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Abstract

Event classification in images plays a vital role in multi-
media analysis especially with the prevalence of fake news
on social media and the Web. The majority of approaches
for event classification rely on large sets of labeled train-
ing data. However, image labels for fine-grained event in-
stances (e.g., 2016 Summer Olympics) can be sparse, in-
correct, ambiguous, etc. A few approaches have addressed
the lack of labeled data for event classification but cover
only few events. Moreover, vision-language models that al-
low for zero-shot and few-shot classification with prompt-
ing have not yet been extensively exploited. In this pa-
per, we propose four different techniques to create hard
prompts including knowledge graph information from Wiki-
data and Wikipedia as well as an ensemble approach for
zero-shot event classification. We also integrate prompt
learning for state-of-the-art vision-language models to ad-
dress few-shot event classification. Experimental results on
six benchmarks including a new dataset comprising event
instances from various domains, such as politics and nat-
ural disasters, show that our proposed approaches require
much fewer training images than supervised baselines and
the state-of-the-art while achieving better results.

1. Introduction
With the advent of social media, the daily amount of

multimodal news available on the Web is enormous. This
leads to a rising demand for tools to collect, analyze, orga-
nize, and retrieve multimodal news information. Contextu-
alization of images has been widely studied from multiple
perspectives useful for news corpora, such as geolocation
estimation [19, 29], place classification [34], and argument
extraction in events [17]. Nonetheless, few approaches
have addressed the identification of real-world events in im-
ages [4, 20, 30]; even though it contains crucial information
to comprehend multimedia content, e.g., for fact-checking
or misinformation detection.
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Figure 1. Event classification results using hard prompts based
on static class labels (PST), Wikidata descriptions (PWD), and
Wikipedia summaries (PWS) as well as soft prompt learning (SPL)
where M context tokens [vi] are learned from labeled training
data [36]. Left: prompt for the ground-truth class of the photo.
Right: prediction based on the most likely prompt among all
classes. In both examples, PST struggles to identify the correct
event while PWD and PWS succeed. In (b), SPL does not cap-
ture carnival, emphasizing the importance of knowledge graph
prompts for event contextualization.

Recent approaches for event classification in images
mainly fine-tune deep learning models based on labeled
datasets (e.g., [4, 20, 30]). But most of these datasets (e.g.,
[20, 30]) cover only general event types (e.g., sports, types
of natural disasters) which limits their applicability in the
real-world that typically requires the classification of con-
crete events (e.g., 2020 U.S. presidential election). There
are only a few datasets that comprise real-world events (e.g.,
[4]) but they consider a rather limited selection of real-
world events with only a few annotated images. Due to
the diversity of real-world events and the resulting lack of
large-scale training data, zero-shot and few-shot approaches
for event classification are of utmost importance. To handle
lack of training data, ensemble models based on scene and
object descriptors have been used [2,3,28]. Ahsan et al. [4]
addressed few-shot event classification by training concept
classifiers to categorize images into social event types with
minimal training samples. More recently, Said et al. [22]
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proposed an active learning approach to choose effective
training examples for disaster analysis. In recent years,
vision-language models (VLMs) have shown promising per-
formance in zero-shot and few-shot settings for multiple
downstream tasks [14, 21] through prompting [15, 35–37]
but have not yet been exploited for event classification of
images. In this context, hard prompts are based on hand-
crafted templates, primarily introduced by CLIP (Con-
trastive Language-Image Pretraining [21]), e.g., “This is a
photo of a [Class]”, and are used to describe a given textual
label for zero-shot prediction. However, these hard prompts
typically do not cover actual class descriptions and can be
ambiguous (Fig. 1a) or too unspecific (Fig. 1b). In such
cases, prompt learning approaches [25,35,36] can automat-
ically learn more meaningful descriptions, denoted as soft
prompts. Furthermore, external knowledge sources such as
Wikidata and Wikipedia contain summaries and descriptions
to contextualize events [20] (Fig. 1b). However, descrip-
tions from knowledge graphs have not yet been leveraged
to create and improve prompts for event classification.

In this paper, we suggest and investigate various prompt-
ing techniques and supervised approaches for zero-shot and
few-shot event classification in images. The main contri-
butions are as follows: (1) We present four hard prompting
techniques as well as soft prompt learning to leverage ca-
pabilities of VLMs; (2) To obtain more distinct descriptions
for specific events, we enrich prompts with external knowl-
edge sources such as Wikidata and Wikipedia, and examine
the effectiveness of prompt ensembles; (3) We introduce a
novel dataset called Event Instances to demonstrate feasi-
bility of our approach for the classification of fine-grained
real-world events. It contains 184 event instances for differ-
ent event types, e.g., election, protest, and natural disaster;
(4) To address the lack of labeled training data, we provide
several baselines using prompting and supervised learning
for zero-shot and few-shot event classification. Experiments
on six datasets including our novel Event Instances dataset
demonstrate the superiority of the proposed approaches to
the state-of-the-art in few-shot scenarios. Dataset, source
code, and models are publicly available.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related work on event classification, and
prompting for image classification. Our proposed approach
for zero-shot and few-shot event classification is presented
in Section 3. In Section 4, we discuss the experimental
setup and results. Section 5 concludes the paper and out-
lines future research directions.

2. Related Work
In this section, we review approaches for event classi-

fication in images. Since we aim to combine VLMs with
prompt learning for event classification, we also provide a
brief overview of prompting in image classification.

Event Type Classification According to Yang et al. [32],
event classification techniques vary depending on the def-
inition of an event and mainly fall into two categories.
The first category includes activities (e.g., people cele-
brating) either in videos [18, 31], or personal photo al-
bums [6,7,10]. The second category covers real-world news
events from various domains such as social movements, and
politics [4, 11, 20, 30]. In this paper, we focus on the latter
definition. The majority of approaches typically use con-
volutional neural networks (CNNs, e.g., [12, 24]) to extract
rich features such as local information from image patches,
object regions using object detection techniques, or require
place (scene) information [1, 8, 13, 28]. More recently,
Müller-Budack et al. [20] proposed an ontology-driven deep
learning approach based on 148 unique real-world events
extracted from EventKG [9]. All of these approaches rely on
large labeled image datasets such as Web Image Dataset for
Event Recognition (WIDER) [30] and the Visual Event Clas-
sification Dataset (VisE-D) [20]. However, these datasets do
not cover real-world event instances (e.g., 2020 U.S. elec-
tion) that allow for a broader range of applications. In ad-
dition, labeled training data for such event instances is typ-
ically sparse. To address this issue, Ahsan et al. [4] propose
an event concept learning framework for few-shot event
classification along with the Rare Event Dataset (RED) that
covers 21 event instances. Said et al. [22] leverage an ac-
tive learning strategy to choose effective training examples
for few-shot classification of disaster images. However,
novel vision-language models (VLMs) that are successful
for many downstream tasks with few training images have
not yet been explored for event classification in images.

Prompting in Image Classification Due to the success
of VLMs (e.g., [5, 14, 21]), several approaches have been
proposed recently that use vision and language encoders for
zero-shot and few-shot image classification tasks through
prompting. While hard prompts are based on hand-crafted
templates that describe the class labels (e.g. [21]), var-
ious approaches are proposed for automatically learning
prompts (e.g., [35–37]). Even though prompting techniques
demonstrate promising performance in image classification
benchmarks, their potential for news data, particularly for
event type classification is under-explored. More specif-
ically, prompting can provide a context that could help
disambiguate concepts for classification in the photo (e.g.,
“skeleton is a winter sliding sport” in Fig. 1a).

3. Few-shot Event Classification based on
Vision-Language Models

This section introduces our approaches for few-shot
event classification (Fig. 2). We aim to tackle zero-shot and
few-shot event classification using recent vision-language
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Figure 2. Workflow of the proposed few-shot event classification approach. (a) We propose four strategies to create hard prompts based on
the class labels (PCL) and a set of static templates (PST) as well as based on knowledge graph information, i.e.,Wikidata descriptions (PWD)
and Wikipedia summaries (PWS). (b) We use CoOp [36] for soft prompt learning (SPL) based on few training images. (c) Once the prompts
are produced, we propose a prompt ensemble to compute the similarity to a test image during inference. Finally, the sorted list of event
labels based on the similarity values are the top-k predictions. Please note that we only use hard prompts for zero-shot event classification.

models (VLMs) such as CLIP. First, we propose to fine-
tune CLIP based on multimodal news articles (Section 3.1).
In Section 3.2, we propose different prompting techniques
for events, i.e., hard prompt engineering, soft prompt learn-
ing, and prompt ensemble. Finally, we describe the use of
prompts for event classification (Section 3.3).

3.1. CLIP Fine-tuning

The CLIP model has been pre-trained on a large dataset
composed of 400 million image-text pairs from the Web
using a contrastive loss function to embed input pairs to
a joint embedding [21]. To obtain a more comprehensive
understanding of event-centric documents in different do-
mains including politics, sports, etc., we fine-tune CLIP
on a large dataset of image-text pairs extracted from news
articles. We use the Multimodal Geolocation Estimation
of News (MMG-NewsPhoto) dataset [26] which contains
image-text pairs in various news domains. For each news
image, the dataset provides the corresponding body text and
a caption. It consists of 554,768 and 60,893 samples for
train and validation. We pair every image with its caption
and all sentences in the body text. As proposed by Schuh-
mann et al. [23], we filter out pairs with cosine similarity
values of less than 0.3 based on the image and text encoders
of CLIP. As a result, we get 436,092 and 48,281 samples
for training and validation to fine-tune CLIP for the news
domain. Training details are provided in Section 4.1.1.

3.2. Prompting Techniques

The CLIP model has proven to be effective in zero-shot
and few-shot settings for many downstream tasks [21]. As
explained in Section 3.3, classification is conducted by mea-
suring the similarity between the textual prompts that de-

scribe a set of pre-defined concepts, in our case events E, to
a test image. The performance of the zero-shot classifica-
tion relies on quality of the textual prompts. We present four
strategies to automatically create hard prompts for zero-shot
classification (Section 3.2.1) as well as a prompt-learning
technique to create soft prompts for few-shot classifica-
tion (Section 3.2.2). Furthermore, we suggest to combine
these prompts according to Section 3.2.3.

3.2.1 Hard Prompts for Zero-Shot Classification

Given a vision-language model such as CLIP, the automatic
creation of hard prompts (descriptions) for a set of pre-
defined events E allows for zero-shot classification. We
suggest four strategies to create hard prompts, including
novel approaches that use Wikidata and Wikipedia.

Prompts based on Class Labels (PCL) The most basic
hard prompt PCL solely consists of the event name, i.e.,
class label. Since the event name often comprises a single
or few words without much context (see Fig. 2), more de-
scriptive prompts are required to exploit the CLIP model.

Prompts based on Static Templates (PST) Typically,
zero-shot classification approaches based on CLIP make use
of static prompts that are employed to create a sentence for
the set of concepts to be classified. Therefore, the second
type of hard prompt is based on templates shared between
all classes denoted as PST. These templates are based on 80
different context prompts introduced by Radford et al. [21],
e.g., “This is a photo of a [Class]”, “a close-up photo of the
[Class]”, etc. Although these templates add some content
to the concepts, they still can be ambiguous. For instance,
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the sports event skeleton (Fig. 1) can be confused with the
human skeleton without providing further context.

Prompts based on Wikidata Descriptions (PWD) To add
more context to the prompts, we incorporate class-specific
prompts that provide detailed descriptions for each event
label. For this purpose, we employ external knowledge
graphs that contain structured data for many real-world
events. The Event Knowledge Graph (EventKG [9]) has
extracted events from several large-scale knowledge graphs
including, but not limited to, Wikidata [27] and Wikipedia.
Müller-Budack et al. [20] used EventKG to link event
classes of several benchmark datasets [4,20,30] to Wikidata.
Using the links, we extract Wikidata description to create a
prompt, denoted as PWD, as follows: “[Class] is a [Wikidata
description of the class]”. We limit the prompt to CLIP’s
maximum context length of 77 tokens, which is rarely ex-
ceeded since Wikidata descriptions are typically quite short.
However, they may lack important details or can be ambigu-
ous, e.g., the description “a team sport played with bats and
balls” of the sport cricket also applies to baseball. Also, for
some events the descriptions are not available (see supple-
mentary material) in which case we use PCL as prompt.

Prompts based on Wikipedia Summaries (PWS) To ad-
dress the limitations of PWD, we aim to create more com-
prehensive event definitions using Wikipedia. Therefore, we
extract English summaries for all events using the Wikipedia
URLs provided by Wikidata. If the English summary is not
available, we automatically select a summary from a sorted
list of languages such as ’German’, ’Spanish’, etc., and
translate the text to English using Google Translate API.
Based on the collected summaries, we define PWS as “This
is a photo of a [class]. [Wikipedia summary]”. If no sum-
mary is available (only in rare cases, see supplementary ma-
terial), we only use the first part of the prompt. Compared
to the previous prompts, these summaries can comprise long
texts. To not exceed the maximum input context length for
CLIP, we limit PWS to the first 77 tokens that typically con-
tain the most important information of the summary.

3.2.2 Prompt Learning for Few-shot Classification

Soft Prompt Learning (SPL) We apply Context Op-
timization (CoOp [36]) to automatically learn soft
prompts (denoted as SPL) using few training samples. This
method is aimed at learningm learnable context vectors per
class. In other words, CoOp optimizes the context vectors
p = {fe

i ,v1,v2, . . . ,vm} where fe
i denotes token embed-

ding for i-th event label e ∈ E, and vi denotes a learnable
token with same number of d dimensions as embeddings
of the text encoder ψT (.). The position of event token em-
bedding fe

i can be at the front (as in the notation above),

middle, or end of the context vectors. To assess the impact
of knowledge graph information in prompt learning, we ini-
tialize the learnable prompts with embeddings of the PWD
and PWS. Training details are provided in Section 4.1.2.

3.2.3 Prompt Ensemble

The prompts proposed in the previous section can have syn-
ergies as they have different strengths and weaknesses. For
example, while PWD provides a concise description, PWS
offers a more in-depth, contextual understanding for the
event labels. Sometimes, Wikidata or Wikipedia might not
provide sufficient information for certain events. In such
cases, PCL and PST can act as reliable alternatives to fill
the information gap. When training data becomes available,
soft prompts (SPL) can be learned to create suitable descrip-
tions to differentiate events. To leverage synergies between
prompts, we combine them to generate a set of rich queries.
For this purpose, we compare each prompt to an image,
which results in a set of similarity scores based on the in-
ference strategy in Section 3.3. We suggest to aggregate
similarities of different prompts in the ensemble approach
using mean of all scores since it provides better results than
max operation as detailed in the supplemental material.

3.3. Inference

During inference, we predict the event label for a given
test image I based on a set of pre-defined event E. For this
purpose, we employ the prompts introduced in Section 3.2
to describe each event. For each prompt T , we extract
the textual embedding eT = ψT (T ) from CLIP’s text en-
coder ψT . The test image I is fed to the image encoder ψI

to obtain a respective image embedding eI = ψI(I). The
textual embeddings of all prompts are compared to the im-
age embedding of the test image using the dot product to
extract image-text similarities. The softmax function is ap-
plied over these similarities to represent the predicted class
probabilities ŷ. Finally, the probabilities are sorted to pre-
dict the top-k events for the given query image.

4. Experimental Setup and Results
Here, we present implementation details (Section 4.1),

experimental setup (Section 4.2) and results (Section 4.3).

4.1. Implementation Details

Details on fine-tuning CLIP for news (see Section 3.1)
are provided in Section 4.1.1. Furthermore, we present the
training details for soft prompt learning in Section 4.1.2.

4.1.1 Fine-tuning CLIP for News

For fine-tuning the CLIP model [21] for news articles (Sec-
tion 3.1), we initialize the text and vision transformers using
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Table 1. Dataset statistics including the number of event instances,
test and training images for various event types (from left to right:
Election, Referendum, Epidemic, Protest, Political Campaign,
Natural Disaster) for the Event Instances dataset.

Elec. Ref. Epid. Prot. Pol. Nat. TotalCamp. Dis.
Event Inst. 26 5 5 79 63 6 184
Test Im. 462 60 232 1459 974 143 3330
Train Im. 396 61 176 1311 859 123 2926
Total Im. 858 121 408 2770 1833 266 6256

the “ViT-B/32” model pre-trained on OpenAI’s WebImage-
Text (WIT) dataset. We set the batch size to 128 with a learn-
ing rate of 1e−6 with a linearly decaying schedule. We train
the model for 100 epochs using Adam optimizer [16]. The
model with the lowest mean rank for cross-modal retrieval
on the validation set is used in the experiments.

4.1.2 Prompt Learning

For automatic prompt learning, we rely on few-shot learn-
ing scenario where the model is expected to learn effective
representations and predictions from a limited amount of
data. For the training process, we rely on the setup provided
by CoOp [36]. We set learning rate to 1e−6, batch size to
32, and number of epochs to 200. The best model is chosen
based on the accuracy on validation splits provided by the
benchmark datasets (Section 4.2.1). In all experiments, the
best context length is 16, position of class label is front, the
initialization is random. A comparison of different context
lengths (4 vs. 16), position of the class label (front, middle,
end), and initialization method (PWD, PWS, and random) is
included as supplemental material. For a fair comparison,
we use vision transformer “ViT-B/32” for all experiments.

4.2. Experimental Setup

Section 4.2.1 introduces the benchmark datasets includ-
ing the novel Event Instances dataset and a data sampling
strategy for few-shot classification. The evaluation metrics
and baselines are presented in Sections 4.2.2 and 4.2.3.

4.2.1 Benchmark Datasets

Public Benchmarks We use four public benchmark
datasets for the evaluation. (1) The Visual Event Classifi-
cation Dataset (VisE-D) [20] covers 148 diverse event types
with 570,540 images. The test sets VisE-Bing and VisE-Wiki
include 2,779 and 8,138 samples, respectively. (2) The Web
Image Dataset for Event Recognition (WIDER) [30] com-
prises 25,275 images for training plus 25,299 samples for
test on 61 events. (3) The Rare Events Dataset (RED) [4]
contains 21 real-world events with 7,000 images where

30% is used for test. For a fair comparison, we use the
splits provided by Müller-Budack et al. [20]. (4) The So-
cial Event Dataset (SocEID) [4] contains eight social events
with 27,687 images for train and 9,237 for test.

Event Instances Dataset Since RED [4] covers only a
small set of 21 real-world event instances, we introduce a
new dataset called Event Instances. To collect this dataset,
we select different event types (see Table 1) from Wikidata
that have high societal and environmental impact, e.g., elec-
tion (Q40231) and natural disaster (Q8065). Then, we
query Wikidata for all event instances based on the “in-
stance Of” (P31) relation and choose the most popular in-
stances that are accessed on average more than 100 times
per day on Wikipedia since 2015. We downloaded the corre-
sponding images from the associated Wikimedia Commons
category (P373) and manually verified that images depict
the respective event instance. The annotation details are
provided as supplementary material. The dataset contains
6,256 images for 184 event instances that are randomly as-
signed to the training and test set. It covers much more real-
world events from a broader spectrum of six event types
than RED. The statisics are presented in Table 1.

Data Sampling For Few-shot Classification Few-shot
learning is an inherently challenging problem due to the
risk of limited generalization. Thus, we randomly sample
sets for training and validation for the datasets mentioned in
Section 4.2.1. The sampling is repeated three times to cre-
ate three different models and alleviate potential artifacts
from overfitting. For benchmark datasets, we use official
train and validation splits while for Event Instances dataset,
we skip validation sampling because of limited images per
class. For each set, we randomly select up to n images (see
Fig. 4) from the train and validation sets to assess the impact
of number of training images on classification performance.
For the evaluation, we average scores for all three models on
the test set using the metrics mentioned below.

4.2.2 Evaluation Metric

For the evaluation, we use the top-1 accuracy to compare
with the state-of-the-art approaches. The top-3 and top-5
accuracy values are reported as supplementary material.

4.2.3 Baseline Systems

Supervised Learning To create a baseline for few-shot
learning that does not rely on prompting, we use the
Linear probe approach on top of visual features from
images using CLIP’s image encoder. We follow the same
training method as Radford et al. [21]. We use validation
set to find the best regularization value and model based on
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the top-1 accuracy. As a second approach, we train a sup-
port vector machine (SVM) for which the results are reported
in the supplementary material as it performs slightly worse.

State-of-the-Art We compare the proposed approaches
with two best-performing state-of-the-art baselines. (1) The
Event concepts approach [4] learns concept classifiers, for
a combination of objects, scenes, actions, and attributes
for social events to address few-shot event classification.
(2) The ontology-driven (COcos

γ ) approach [20] is based on
a ResNet-50 [12] that uses an ontology based on various
events covered in Wikidata for optimization.

4.3. Experimental Results

Here, we report and discuss results for zero-shot (Sec-
tion 4.3.1) and few-shot classification (Section 4.3.2) on five
benchmarks and our novel Event Instances datasets. We
compare our approach to baselines (Section 4.3.3) and ana-
lyze the results for Event Instances dataset (Section 4.3.4).

4.3.1 Zero-shot Classification

Comparison of Hard Prompt Techniques As shown in
Table 2, static templates (PST) outperform prompts based
on class labels (PCL) in the zero-shot setting confirming
previous studies [21]. Although both of these prompts per-
form quite well in datasets containing event types, prompts
based on Wikidata descriptions (PWD) provide the best re-
sults for datasets with fine-grained events, i.e., Event In-
stances and RED. However, both individual prompts based
on knowledge graphs (PWD and PWS) do not provide signif-
icant improvements compared to the static prompts but we
argue that they still provide contextual information that can
improve event classification as the next paragraph reveals.

Impact of Prompt Ensemble We note that combination
of knowledge graph prompts (PWD,PWS) outperforms in-
dividual prompts. More importantly, the ensemble of all
hard prompts (PCL,PST,PWD,PWS) achieves promising
results. This shows how the prompt ensemble technique
harnesses synergies between knowledge graph and static
prompts to achieve a more comprehensive and enriched set
of queries for event classification.

4.3.2 Few-shot Classification

For few-shot classification, we experiment with 1-50 train-
ing samples per class. The results are displayed in Table 2.

Impact of Prompt Learning If the number of training
samples is low (ca. 5) the prompt learning technique SPL
is not able to outperform the zero-shot approaches for event

type classification. In contrast, considering the Event In-
stances dataset individual hard prompts such as PCL and
PST obtain very low accuracy compared to the soft prompts
such as SPL. This confirms the fact that the CLIP text en-
coders are less effective in distinguishing more fine-grained
events compared to broader event types. The fine-tuned
backbone CLIP-MMG sometimes outperforms CLIP-WIT
when the number of training samples is low (ca. 5).

Impact of Prompt Ensemble As Table 2 shows, the com-
bination of soft prompts with static prompts SPL,PST re-
sults in a considerable improvement. Also it is observed that
use of knowledge graph prompts SPL,PST,PWD,PWS
considerably boosts the performance and outperforms all
prompting techniques including the zero-shot approaches.
One interesting insight is that, as shown in Fig. 4, en-
semble of all prompts SPL,PST,PWD,PWS requires only
around two images per class to outperform zero-shot meth-
ods, whereas the SPL prompt requires at least ten images.
Thus, with fewer samples per class, it is beneficial to use an
ensemble of soft prompts with knowledge graph prompts.

4.3.3 Comparison to the Baselines

In this section, we evaluate the CLIP fine-tuning and com-
pare our approach to state-of-the-art supervised baselines.

Impact of CLIP Fine-tuning The results of CLIP-MMG
are comparable but mostly slightly inferior to CLIP-WIT.
Performance especially lacks for Event Instances. One rea-
son might be the sampling of image-text pairs for fine-
tuning where it is not ensured that body text correlates with
the image or it mentions an event. More advanced sampling
approaches as well as other fine-tuning strategies, e.g., only
training the text encoder [33] could resolve this issue.

Comparison to the State-of-the-Art As Table 2 shows,
the ensemble of hard prompts (PCL,PST,PWD,PWS)
achieves better or comparative results to the state-of-the-art
without the need for training data. This highlights the po-
tential of zero-shot classification over supervised methods
that require large training data. Considering few-shot ap-
proaches, the ensemble of all prompts is superior on most
datasets. When using more training samples (up to 30),
we observe that SPL outperforms the zero-shot approaches.
Thus, if we have sufficient training data, prompt learning
techniques achieve enhanced results. However, if we have
a low number of training samples, the combination of soft
prompts with knowledge graph prompts yield improved re-
sults compared to other baselines and zero-shot approaches.

Comparison to the Linear probe Regarding the
zero-shot classification, as shown in Fig. 4, the Linear
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Table 2. Comparison of different approaches based on top-1 accuracy using different number of samples per class (n). Two types of back-
bones are used: (1) The CLIP-WIT pre-trained on the WIT dataset [21]; (2) The CLIP-MMG fine-tuned on the MMG-News dataset [26].

Approach n Backbone VisE-Bing VisE-Wiki RED WIDER SocEID Event Instances
Zero-shot Event Classification

PCL 0 CLIP-WIT 75.06 60.09 77.61 50.03 90.70 32.76
PST 0 CLIP-WIT 78.95 64.50 79.06 51.30 89.78 34.50
PWD 0 CLIP-WIT 75.60 62.68 79.39 49.52 83.98 35.44
PWS 0 CLIP-WIT 75.64 62.02 77.00 46.16 88.72 33.03
PWD,PWS 0 CLIP-WIT 79.20 65.79 78.87 50.86 88.63 36.79
PST,PWD,PWS 0 CLIP-WIT 80.60 67.07 79.48 52.39 89.72 36.76
PCL,PST,PWD,PWS 0 CLIP-WIT 80.89 67.02 80.00 52.97 90.51 36.37
PCL,PST,PWD,PWS 0 CLIP-MMG 79.92 66.85 79.53 52.61 87.04 33.48

Few-shot Event Classification
SPL 5 CLIP-WIT 66.01 54.96 66.04 43.97 85.87 52.08
SPL,PST 5 CLIP-WIT 77.05 64.12 76.73 53.12 90.71 57.05
SPL,PST,PWD,PWS 5 CLIP-WIT 81.96 68.59 79.89 55.78 91.95 54.57
SPL,PST,PWD,PWS 5 CLIP-MMG 81.27 68.67 80.53 54.65 89.13 49.53
Linear probe 5 CLIP-WIT 68.73 57.04 69.70 46.91 89.18 54.49
Linear probe 5 CLIP-MMG 68.27 55.96 70.42 46.52 88.04 54.01
SPL 30 CLIP-WIT 79.80 63.40 81.10 55.63 91.86 71.14
SPL,PST 30 CLIP-WIT 84.37 68.72 83.41 59.91 93.31 72.28
SPL,PST,PWD,PWS 30 CLIP-WIT 84.70 70.97 83.03 58.84 93.33 66.00
SPL,PST,PWD,PWS 30 CLIP-MMG 83.76 69.96 82.68 56.83 91.22 58.71
Linear probe 30 CLIP-WIT 82.78 66.75 81.78 59.48 92.83 72.26
Linear probe 30 CLIP-MMG 81.91 66.27 81.63 58.88 92.14 71.57

Fully-supervised Baselines using all training images
COcos

γ [20] all 81.90 63.50 80.90 49.70 91.50 –
Event concepts [4] all – – 77.60 78.60 85.40 –

Table 3. Comparison of different prompts per event type on the Event Instances dataset based on n number of samples per class.

Approach n Election Referendum Epidemic Protest Political Campaign Natural Disaster
PWD,PWS 0 27.98 26.55 50.62 33.88 46.98 70.66
SPL 30 54.38 68.90 75.84 58.72 51.82 82.46
SPL,PST 30 60.61 72.90 80.75 58.37 57.55 82.46
SPL,PST,PWD,PWS 30 55.09 62.28 75.07 55.99 57.87 83.38

probe (CLIP-WIT) requires at least around ten images
per class to outperform the zero-shot approaches. How-
ever, when the number of training samples is low (less
than 5), the zero-shot approaches considerably outperform
the Linear probe (CLIP-WIT). Regarding few-shot
approaches the SPL,PST,PWD,PWS prompting consid-
erably outperforms the supervised methods for a smaller
number of training samples (e.g., 5). However, a training
dataset containing more than 30 images per class allows for
supervised methods, i.e., Linear probe (CLIP-WIT),
to leverage their capacity for learning and slowly start to
outperform prompting approaches in about 50 images As
Table 2 shows, Linear probe (CLIP-MMG) maintains
competitive performance compared to the CLIP-WIT ver-
sion. Therefore, fine-tuning CLIP does not necessarily lead

to superior performance. In summary, prompt learning aids
image event classification, particularly with fewer training
samples per class. However, if there are sufficient training
samples supervised learning yields improved results.

4.3.4 In-depth Analysis of Event Instances Dataset

Table 3 presents results on Event Instances dataset per
event type. The results are significantly better in the few-
shot setting compared to the zero-shot setting indicating
that the task of event instance classification is very chal-
lenging and requires prompt learning. Furthermore, it is
shown that a prompt ensemble is more effective compared
to soft prompts individually. Overall, the best results are
achieved for natural disasters (e.g., Fig. 3d) and signifi-
cant improvements can be made for political campaigns.
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(d) Natural Disaster, 2018 European drought and heat wave

           Protests against COVID-19 protection in Germany

Wikipedia: The 2018 European drought and
heat wave was [...] hot weather [...] hot high-
pressure air to linger in the same place [...]
extreme precipitation. 

Wikidata: heat wave leading to record-
breaking temperatures in Europe during the
spring and summer of 2018

                                     2018 European drought and heat wave

a) Epidemic, 2018-2020 Kivu Ebola epidemic

     2018-2020 Kivu Ebola epidemic

Wikipedia: The Kivu Ebola epidemic was an
outbreak of Ebola virus disease (EVD) that
ravaged the eastern Democratic Republic of
the Congo [...] resulted in 3,470 reported cases.

Wikidata: Ebola virus outbreak 

                 

(b) Protest, Protests against the 2022 Russian invasion of Ukraine

           Protests against the 2022 Russian invasion of Ukraine

Wikipedia: Protests against the Russian
invasion of Ukraine occurred simultaneously in
many places worldwide, including in Russia
and in Russian-occupied Ukraine.  

Wikidata: overview of protests against the
2022 Russian invasion of Ukraine

                 Ukraine without Kuchma

(c) Political Campaign, climate change denial
Wikipedia: [...] contradicts the scientific
consensus on climate change, [...] caused by
humans [...]  implicit when individuals or social
groups 
Wikidata: Denial, dismissal, or unwarranted
doubt about the scientific consensus on the
rate and extent of global warming

      Ross Perot presidential campaign 1992

                 climate change denial

SPL: SPL:

SPL:SPL:

SPL,PST,PWD,PWS:SPL,PST,PWD,PWS:

SPL,PST,PWD,PWS: SPL,PST,PWD,PWS:

MONUSCO Photos (CC BY-SA 2.0) Nederlandse Leeuw (CC BY-SA 4.0)

Farragutful (CC BY-SA 4.0) Mark Ramsay (CC BY 2.0)

2022 Uruguayan Referendum on Urgent Consideration Law

Figure 3. Qualitative examples based on soft prompts (SPL) and a prompt ensemble (SPL,PST,PWD,PWS) that includes knowledge
graph information on the Event Instances dataset. The correct prediction is colored green.

Event instances typically share similar visual attributes and
knowledge graph information can provide geographical and
temporal context to differentiate similar instances. Exam-
ples are climate change denial (Fig. 3c) and 2018 European
drought and heat wave (Fig. 3d). Nonetheless, sometimes
hard prompts lack context or are too short (e.g., Fig. 3a,
3b), in these cases SPL is more effective. For example,
Wikidata descriptions for 16 out of 26 election instances are
missing (see supplementary material) which might explain
the lower performance of in the ensemble of prompts.

5. Conclusions and Future Work

In this paper, we have proposed novel approaches for
zero-shot and few-shot event classification of images based
on novel prompting techniques for vision-language mod-
els. For zero-shot classification, we have suggested four
different hard prompts that include knowledge graph infor-
mation from Wikidata and Wikipedia. We have combined
these prompts with soft prompts learned for specific events
in an ensemble approach for few-shot event classification.
Furthermore, we have introduced a novel dataset that en-
compasses fine-grained events from various types such as
protests and natural disasters to assess our approach for
real-world scenarios. Experimental results have demon-
strated that hard prompts based on event descriptions from
knowledge graphs yield significantly improved results com-
pared to simple hard prompts (e.g., “This is a photo of a
[Class]”) in zero-shot settings. Also, an ensemble of hard
prompts with soft prompts greatly reduces the need for a
large amount of training data. The proposed approaches
outperform state-of-the-art on six benchmark test datasets
using much fewer images for training.

In future work, more advanced prompt learning tech-
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SPL
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PCL,PST,PWD,PWS
Linear probe CLIP-WIT

Figure 4. Comparison of different prompting techniques based on
number of training samples per class. The values are averaged
over all the datasets introduced in Section 4.2.1. As illustrated,
the ensemble of all prompts (SPL,PST,PWD,PWS) requires con-
siderably less number of samples (about two) to outperform other
approaches compared to using only the soft prompt SPL.

niques [15, 25] can be investigated. Another interesting di-
rection is to explore ways to add information from longer
descriptions (e.g., Wikipedia summaries) and to integrate
ontology information from knowledge graphs into prompts.
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