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Abstract
In this work, we investigate exemplar-free class incre-

mental learning (CIL) with knowledge distillation (KD) as
a regularization strategy, aiming to prevent forgetting. KD-
based methods are successfully used in CIL, but they often
struggle to regularize the model without access to exem-
plars of the training data from previous tasks. Our analysis
reveals that this issue originates from substantial represen-
tation shifts in the teacher network when dealing with out-
of-distribution data. This causes large errors in the KD loss
component, leading to performance degradation in CIL mod-
els. Inspired by recent test-time adaptation methods, we in-
troduce Teacher Adaptation (TA), a method that concurrently
updates the teacher and the main models during incremental
training. Our method seamlessly integrates with KD-based
CIL approaches and allows for consistent enhancement of
their performance across multiple exemplar-free CIL bench-
marks. The source code for our method is available at
https://github.com/fszatkowski/cl-teacher-adaptation.

1. Introduction
Continual learning aims to create machine learning mod-

els capable of acquiring new knowledge and adapting to
evolving data distributions over time. One of the most chal-
lenging continual learning scenarios is class incremental
learning (CIL) [32,50], where the model is trained to classify
objects incrementally from the sequence of tasks, without
forgetting the previously learned ones.

A simple and effective method of reducing forgetting is
by leveraging exemplars [6, 21, 37, 41] of previously encoun-
tered training examples, e.g. by replaying them or using
them for regularization. However, this approach presents
challenges, particularly in terms of high storage needs and
privacy concerns. These problems can affect edge devices,
due to their limited storage capacity, and medical data, given
their sensitive nature.

A common approach for exemplar-free CIL is knowledge
distillation (KD), where the current model (student) is trained
on the new data with a regularization term that minimizes the
output difference with the previous model (teacher), which
is kept frozen. This approach was introduced by LwF [29]
and has been extended by many other methods. However,
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Figure 1. Enhancement of vanilla Knowledge Distillation approach
used in Continual Learning with our method of Teacher Adaptation.
When training the student model on the new task, we allow the
teacher model to continuously update its batch normalization statis-
tics, which reduces the divergence between the representations in
both models. Our method leads to lower knowledge distillation
loss and an overall more stable model.

most of these methods use exemplars, such as iCaRL [41],
EEIL [8], LUCIR [18], PodNET [14], SSIL [2], or rely on
external datasets [28, 61].

Exemplar-free CIL still remains challenging [47] for KD
methods due to the possibility of significant distribution drift
in subsequent tasks. Such drift leads to large errors during
training with KD loss, causing more undesired changes in
the main model and harming the overall performance of
the CIL training. This raises the question: Can we adjust
the teacher model to better transfer knowledge from earlier
tasks?

Motivated by the recent domain adaptation methods [45,
52], we examine the role of batch normalization statistics in
CIL training. We conjecture that in standard KD methods,
the KD loss between models with different normalization
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Figure 2. Applying our teacher adaptation (TA) method reduces knowledge distillation (KD) loss and improves stability throughout continual
learning. (left) KD loss and cross-entropy (CE) loss of training the model with and without TA. Our method leads to more consistent
representation, as visualized by the CKA [24] between the representations of the new data obtained in the teacher and student models while
learning the second task (middle). KD with TA leads to better task-agnostic accuracy (right). We conduct the experiments on CIFAR100
split into 10 tasks.

statistics may introduce unwanted model updates due to
the data distribution shifts. To avoid this, we propose to
continuously adapt them to the new data for the teacher
model while training the student.

We show that adapting the teacher’s batch normalization
statistics to the new task can significantly lower KD loss
without affecting the CE loss, which reduces changes in
the model’s representations (Figure 2). We note that, while
the idea of changing the teacher model was explored in the
standard KD settings [30, 64], our approach is the first ap-
plication of this idea to CIL scenario, where the teacher
and the model are trained on non-overlapping data. More-
over, our method works differently by exploiting the batch
normalization statistics. We apply our method on top of
different distillation strategies in CIL and show consistent
improvements across various settings.

In summary, we make the following contributions:

1. We revisit the KD-based class-incremental learning
(CIL) framework and study the negative impact of regu-
larization using out-of-distribution data. We are the first
to highlight the need for adjusting the teacher model
in an exemplar-free situation, where it is usually kept
frozen.

2. We propose a simple yet highly effective technique
called Teacher Adaptation (TA), that enhances KD for
exemplar-free CIL.

3. Through extensive experiments, we demonstrate that
TA can be seamlessly integrated with various KD ap-
proaches, leading to significant improvements over the
baselines across a wide range of continual learning
scenarios for various datasets. We show that those im-
provements hold even when using pretrained models
or in the presence of substantial distributional shifts
between consecutive domains.

2. Related works

Class Incremental Learning (CIL) [32, 50] is a subfield
of continual learning, where the aim is to learn incrementally
from a stream of tasks, without the task identifier. There
exist several families of approaches to CIL:

Memory-based methods store either exemplars or features
from the previous tasks in the buffer [6, 21, 37, 41] and use
them during training the new task to consolidate previously
learned knowledge. Those methods usually perform well,
but their practical applications are limited due to privacy
concerns and memory requirements that arise when storing
the data. Architectural approaches focus on modifying the
structure of the model, often by allocating certain parameters
to corresponding tasks [53,54]. Finally, regularization-based
methods aim to preserve the knowledge in the network by
imposing constraints on the changes in model weights [23]
or activations during learning the new task [29]. Many CIL
methods often also combine the above approaches [8,42,55],
for instance using both memory and regularizaion [2, 29, 41].

Regularization methods for continual learning offer a
way to prevent forgetting with constant memory usage and
no privacy issues. There are two main types of regulariza-
tion methods: (i) parameter regularization and (ii) functional
regularization. The first type of methods regularizes the
model weights, for example using the Fisher Information Ma-
trix [23], synaptic saliency [59] or the gradient inspection [3].
On the other hand, functional regularization methods em-
ploy knowledge distillation (KD) techniques to regularize
model activations. KD was originally proposed by Hinton et
al. [17] to transfer the knowledge from a larger model to a
smaller one. In CL, KD was first applied in Learning without
Forgetting (LwF) [29], where the model is discouraged from
drifting too far from the model from previous tasks. We
describe KD methods in detail in Section 3.1.

Functional regularization has been widely used in
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CL since the introduction of LwF [18, 37, 40, 41] and nu-
merous variants of KD have been proposed. Particularly,
SSIL [2] uses task-wise knowledge distillation, while POD-
NET [14] regularizes using spatial-based distillation loss
applied throughout the model.

Multi-level knowledge distillation [13] uses the current
model to distill the knowledge from pruned snapshots of
all previous models, while ANCL [22] distills simultane-
ously from the previous task model and the model learned
specifically for the new task. Moreover, DMC [60] uses
knowledge distillation on an auxiliary dataset to consolidate
the knowledge from previous tasks.

However, most of those methods use a memory buffer
and their performance depends on it heavily, which makes
them impractical for exemplar-free settings. Recently, sev-
eral works explored the idea of modifying the teacher model
through meta-learning for better knowledge transfer in stan-
dard KD setting [30, 64]. Similarly, works on KD [16] sug-
gest that updating the normalization statistics of the teacher
model on the data used to train the student improves the
performance. However, to our knowledge, our method is
the first one that explores different approaches to teacher
adaptation, such as updating the normalization statistics, in
the context of CIL.

Batch Normalization (BN) [20] is widely used in deep
learning models, but can be problematic for settings where
the data distribution changes over time. Alternative ap-
proaches such as LayerNorm [5] or GroupNorm [57] do
not rely on the batch-wise statistics, but directly replacing
BN layers with them was shown to often decrease the perfor-
mance of the models. Several domain adaptation methods
achieve domain transfer through the use of normalization
statistics [45, 52]. Recent work on efficient finetuning of
large language models using only normalization layers [38]
also suggests that the normalization layers play a crucial role
in training deep neural networks. In CL, it was shown that
BN can cause a discrepancy between the training and testing
phases of BN, as the testing data is normalized using the
statistics biased towards the current task, which results in
higher forgetting of older tasks [44]. Several works have
attempted to address this issue by CL-specific modifications
to BN [9, 36]. However, those approaches are not suited for
exemplar-free settings.

3. Method
In class-incremental learning setup, the model learns tasks

sequentially. Each task contains several classes which are
disjoint with the classes in other tasks. During training task
t, we only have access to the data Dt from task t which
contains images xi ∈ Xt with class labels yi ∈ Ct. Thus
an incremental learning problem T with n tasks can be
formulated as: T =

{
D1, D2, ..., Dt, ..., Dn

}
, where after

training n tasks we evaluate the model on all classes C1 ∪

. . . ∪ Cn, without knowing the task label at inference time
(this is different than task-incremental learning, where task
id can be used).

Below, we first introduce standard KD-based methods for
exemplar-free CIL. Then we outline a problem of diverg-
ing batch normalization statistics between the teacher and
student model caused by the shifts in training data between
subsequent tasks. Finally, we propose to address this issue
with a method that we call Teacher Adaptation - a simple, yet
effective solution that allows the teacher model to continu-
ously update its normalization statistics alongside the student
when training on the new data. The method in comparison
to standard LwF is presented in Figure 1.

3.1. Knowledge Distillation in Continual Learning

Knowledge distillation is one of the most popular tech-
niques employed to reduce forgetting between subsequent
tasks in incremental learning. Continual learning methods
that use knowledge distillation save the model Θt (teacher)
trained after each task t and use it during learning the model
Θt+1 (student) on new task t+ 1. The learning objective for
task t+ 1 then becomes:

L = LCE + λLKD, (1)

where LCE is the cross-entropy loss for classification on
new data, LKD is the knowledge distillation loss computed
using Θt and Θt+1, and λ is the coefficient that controls
the trade-off between stability and plasticity. The general
formula for knowledge distillation loss can include either
output from the final layer of the model [2, 29, 41], or also
representations from intermediate model layers [12, 14]. In
practice, most exemplar-free methods that use knowledge
distillation compute knowledge distillation loss using only
the final layer outputs, and various methods that use in-
termediate representations usually only perform well with
exemplars [47].

Multiple variants of knowledge distillation loss were pro-
posed for continual learning. In exemplar-free CIL, KD loss
is usually computed with the logits yo, ŷo returned by the
current and previous models respectively. Following Li et
al. [29], we denote that the loss uses logits corresponding to
previously seen classes with a subscript o. Ahn et al. [2] clas-
sify KD methods into general KD (GKD), which aggregates
together logits belonging to the classes from all the previous
tasks, and task-wise KD (TKD), which treats classes within
each task separately.

GKD loss appears in several works [28,56,62] and usually
uses cross-entropy:

LGKD(yo, ŷo) = −
|Ct|∑
i=1

p(i)o log p̂(i)o , (2)
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where p
(i)
o is the probability of the i-th class and |Ct| is the

number of classes learned by previous model Θt. Probabili-
ties p(i)o , p̂(i)o are computed with temperature parameter T as
follows:

p(i)o =
eyo/T∑
j e

yo/T
, p̂o

(i) =
eŷo/T∑
j e

ŷo/T
(3)

Comparatively, TKD loss, which was also used in several
works [2, 8, 29], sums of the separately computed losses for
each task:

LTKD(yo, ŷo) =

t∑
i=1

DKL(p
(i)
o log p̂(i)o ), (4)

where DKL is Kullback–Leibler divergence and p
(i)
o , p̂(i)o

are computed task-wise across the classes that belong to task
i as in Equation (3).

Rebuffi et al. [41] proposed another distinct variant of
KD for multi-class incremental learning, where the loss is
computed element-wise for each class (MKD):

LMKD (yo, ŷo) = −
|Ct|∑
i=1

σ(yio) log σ(ŷ
i
o), (5)

where σ is a sigmoid function.
Additionally, a more recent KD-based method, Auxiliary

Network Continual Learning (ANCL) [22], explores the idea
of multi-teacher KD for continual learning. ANCL trains
an auxiliary network trained only for the current task and
combines standard GKD loss with the KD loss computed
between outputs for the current task and outputs of this
auxiliary network.

In this work, we investigate the aforementioned KD tech-
niques (GKD, MKD, TKD, ANCL).

3.2. Teacher Adaptation

Most models used in class incremental learning for vision
tasks are convolutional neural networks such as ResNet [15].
Those models typically use batch normalization layers and
keep the parameters and statistics of those layers in the
teacher model Θt fixed during learning Θt+1. However,
with the changing distribution of the data in the new task,
batch normalization statistics in the student and teacher mod-
els quickly diverge, which leads to higher KD loss. Gradient
updates in this case not only regularize the model towards the
stable performance on previous tasks but also compensate
for the changes in normalization statistics, which needlessly
overwrites the knowledge stored in the model and harms the
learning process.

Inspired by test-time adaptation methods [52], we propose
to reduce this negative interference with a simple method
that we label Teacher Adaptation (TA). Our method updates

batch normalization statistics of both models simultaneously
on new data while learning the new task. As shown in
Figure 2, it allows for significantly reduced KD loss over
learning from sequential tasks in CIL, which improves the
overall model stability. We provide additional analysis on
why TA improves learning with KD in Section 4.4 and in the
Appendix.

4. Experiments

4.1. Experimental setup

We conduct experiments on common continual learning
benchmarks, such as CIFAR100 [26], TinyImageNet200 [1]
and ImageNet-Subset [11]. We measure models’ adaptabil-
ity to large shifts in data distributions on DomainNet [35]
dataset. Additionally, following FACIL [32] we construct
fine-grained classification benchmark using Oxford Flow-
ers [34], MIT Indoor Scenes [39], CUB-200-2011 Birds [51],
Stanford Cars [25], FGVC Aircraft [31], and Stanford Ac-
tions [58]. Finally, we also introduce a corrupted CIFAR100
setting where data in every other task contains noise of vary-
ing severity, which allows us to measure the impact of TA
under varying and controllable degrees of data shift.

We create CIL scenarios by splitting the classes in each
dataset into disjoint tasks. We experiment with two partic-
ular types of settings: the first type of setting is built by
splitting the classes in the dataset into tasks containing an
equal number of classes, while the other simulates pretain-
ing the network and uses half of the classes as a larger first
task, with subsequent tasks composed of the evenly split
remaining classes.

For all experiments, we use FACIL framework provided
by Masana et al. [32]. For experiments on CIFAR100,
we keep the class order from iCaRL [41] and we use
ResNet32 [15]. For TinyImageNet, following [22], we
rescale images to 32x32 pixels and also use ResNet32. For
the other datasets, we use ResNet18 [15]. We always use
the same hyperparameters for all variants within the single
KD method unless stated otherwise, we report the results
averaged over three runs with different random seeds.

In every setup, we train the network on each new task
for 200 epochs with batch size 128. We use SGD optimizer
without momentum or weight decay, with a learning rate
scheduler proposed by Zhou et al. [63], where the initial
learning rate of 0.1 is decreased 10x after 60th, 120th and
160th epoch. For experiments conducted on CIFAR100 and
TinyImageNet200 in Table 1 we also employ a warmup
phase [27] for the new classification head. In the Appendix,
we provide the ablation study of the warmup with different
benchmarks, alongside the details of its implementation and
discussion on the method. Additionally, we provide the
evaluation of our method with different model architectures
and batch sizes.

1980



Equal split of classes Start from half of the classes

10 tasks 20 tasks 11 tasks 26 tasks

AccInc ↑ ForgInc ↓ AccInc ↑ ForgInc ↓ AccInc ↑ ForgInc ↓ AccInc ↑ ForgInc ↓

a)
C

IF
A

R
10

0

GKD 42.52±0.76 22.26±0.31 31.89±0.45 34.68±1.87 41.69±1.18 18.09±0.88 17.64±0.93 9.67±0.26
+ours 45.25±1.02 19.87±0.34 37.11±0.64 24.87±1.04 46.27±1.09 13.98±0.98 26.15±0.94 8.73±0.85

MKD 39.36±0.70 42.74±0.52 32.89±0.42 32.01±1.36 41.04±0.93 15.37±0.33 19.14±1.36 8.76±0.35
+ours 44.85±0.80 30.08±0.57 36.79±0.70 21.84±0.33 44.19±1.17 12.56±0.53 26.10±0.75 9.17±0.20

TKD 43.74±0.84 23.65±0.79 34.58±0.34 21.13±1.17 40.44±1.40 12.20±0.46 14.64±0.33 6.02±0.54
+ours 46.21±0.86 20.45±0.57 36.26±0.71 17.01±0.89 44.22±1.08 11.79±0.57 22.00±0.97 9.36±0.68

ANCL 43.15±0.49 32.78±1.52 34.32±0.41 36.74±1.38 45.16±0.32 20.21±0.30 21.84±1.33 11.79±0.51
+ours 46.73±0.20 26.86±1.17 38.48±0.94 27.99±1.20 48.25±0.33 16.11±0.19 29.67±1.13 10.98±0.56

b)
Ti

ny
Im

ag
eN

et
20

0 GKD 32.12±0.57 21.21±1.31 25.75±0.65 27.55±1.81 34.32±1.96 11.41±2.80 23.30±1.59 12.63±2.21
+ours 33.90±0.78 17.70±1.48 27.85±0.90 21.65±1.43 37.50±1.84 10.14±1.10 28.82±1.95 11.44±0.61

MKD 31.04±1.00 16.90±0.75 25.22±0.88 25.80±2.46 33.75±2.11 10.30±1.63 23.42±1.95 10.41±1.97
+ours 32.22±0.95 11.94±1.07 27.39±1.33 16.74±1.52 32.99±1.98 6.42±0.80 25.75±1.74 8.35±0.82

TKD 33.15±0.45 21.05±0.39 27.29±0.76 23.20±2.46 37.31±1.36 11.83±1.31 23.94±2.14 10.20±1.09
+ours 34.58±0.96 17.27±0.54 28.71±1.06 17.37±1.78 38.41±1.52 9.16±0.62 28.10±1.97 9.56±0.65

ANCL 32.84±0.78 27.24±1.47 26.98±0.60 32.45±1.18 37.74±0.60 17.28±2.59 27.95±1.98 20.91±0.92
+ours 34.59±0.75 23.64±0.76 29.18±0.71 26.50±1.34 40.10±1.39 15.12±1.01 32.60±1.45 17.94±0.39

c)
Im

ag
eN

et
10

0

GKD 54.62±0.52 25.95±0.11 42.82±0.58 35.39±0.88 57.94±0.90 14.47±0.83 21.91±0.06 9.29±0.69
+ours 55.82±0.61 20.52±0.24 45.88±0.79 23.25±0.62 57.18±0.45 17.24±0.39 22.31±0.64 11.28±0.98

MKD 54.01±0.01 28.19±0.61 43.39±0.66 34.25±0.81 56.18±0.90 14.94±0.17 26.07±0.29 16.00±0.06
+ours 56.02±0.20 18.60±0.76 46.18±0.54 19.14±0.79 52.05±0.24 14.23±0.46 22.25±0.13 11.94±1.23

TKD 55.70±0.49 23.55±0.35 44.75±0.28 32.16±0.14 54.72±0.86 10.16±0.34 19.32±0.23 9.67±0.61
+ours 56.23±0.70 18.09±0.26 46.45±0.42 19.55±0.30 53.85±0.39 13.15±0.16 22.55±0.83 9.96±0.28

ANCL 55.81±0.41 27.13±0.50 44.94±0.63 34.24±1.14 60.97±0.62 15.72±0.14 29.19±0.76 16.12±0.27
+ours 57.41±0.22 21.54±0.50 47.49±0.35 22.61±0.40 59.22±0.26 17.34±0.53 29.64±0.50 14.67±0.84

Table 1. Standard Knowledge Distillation (KD) techniques with and without our Teacher Adaptation (TA) method on different splits of
a) CIFAR100, b) TinyImageNet200 and c) ImageNet100. TA is generally beneficial to the CIL process, and the improvements occur most
consistently in scenarios with a long sequence of equally sized tasks, where the initial model learns a weaker feature extractor.

Evaluation metrics. The average incremental accuracy at
task k is defined as Ak=

1
k

∑k
j=1 ak,j , where ak,j ∈ [0, 1]

be the accuracy of the j-th task (j ≤ k) after training the
network sequentially for k tasks [4]. Overall average incre-
mental accuracy AccInc is the mean value from all tasks.
We also report average forgetting as defined in [10], while
the ForgInc is similarly the mean value from all tasks. We
provide results with additional metrics such as final accuracy
AccFinal and final forgetting ForgFinal in the Appendix.

4.2. Standard CIL benchmarks

We evaluate knowledge distillation approaches described
in Section 3.1 on the standard CIL benchmarks CIFAR100,
TinyImageNet200 and ImageNet100, using different class
splits. We present the results in Table 1 a), b) and c) respec-
tively. We also provide results for more settings and ablation

study of our method on those datasets in the Appendix.

In most settings, we observe that our method improves
upon the baseline knowledge distillation. We notice that
the improvement TA is generally more significant in settings
with a larger number of tasks and an equal split of the classes.
In settings with half the classes presented in the first task,
the gains from TA are sometimes not that visible, as in this
case the initial model already learns a good feature extractor,
and the distribution of its normalization statistics after the
first task is a better approximation of the statistics for the
whole dataset. TA sometimes underperforms with MKD,
which might be caused by the fact that the loss formula of
MKD uses sigmoid function, and the differences between
the probabilities for KD loss are insignificant if the values of
logits are not small and centered around zero, which is not
guaranteed without imposing additional learning constraints.
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6 tasks, 20 classes each 12 tasks, 10 classes each 24 tasks, 5 classes each

AccInc ↑ ForgInc ↓ AccInc ↑ ForgInc ↓ AccInc ↑ ForgInc ↓

GKD 56.03±3.75 30.23±0.72 44.03±1.53 42.70±2.32 30.14±4.00 51.95±2.28
+ours 57.24±1.79 33.12±1.76 50.80±1.27 37.58±3.01 42.86±1.82 39.01±1.55

MKD 60.12±1.59 26.42±1.60 45.19±2.91 43.81±1.56 32.61±0.55 55.91±1.77
+ours 55.77±2.23 31.43±2.28 51.16±1.84 34.89±2.60 45.49±1.82 34.48±0.89

TKD 56.69±3.36 33.86±1.36 46.28±1.42 43.38±0.82 32.17±2.71 51.72±1.95
+ours 57.99±1.88 33.79±1.80 51.66±1.63 35.43±2.75 43.95±2.60 33.28±1.86

Table 2. Average task-agnostic accuracy and forgetting for KD-based CL methods on fine-grained classification datasets.

6 tasks 6 tasks, pretrained 12 tasks 12 tasks, pretrained

AccInc ↑ ForgInc ↓ AccInc ↑ ForgInc ↓ AccInc ↑ ForgInc ↓ AccInc ↑ ForgInc ↓

GKD 18.63±0.27 23.27±0.26 43.27±0.10 36.83±0.88 14.45±0.25 29.04±0.37 35.98±0.96 43.00±1.66
+ours 19.55±0.42 27.22±0.21 43.52±0.17 34.98±0.19 16.25±0.46 33.03±0.19 38.89±0.52 41.10±0.42

TKD 19.12±0.26 26.66±0.38 42.42±0.10 40.83±1.11 16.31±0.55 37.32±0.87 38.15±0.22 42.28±0.50
+ours 19.57±0.10 29.96±0.05 42.75±0.14 41.79±0.65 16.74±0.55 33.32±0.47 39.06±0.33 40.19±0.85

MKD 18.74±0.52 19.10±0.40 45.70±0.30 27.48±0.60 13.45±0.53 27.23±0.98 39.14±0.21 36.53±1.00
+ours 18.04±0.16 22.70±0.25 42.91±0.04 29.43±0.04 15.30±0.35 28.71±0.26 37.84±0.35 34.09±0.39

ANCL 19.58±0.46 25.63±0.20 42.90±0.84 37.28±1.86 14.82±0.41 33.46±0.40 33.34±0.55 49.05±0.65
+ours 20.34±0.40 30.73±0.44 42.67±0.51 38.56±1.24 17.19±0.06 37.40±0.38 35.81±0.18 43.84±0.23

Table 3. Average task-agnostic accuracy and forgetting for KD and TA under significant semantic drift on DomainNet. We test scenarios
with 6 tasks of 50 classes and 12 tasks of 25 classes, both when training from scratch and starting from pretrained model. Aside from MKD,
TA generally leads to better results.

4.3. TA under severe distribution shifts

Motivated by the continual learning settings in which the
data distribution changes significantly across the tasks, we
conduct a series of experiments to empirically verify the
benefits of our method.

4.3.1 Fine-grained classification datasets

We evaluate TA on fine-grained classification tasks using
six datasets: Stanford Actions, FGVC Aircraft, Stanford
Cars, CUB-200-2011 Birds, MIT Indoor Scenes and Oxford
Flowers. We create CIL tasks by randomly sampling a subset
of classes from each dataset, in the above-mentioned order.
We sample the classes without replacement, and to obtain
the settings with 12 or 24 tasks we repeat the procedure. For
this set of experiments, we start from ResNet18 checkpoint
pretrained on ImageNet.

We conduct experiments using splits of 24 tasks with 5
classes each, 12 tasks with 10 classes each, and 6 tasks with
20 classes each. We show the results in Table 2. Consistently
with the results from Section 4.2, our method generally im-
proves upon the base KD, with the improvements being more
visible on the longer tasks.

We omit ANCL method from our analysis, as we were
unable to obtain sufficiently good results with its official
implementation. We provide the results of additional experi-
ments conducted with reverse order of datasets and with the
full datasets used as a single task in the Appendix.

4.3.2 Large domain shifts with DomainNet

To verify the effectiveness of teacher adaptation for continual
learners under significant data distribution shifts, we use Do-
mainNet [35] as our evaluation dataset. DomainNet consists
of images from 6 domains and 345 classes. We select the
first 50 classes and create each task from a different domain,
resulting in more severe data drift between tasks in CIL.
This allows us to measure how well the models can adapt to
new data distributions. We use ResNet18 and compare two
settings: training from scratch and from starting from the
model pretrained on ImageNet. Table 3 shows the results
of our experiments. Consistently with the results from previ-
ous Sections, we find that, aside from MKD, TA generally
performs better than the baselines, and the differences are
more visible when training on 12 tasks, where the model is
exposed to more changes in the data distribution.
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Figure 3. Average incremental accuracy for standard KD and our method of TA under varying strength of data shift on splits of CIFAR100.
As the noise strengthens, the gap between TA and standard KD widens, indicating that our method leads to more robust learning in case of
data shifts. We obtain data shifts by adding noise of varying strength to every other task, using the Gaussian noise and noise severity scale
proposed by Michaelis et al. [33].

4.3.3 Varying the strength of the distribution shift

We create CIL settings with controllable levels of data distri-
bution shift between subsequent tasks by corrupting every
other task. We split CIFAR100 into 5, 10, and 20 tasks of
equal size and add Gaussian noise to every other task, so
that in subsequent tasks the data distribution changes from
clean to noisy or vice versa. We obtain varying strength of
distribution shift by using different levels of noise severity,
following the methodology of Michaelis et al. [33].

We show the results of this experiment in Figure 3. We
see that as the noise severity increases, the gap between
standard KD and TA widens, indicating that our method is
better suited to more challenging scenarios of learning under
extreme data distribution shifts.

4.4. Detailed analysis

4.4.1 Alternatives to batch normalization

We conduct a series of ablation experiments on CIFAR100
split into 10 tasks to justify the validity of our method over
other potential solutions for adaptation of batch normaliza-
tion layers. The results of those experiments are shown
in Table 4. We compare the following settings: 1) standard
training with batch normalization statistics from the previous
task fixed in the teacher model, but updated in the student
model, 2) batch normalization layers removed, 3) batch nor-
malization statistics fixed in both models after learning the
first task, 4) batch normalization layers replaced with Lay-
erNorm [5] or 5) GroupNorm [57] layers, and finally 6) our
solution of Teacher Adaptation.

Fixing or removing BatchNorms leads to unstable train-
ing. This can be partially fixed by setting a high gradient
clipping value or lowering the lambda parameter, but both so-
lutions lead to much worse network performance. Different
normalization layers enable stable training, but ultimately
converge to much worse solutions than the network with
BatchNorm. Our solution is the only one that improves over

clip = 100 λ = 5 λ = 10

AccFinal ↑ AccInc ↑ AccFinal ↑ AccInc ↑
1) GKD 25.47±0.57 41.59±0.32 27.96±0.34 42.28±0.67
2) -BN 0.33±1.15 2.01±2.67 0.33±1.15 2.85±3.81
3) fix BN - - - -
4) -BN +LN 21.94±0.95 34.7±0.48 22.76±1.05 34.48±0.15
5) -BN +GN 21.92±0.46 32.15±0.16 22.01±0.82 31.71±0.35
6) +TA 31.39±0.17 44.98±0.38 31.85±0.10 44.06±0.69

clip = 1 λ = 5 λ = 10

AccFinal ↑ AccInc ↑ AccFinal ↑ AccInc ↑
1) GKD 20.80±0.56 34.28±0.24 27.96±0.34 42.28±0.67
2) -BN 19.47±0.18 29.83±0.53 0.33±1.15 2.85±3.81
3) fix BN 20.21±0.31 32.07±0.20 - -
4) -BN +LN 18.49±1.41 30.39±0.72 22.76±1.05 34.48±0.15
5) -BN +GN 16.17±0.89 32.15±0.16 15.73±1.01 25.07±1.10
6) +TA 24.19±0.90 36.13±0.24 31.85±0.10 44.06±0.69

Table 4. Results for different solutions to the problem of diverging
batch normalization layers when using knowledge distillation in
continual learning. We use GKD with different λ and gradient
clipping values. We compare the baseline with variants without
batch normalization layers, with batch normalization statistics fixed
after the first task and with batch normalization layers replaced
with LayerNorm or GroupNorm. "-" indicates that training crashes
due to instability. TA is the only solution that improves upon the
baseline.

different values of λ and does not require controlling the
gradients by clipping the high values.

4.4.2 Alternative methods of teacher adaptation.

We study alternative methods of adapting the teacher model
and try pretraining (P ) or continuously training (CT ) the
teacher model. For pertaining, we train the teacher on the
new data in isolation for a few epochs before the training of
the main model. During continuous training, we update the
teacher alongside the main model using the same batches
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of new data. With both approaches, we set a lower learn-
ing rate for the teacher. We conduct those experiments by
training either the full teacher model (FM ) or only its batch
normalization layers (BN ). Finally, to isolate the impact of
changing batch normalization statistics and training model
parameters, we repeat all the experiments with fixed batch
normalization statistics (fix BN ).

We conduct our experiment on CIFAR100 split into 10
tasks and present the results in Table 5. Alternative so-
lutions perform within the standard deviation of TA with
tuned hyperparameters, but the values of the hyperparame-
ters for those models (described in the Appendix) are also
very small, indicating that the teacher model doesn’t change
much. Upon closer study, we find that it’s mostly batch
normalization statistics that change throughout the training.
Therefore, knowing that other successful methods from test-
time adaptation [52] use a similar approach, we continue
with Teacher Adaptation based on batch normalization lay-
ers, as it does not require any hyperparameter tuning or
additional pretraining epochs.

Method AccFinal ↑ AccInc ↑ ForgFinal ↓ ForgInc ↓

Base 27.53±0.15 42.22±0.38 31.28±1.64 23.11±1.58

P-FM 31.54±0.67 43.46±0.72 24.18±1.17 20.80±1.51
+fix BN 28.02±0.60 42.33±0.53 29.91±1.27 22.66±0.95

P-BN 31.16±0.54 43.64±0.77 24.44±0.96 20.13±0.75
+fix BN 27.62±0.48 42.12±0.38 29.95±1.64 22.50±0.95

CT-FM 31.37±0.94 43.38±0.77 24.34±1.37 20.93±1.58
+fix BN 28.17±0.49 42.29±0.42 29.79±1.02 22.55±0.67

CT-BN 31.35±0.63 43.69±0.76 24.29±0.61 20.23±0.59
+fix BN 27.33±0.50 42.09±0.45 30.20±1.73 22.50±0.85

TA 32.15±0.12 44.31±0.26 23.55±0.51 19.85±0.93

Table 5. Ablation study of different ways to adapt the teacher model.
Our method achieves the best results while requiring no additional
hyperparameters. We try teacher adaptation during pretraining (P)
and continuous training (CT). We train either full model (FM) or
only batch normalization layers (BN). fix BN indicates fixed BN
statistics.

5. Conclusions
We propose Teacher Adaptation, a simple yet ef-

fective method to improve the performance of knowl-
edge distillation-based methods in exemplar-free class-
incremental learning. Our method continuously updates the
teacher network by adjusting batch normalization statistics
during learning a new task both for the currently learning
model and the teacher model saved after learning the previ-
ous tasks. This mitigates the changes in the model caused by
knowledge distillation loss that arise as the current learner
is continuously trying to compensate for the modified nor-
malization statistics. We further improve the stability of

the model by introducing a warm-up phase at the beginning
of the task, where a new classification head is trained in
isolation before finetuning the whole model. The warm-up
phase ensures that the initialization of the weights is not
random in the initial phases of training, and reduces the
gradient updates to the whole model. We conduct experi-
ments with Teacher Adaptation on several class-incremental
benchmarks and show that it consistently improves the re-
sults for different knowledge distillation-based methods in
an exemplar-free setting. Moreover, our method can be eas-
ily added to the existing class-incremental learning solutions
and induces only a slight computational overhead.

Discussion Since the introduction of Learning without
Forgetting, KD-based methods have emerged as effective
solutions to mitigate forgetting in CIL models. Several ap-
proaches, such as iCaRL, EEIL, BiC, LUCIR, and SSIL,
have integrated KD with exemplars, which helps maintain a
balanced discrepancy between the teacher and student mod-
els. In scenarios where a sufficient number of exemplars
are available, teacher adaptation may not be required, as
their presence in the training data mitigates the divergence
between the normalization statistics of the subsequent tasks.
Nevertheless, our research is dedicated exclusively to the
exemplar-free setting, in which we investigate techniques
that do not rely on storing exemplars. To the best of our
knowledge, we are the first to propose the adaptation of the
teacher model within the context of KD-based exemplar-free
CIL.

Impact Our method focuses on exemplar-free scenarios,
and therefore we alleviate the issues with storing potentially
confidential, private, or sensitive data. However, we rec-
ognize that machine learning algorithms can be harmful if
applied carelessly, and we encourage practitioners to care-
fully check training data and the models to ensure that the
results of their work do not perpetuate biases or discriminate
against any minority.

All our work was conducted using publicly available
datasets and open-source code. To allow other researchers
to build on our work and validate the results, we will share
the code for the experiments in this paper on GitHub upon
acceptance.
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