disentangled representation of wi as

(ci, si) = F(wi|layer = l).

To force the structure on non-attribute variables, where im-
ages of the same person are represented by similar non-
attribute vectors, we apply the following contrastive loss:

Figure 3. Architecture of PluGeN4Faces. Given the representation
of the input image using a sequence of style codes, PluGeN4Faces
uses INF to model labeled attributes as individual latent dimen-
sions. The remaining characteristic of the image (including the
person’s identity) are modeled in separate dimensions using con-
trastive loss.

∑
i ̸=j

∥si − sj∥2 = 2n

n∑
i=1

∥si −m∥2, (2)

where the mean m = 1
n

∑n
i=1 si is used to reduce the

number of comparisons [27]. Minimization of (2) leads to
mapping the set of n input images to similar values of non-
attributes vectors. We apply this loss to images representing
the same person.

To sum up, the complete loss of PluGeN4Faces is given
by taking together the introduced contrastive loss (2) and
negative log-likelihood (1). For the first loss component, we
need a set of images representing the same person, while for
the second one, we use images with labeled attributes.

4. Experiments
Experimental setting We consider Flickr-Faces-HQ
dataset (FFHQ) containing 70 000 high-quality images of
resolution 1024 × 1024. The Microsoft Face API was
used to label 8 attributes in each image (gender, glasses,
hair/bald, facial hair/beard, expression/smile, age, pitch,
and yaw).

Additionally, to explicitly control the person’s identity
we use images retrieved from video clips. More precisely,
we use images from videos and celebrity interviews scraped
from YouTube with 573 videos, an average of 19.33 images
per video and 12 194 images in total. As in the case of
FFHQ dataset, attributes of every image are also labeled us-
ing Microsoft Face API.
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Single attribute manipulation Sequential edits of multiple attributes
input gender glasses hair beard smile input gender glasses hair beard smile

Figure 4. Single attribute manipulations (left) and sequential edits of multiple attributes (right).

To evaluate the proposed disentanglement model access
to an independent face attribute classifier is needed. For this
purpose, we train the ResNet-18 model [11] on the FFHQ
and 10 000 randomly generated StyleGAN face images.
The model is trained with 8 outputs in a multi-label man-
ner, treating the Microsoft Face API labels as targets. We
standardize the labels as well as apply the shrinkage loss
[21] as we find that it helps with dataset imbalance. We use
the same loss for binary and continuous labels as this works
equally well for classification [13]. Although not all of the
face attribute labels are binary, we call this model classifier
in the remainder of this paper to avoid any confusion with
the other models used in the experiments.

We use StyleGAN (version 2) as a backbone model,
which was trained on FFQH dataset. Real images are en-
coded to the extended latent space Wk

∗ of StyleGAN, where
k = 18, using the encoder network [30]. In consequence,
every image is represented using a sequence of style codes
{w1, . . . ,wk} ∈ Wk

∗ , where wi ∈ R512. The encoder
is trained on the combination of images from FFHQ and
movie datasets.

PluGeN4Faces is instantiated using conditional Real-
NVP flow model [6] that operates on the individual latent
codes wi ∈ R512 of StyleGAN. The condition is an identi-
fier i of the style code (being the input to the i-th StyleGAN
layer) represented as a one-hot vector.

As a baseline, we choose two state-of-the-art conditional
models, PluGeN and StyleFlow, which can be used with a
pre-trained StyleGAN. PluGeN uses NICE flow model to

transform individual style codes wi to disentangled space.
In other words, PluGeN uses a single shared NICE model
(with the same parameters) as a mapping between each style
code and the target disentangled space. StyleFlow is param-
eterized by the conditional continuous flow, where the con-
ditioning factor corresponds to the labeled attributes. Simi-
larly to PluGeN, StyleFlow uses a single flow, which is ap-
plied to various style codes.

Qualitative results In this section, we illustrate the sam-
ple results produced by the proposed model. First, we per-
form a single edit of binary attributes. Next, we consider
sequential edits, where subsequent modifications on binary
attributes are added one by one. In both cases, we perform
a minimal modification needed to change a decision of the
attribute classifier. More precisely, we perform a gradual
change of the attribute and inspect the reaction of the at-
tribute classifier on the modified attribute of the generated
image. If the classifier recognizes the attribute of the gen-
erated image with sufficient confidence, then we stop mod-
ification and return the generated image. By making use of
an independent classifier, we are guaranteed to obtain a fair
comparison regardless of the scale used by the models.

Figure 4 presents the results of single (left) and sequen-
tial edits (right). At first glance, all considered models give
visually appealing effects and perform successfully the re-
quested modifications. Observe however that PluGeN and
StyleFlow changed the ethnicity and age of the person in
the top left example when modifying the attribute ”hair”.
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Age

Yaw

Pitch

Figure 5. Interpolation on the extreme values of continuous attributes.

Such a behavior is not accepted and does not hold in the
case of PluGeN4Faces (see the 1st row of Figure 1, where
PluGeN4Faces added hair without changing the ethnicity).
It is impressive that all models were able to combine the
attribute ”beard” with a woman’s face in the bottom left ex-
ample. Nevertheless, the face produced by PluGeN4Faces
has more female features than the ones generated by Plu-
GeN and StyleFlow. Looking at sequential edits (right),
it is evident that PluGeN4Faces kept the color of clothes
and background unchanged, which is not the case of Plu-
GeN and StyleFlow. Moreover, the type of glasses is also
unaffected by attribute manipulations performed by Plu-
GeN4Faces. On the downside, it should be noted that all
models make the face slightly older when the attributes
”bald” or ”beard” are used.

We also illustrate the manipulations of continuous at-
tributes by showing the path between two extreme values
of a given attribute, see Figure 5. Although the requested

modifications have been successfully realized by the mod-
els, PluGeN4Faces was less invasive to the images. PluGeN
could not avoid adding glasses when changing the age (left);
it modified the gender of the child’s face when turning the
head left (middle right); it changed the color of clothes in
the bottom left example. StyleFlow modified the age of a
child when turning his head right (middle right) as well as
added male features to the face presented in the bottom right
example when the head was turned down. PluGeN4Faces
was free of the aforementioned drawbacks, which demon-
strates that it better disentangles the image space and is able
to preserve more of the original features during edits.

Identity preservation In this part, we support our sample
results with quantitative evaluation, which aims at verifying
how well PluGeN4Faces disentangles the image represen-
tation. To this end, we change a single attribute of a given
image and compare the resulting picture with the original
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Table 1. Identity disentanglement. For each image, we change of the values of attributes listed in rows and compare the relation between
original input image and the modified one in terms of 4 measures: (i–ii) MSE between image embedings taken from Face Recogiontion
and ArcFace models, (iii) PSNR and (iv) SSIM applied on raw images.

PluGeN4Faces (ours) PluGeN StyleFlow

FR ArcFace Raw Raw FR ArcFace Raw Raw FR ArcFace Raw Raw
MSE ↓ MSE ↓ PSNR ↑ SSIM ↑ MSE ↓ MSE ↓ PSNR ↑ SSIM ↑ MSE ↓ MSE ↓ PSNR ↑ SSIM ↑

male 0.20 0.25 30.34 0.84 0.20 0.26 29.96 0.83 0.25 0.35 26.97 0.75
female 0.22 0.28 29.58 0.84 0.24 0.31 26.49 0.80 0.27 0.38 26.91 0.74
glasses 0.40 0.65 20.97 0.65 0.42 0.64 19.62 0.64 0.36 0.53 22.20 0.66
no glasses 0.12 0.11 39.05 0.95 0.12 0.11 37.37 0.93 0.20 0.21 27.93 0.77
bald 0.14 0.18 29.50 0.82 0.22 0.27 24.32 0.74 0.21 0.28 27.45 0.72
hair 0.07 0.04 38.67 0.95 0.10 0.07 33.19 0.90 0.10 0.09 38.77 0.88
old 0.45 0.67 22.75 0.66 0.45 0.72 20.65 0.62 0.45 0.70 20.63 0.57
young 0.43 0.63 22.71 0.69 0.46 0.75 20.61 0.63 0.43 0.73 21.40 0.60
beard 0.29 0.35 23.54 0.75 0.33 0.47 21.25 0.67 0.21 0.23 31.18 0.80
no beard 0.10 0.07 39.58 0.94 0.11 0.09 35.11 0.91 0.15 0.15 32.10 0.83
smile 0.11 0.07 35.75 0.93 0.14 0.10 29.87 0.86 0.17 0.16 29.83 0.79
no smile 0.19 0.16 29.63 0.86 0.22 0.21 24.31 0.74 0.17 0.15 30.96 0.81
up 0.22 0.23 24.58 0.76 0.24 0.27 22.30 0.71 0.26 0.35 25.32 0.67
down 0.16 0.14 28.63 0.84 0.18 0.17 26.13 0.80 0.18 0.22 33.44 0.78
right 0.25 0.32 19.88 0.60 0.25 0.32 19.30 0.59 0.29 0.41 23.72 0.55
left 0.22 0.27 21.58 0.65 0.22 0.27 20.88 0.64 0.26 0.36 26.64 0.60

avg 0.22 0.28 28.54 0.79 0.24 0.31 25.71 0.75 0.25 0.33 27.84 0.72

Table 2. Attributes disentanglement measured by the accuracy
(higher is better). For each image, we change of the values of at-
tributes listed in rows and verify whether the remaining attributes
(listed in columns) stay unchanged. We report the percentage of
successes (accuracy). In the last column, we also report the accu-
racy of modifying the requested attribute (listed in rows).

gender glasses bald beard smile avg. acc. of
modif.

PluGeN4Faces (ours)

gender - 96.99 90.90 85.75 89.27 90.72 91.94
glasses 95.25 - 92.01 86.69 89.48 90.86 99.10
bald 94.79 97.17 - 86.98 90.23 92.29 96.19
beard 94.92 96.46 93.41 - 90.75 93.88 66.91
smile 95.84 96.13 93.41 86.86 - 93.06 98.14
avg. 92.16 90.46

PluGeN

gender - 97.70 90.69 85.81 89.87 91.02 84.28
glasses 93.28 - 92.57 86.77 89.68 90.58 99.41
bald 93.74 97.20 - 86.48 89.87 91.82 72.37
beard 86.82 97.14 93.03 - 90.34 91.83 75.93
smile 92.17 96.05 93.45 86.75 - 92.10 97.28
avg. 91.47 85.86

StyleFlow

gender - 95.38 90.46 85.65 90.23 90.43 90.52
glasses 94.48 - 92.82 87.09 90.42 91.20 98.70
bald 91.86 95.46 - 86.77 87.32 90.35 73.80
beard 83.47 95.80 92.59 - 89.70 90.39 77.65
smile 94.92 96.11 93.39 87.34 - 92.94 76.04
avg. 91.06 83.34

image (before modification). Again, for a fair comparison,
we employ a classifier and apply a minimal modification
which is accepted by the attribute classifier.

To compare the difference between images, we apply
two approaches. In the first one, we calculate the mean
square error (MSE) between embeddings of the original and
modified images taken from a pre-trained network. To this
end, we employ two networks applicable to processing face
images: ArcFace1 [5] and FR2. A model with a lower MSE
preserves more features (including identity) from the orig-
inal image. Second, to explicitly compare the difference
between images we also use the PSNR and SSIM measures
applied to raw images. Such measures suit perfectly to com-
pare the modification of low-level features such as the back-
ground.

Table 1 shows how the proposed measures react to
changing subsequent face attributes. Each row corresponds
to the requested value of the modified attribute. The re-
sults consistently confirm that PluGeN4Faces obtains sig-
nificantly better scores than PluGeN and StyleFlow in most
cases. One can observe that modifying the ”age” attribute
has a significant effect on the disentanglement measures,
which suggests that changing the age leads to changes in a
person’s identity. It is interesting that modifying gender in
face images has a moderate influence on face identification.
This could mean that both models successfully disentangled
this attribute from the remaining image information. The
smallest changes are observed for manipulating ”smile” and

1https://github.com/deepinsight/insightface
2https://github.com/ageitgey/face_recognition
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”hair” attributes.

Attributes disentanglement We also verify the disentan-
glement between labeled attributes in a strict quantitative
way. Namely, we force the change of a single attribute
and verify whether the values of other labeled attributes
changed as well. Ideally, the values of the remaining at-
tributes should stay intact.

For binary attributes (smile gender, glass, hair, and
beard), we apply a standard accuracy measure, which shows
whether the classifier keeps its original prediction on non-
modified attributes. Additionally, we employ a ranking
measure, which can be used for discrete as well as con-
tinuous attributes because classifier scores do not have to
be discretized in this case. In this approach, we rank input
(non-modified) images based on the scores returned by the
classifier on the attribute Ai. Next, we change the value
of the attribute B and again calculate the ranking using the
classifier scores based on the attribute Ai. We compare the
rankings before and after the change using the Rank Cor-
relation Coefficient (Spearman’s ρ), which gives a maximal
value of 1, for two identical rankings. Higher values indi-
cate better disentanglement. We repeat this experiment for
all attributes A1, . . . , Ak.

Table 2 shows that all models obtain the average accu-
racy on non-target attributes above 90% and around 80%
on the attributes being modified, which means that it is still
more difficult to perform the modification than to keep the
values of other features. Taking the average of accuracy
scores reveals that PluGeN4Faces outperforms PluGeN and
StyleFlow in both metrics. Looking at the ranking correla-
tion presented in Table 3, we observe that the advantage of
PluGeN4Faces over PluGeN and StyleFlow is even higher.
It gives higher scores in 41 out of 56 cases.

The lowest correlation scores were obtained when we
modified the age attribute (which aligns with the conclusion
of the previous experiment). It was almost impossible to
keep the ranking on the glasses attribute, which might be ex-
plained by the fact that the training does not contain young
people wearing glasses. Previous sample results presented
in Figure 5 also showed that increasing the age attribute ac-
cidentally leads to adding glasses. Analogical negative be-
havior occurs in the case of beard and hair attributes, which
are highly correlated with age. This analysis shows that it is
very difficult to overcome the bias introduced in a training
set and provide high-quality disentanglement between some
face attributes.

5. Conclusion
We introduced PluGeN4Faces for disentangling face at-

tributes from the person’s identity. The proposed model
works as a plugin to the pre-trained StyleGAN model,
which makes it extremely easy to use in practice. Our

Table 3. Attributes disentanglement measured by the ranking cor-
relation (higher is better). For each image, we change the values
of attributes listed in rows and verify whether the ranking of the
remaining attributes (listed in columns) given by the classifier out-
puts stay unchanged. We report the correlation between rankings
before and after the change.

gender glasses bald beard smile age pitch yaw

PluGeN4Faces (ours)

gender - 87.01 90.91 78.83 95.17 96.53 98.92 99.79
glasses 93.65 - 91.51 96.15 95.20 95.83 98.31 99.79
bald 93.98 89.18 - 96.17 96.87 98.68 99.05 99.75
beard 90.81 86.97 91.49 - 94.48 96.58 98.54 99.71
smile 95.50 88.61 95.53 96.86 - 98.38 98.96 99.74
age 86.02 39.34 83.36 87.94 89.28 - 95.50 99.58
pitch 95.57 89.25 94.45 96.94 96.25 98.93 - 99.82
yaw 91.41 83.49 90.59 93.66 93.35 96.96 97.60 -

avg 92.42 80.55 91.12 92.36 94.37 97.41 98.12 99.74

PluGeN

gender - 86.86 89.73 79.93 95.56 96.84 98.53 99.65
glasses 92.52 - 91.14 95.44 94.09 96.00 97.74 99.64
bald 92.95 87.07 - 95.14 95.33 98.11 98.73 99.60
beard 85.43 85.65 88.66 - 93.41 97.21 98.57 99.47
smile 90.66 85.87 94.02 93.73 - 98.19 98.51 99.59
age 80.06 38.11 76.66 79.38 89.00 - 96.13 99.44
pitch 94.47 85.30 94.02 96.41 95.84 98.62 - 99.74
yaw 92.42 84.31 92.48 95.18 94.62 98.32 98.01 -

avg 89.78 79.02 89.53 90.74 93.97 97.61 98.03 99.59

StyleFlow

gender - 80.42 87.13 65.90 94.37 95.64 97.76 99.42
glasses 91.11 - 90.69 93.99 93.48 95.03 97.65 99.46
bald 89.72 83.20 - 93.86 92.88 97.28 97.97 99.03
beard 80.51 84.55 89.33 - 93.80 95.89 97.84 99.08
smile 92.84 86.65 92.73 95.57 - 97.81 98.30 99.62
age 82.13 34.16 75.60 80.92 88.34 - 93.24 98.74
pitch 90.44 82.07 91.69 94.46 94.15 97.76 - 99.51
yaw 87.72 78.93 86.40 92.49 91.91 95.45 95.53 -

avg 87.78 75.71 87.65 88.17 92.70 96.41 96.90 99.26

key idea relies on By applying contrastive learning on im-
ages retrieved from movie frames that contain information
about a person’s identity. Our experiments demonstrate that
PluGeN4Faces is focused on manipulating the requested
attributes and is less invasive to the remaining image at-
tributes than the existing methods.
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