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Abstract

Sensing 3D objects is critical when 2D object recogni-
tion is not accessible. A robot pre-trained on a large point-
cloud dataset will encounter unseen classes of 3D objects
after deploying it. Therefore, the robot should be able to
learn continuously in real-world scenarios. Few-shot class-
incremental learning (FSCIL) requires the model to learn
from few-shot new examples continually and not forget past
classes. However, there is an implicit but strong assumption
in the FSCIL that the distribution of the base and incremen-
tal classes is the same. In this paper, we focus on cross-
domain FSCIL for point-cloud recognition. We decompose
the catastrophic forgetting into base class forgetting and in-
cremental class forgetting and alleviate them separately. We
utilize the base model to discriminate base samples and new
samples by treating base samples as in-distribution sam-
ples, and new objects as out-of-distribution samples. We
retain the base model to avoid catastrophic forgetting of
base classes and train an extra domain-specific module for
all new samples to adapt to new classes. At inference, we
first discriminate whether the sample belongs to the base
class or the new class. Once classified at the model level,
test samples are then passed to the corresponding model for
class-level classification. To better mitigate the forgetting of
new classes, we adopt the soft label and hard label replay
together. Extensive experiments on synthetic-to-real incre-
mental 3D datasets show that our proposed method can bal-
ance the performance between the base and new objects and
outperforms the previous state-of-the-art methods.

1. Introduction

3D object recognition has made significant progress in
various applications including robotics, shape analysis, and
autonomous driving. There exists a lot of work for point-
cloud recognition especially point-based [16, 17, 27, 29, 35,
39] methods have been extensively researched. However,
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Figure 1. A simple diagram of FSCIL for cross-domain point-
cloud recognition. Base classes contain rich synthetic 3D objects,
while incremental sessions only have few-shot real-world scanned
3D objects. The model needs to learn new classes continuously
and preserve existing knowledge.

most of the work focuses on the static classification abil-
ity of the model where the number of categories is pre-
defined and fixed. This static setup impedes the model ap-
plication in the real world, where classes of 3D objects ar-
rive in continuous streams. As shown in Fig. 1, a home-
assistance robot pre-trained with abundant instances (e.g.,
synthetic 3D objects) can only grasp the pre-defined objects
in a clean environment, it needs to continually recognize
new categories of objects which may have occlusions, clut-
tered backgrounds, and poor-quality point-cloud. Such a
need also exists in vision-driven autonomous driving sys-
tems equipped with LiDARs. The pre-trained recognition
model may encounter new classes in a more complex en-
vironment after deploying it. A self-driving car needs to
continually recognize new classes as it runs like humans.
However, new classes often consist of few-shot samples and
there is a domain shift with the base classes. Such a realistic
and challenging setting has been proposed in the paper [8].
The incremental sessions contain few-shot samples from the
real world, while the base session contains many synthetic
3D objects for training. The proposed setting mimics the
few-shot and domain shifts that commonly exist in the con-
tinuous learning process for real-world applications.

Most of the FSCIL methods proposed in the 2D do-
main [24, 41, 44, 50] propose to freeze the feature extrac-
tor after the base session to alleviate the forgetting. These
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prototype-based methods in FSCIL are effective at miti-
gating forgetting and achieving good performance of new
classes in the 2D domain. However, due to the low accu-
racy of new classes in our setting, these methods fail to
show their superiority in the cross-domain FSCIL for 3D
object recognition. Unlike 2D image datasets, 3D point
cloud datasets [43] are generally smaller and do not have
strong pre-trained models trained on large-scale datasets.
The low-quality embedding of point clouds which have high
intra-class discrepancy and low inter-class discriminability
would reduce the effectiveness of prototype-based methods.
Besides that, we propose that the poor performance of new
classes also comes from the fact that these methods only
aim to learn an expandable and compact feature space in the
base session for better generalization. However, since the
distribution of samples differs between the base and incre-
mental phases, expanding the feature space only using the
base samples is not sufficient for the new classes. Numer-
ous methods have been proposed to tackle the domain shift
problem in point-cloud tasks including 3D object recogni-
tion and semantic segmentation [1, 28, 42], but they need a
large number of unlabeled target samples during the training
process to align the feature space. Due to the inaccessibility
of new class samples in the base session, it is challenging to
align the feature space. Additionally, few-shot new samples
that appear asynchronously make it quite difficult to achieve
alignment during incremental learning stages.

As the prototype-based FSCIL method has its limita-
tions, we propose a new perspective to address the chal-
lenges in cross-domain FSCIL for 3D object recognition.
We do not focus on training a well-aligned and expandable
feature space in the base session and then freezing it. In-
stead, we fine-tune the network to better adapt to the new
samples in incremental learning sessions. Since the base
model is trained with abundant samples, it possesses higher
feature generalizability and discriminability towards un-
known classes compared to the incremental learning model.
As shallow layers are inclined to learn generalized repre-
sentations, we only fine-tune deep layers to encode the new
class information and fix the shallow layers to keep the gen-
eralized representation ability from the base model. The
modification of the deep layers inevitably causes the model
to classify base samples into new classes and thus lead to
severe forgetting. To further avoid the confusion between
the base and new classes, we adopt a two-branch structure
to first classify the sample to base or new classes and then
pass it to the corresponding model for class-level classifi-
cation. We store the task-specific layers of the base model
instead of retaining abundant base samples and this opera-
tion can highly address the forgetting of base samples.

In this paper, we predict the task ID from the out-of-
distribution detection (OOD) view and only divide the tasks
into the base and new sessions. We regard real samples

from the incremental sessions as OOD data compared to
base samples. The learning-based method [38] has been
proposed to discriminate between the old and new samples.
However, such a learning-based method performs poorly in
FSCIL due to the limited number of new samples in the
training stage. Instead, we use the maximum logit of the
base model as the score to detect base and new samples.
Since cosine similarity is bounded and represents more dis-
crimination, we use the cosine classifier [21] in the base
model training. Decoupling the base and incremental train-
ing stages can alleviate base class forgetting. However, new
classes with few-shot samples also face severe forgetting
as they share one domain-specific module. In this paper, we
adopt a dual replay that not only retains the samples but also
the output logits of the past model. Through the hard label
replay optimized by cross-entropy loss and soft label replay
optimized by logits matching, the performance of past new
classes can be better retained.

The contributions of this paper are as follows:
1) Due to the significant differences between the base

training stage and few-shot incremental learning stages in
FSCIL, we propose to decompose the learning sessions into
the base and new stages and predict the task ID from the out-
of-distribution detection perspective. By predicting the task
ID, we can perform fine-tuning on the task-specific layers
to better adapt to new classes with a different distribution
without sacrificing the performance of the base stage;

2) To alleviate the forgetting of new incremental classes,
we propose a dual replay method that not only retains sam-
ples with one-hot labels but also the output logits of the past
model. Through the hard label and soft label replay, the for-
getting of incremental new classes can be highly alleviated;

3) Significant performance improvements on three
3D cross-domain few-shot incremental benchmarks have
demonstrated our simple but effective method can balance
the base classes and new classes.

2. Related Work

2.1. Point-cloud object recognition

Many deep learning-based methods have been proposed
to recognize point cloud objects. PointNet [26] was the first
work to process raw points which combined multi-layer per-
ceptron and symmetric function to learn and aggregate point
features. However, PointNet [26] ignored the local spa-
tial relationships between the points. Several methods have
been proposed to extract local and global features simulta-
neously. PointNet++ [27] extracted local features via the
hierarchical structures. Some work [17, 39] proposed new
convolution operations on 3D points. Additionally, several
networks regarded 3D points as the vertex of the graph and
encoded local information through neighbor points [16,35].
DGCNN [35] proposed an EdgeConv module computed on
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the feature space and contacted the features of the center
point and its neighbor points. Further, transformer-based
methods have [48] been proposed. Zhang et al. [46] ap-
plied CLIP to point cloud recognition, which migrates 2D
pre-trained knowledge to the 3D domain.

2.2. Few-shot class-incremental learning

Tao et al. [31] first proposed few-shot class-incremental
learning, and they proposed a neural gas network. Fur-
ther, vector quantization [6] in the embedding space, word
vectors distillation [7], and parameter selecting [23] meth-
ods have been proposed. Most of the FSCIL methods
[25, 41, 44, 50] froze the feature extractor and only trained
the linear classifier or used prototypes for classification.
CEC [44] focused on classifier adaptation and designed an
extra graph model. FACT [50] and ALICE [25] were both
concentrated on learning an extendable and compact feature
space in the base session. FACT [50] pushed the samples
in the same class to be closer and used virtual prototypes
in the base training. ALICE [25] used cosine similarity
and margin to learn a better feature space for lateral learn-
ing. Constrained FSCIL [14] contained a trainable fully
connected layer, a rewritable memory, and provided three
update modes. Liu et al. [19] proposed a data-free replay
scheme that synthesized data through the generator without
access to past samples.

2.3. Class-incremental learning on point cloud

Dong et al. [10] first proposed the incremental setting
for 3D object recognition (I3DOL). They first constructed
geometric centroids, used an attention mechanism, and de-
signed a score fairness compensation to avoid forgetting.
Liu et al. [20] proposed a new model named L3DOC, which
used a layer-wise point-knowledge factorization module to
capture the point knowledge, thus reducing catastrophic for-
getting. A realistic and challenging setting was proposed
in [8] for 3D point-cloud recognition. They used Singu-
lar Value Decomposition to choose a set of basis vectors
and enhanced the ability of the model to adapt to real-world
data. Though it can maintain the base performance well, the
accuracy of new classes cannot meet the practical need. Cen
et al. [4] extended the open-world problem to the seman-
tic segmentation for LIDAR point clouds. Zhao et al. [49]
proposed an effective static-dynamic co-teaching method
which can incrementally detect novel classes without revis-
iting any previous training samples.

2.4. Out-of-distribution detection

Out-of-distribution (OOD) detection aims to detect test
samples drawn from a different distribution from training
samples and maintain the classification performance of in-
distribution (ID) data. For FSCIL in 3D object recogni-
tion, new samples during the incremental sessions can be

regarded as OOD data compared to base class examples.
Several methods [9, 11, 12, 33, 36] have been proposed for
OOD detection, and those methods can be divided into three
categories: discriminative methods [12, 32, 33, 36, 47], gen-
erative methods [11, 45], and classifier-based [9, 13] meth-
ods. Classifier-based methods need extra OOD data to train
a binary classifier, and generative-based methods generate
pseudo-OOD data. All the discriminative methods are ap-
plied to the classifier after training and it does not change
the original training objective.

3. Methodology
3.1. Problem definition

Let us formalize the definition of cross-domain FSCIL
for point-cloud recognition. The base classes set and new
classes set are represented by Cbase and Cnew, respec-
tively. Base classes have sufficient instances N0 for train-
ing while new classes come in data streams denoted as
Lt = {xt

i, y
t
i}

Nt
i=1, t ∈ {1, 2, ..., T} with Nt(Nt ≪ N0)

samples. We denote each data stream as a session and the
class set in t-th session is denoted as C(t). Note that for all
t1 ̸= t2, C(t1) ∩ C(t2) = ∅. The base classes set is de-
noted as C(0) and the new classes set in the t -th session is
denoted as Cnew =

∑t
i=1 C(i)(t ≥ 1). In the t-th training

session, the model can only access the classes set C(t) and
a limited buffer B(t). In the t-th testing session, the model
needs to evaluate all the seen classes {C(0), C(1), ...C(t)}.
We decompose the model into three modules: feature ex-
tractor f(·; θ) with the parameter θ, projection layers g(·;φ)
with parameter set φ, and the linear classification layer with
parameter set ϕ. The feature extractor defines the high-
dimension feature space F ⊆ Rh. The projection layer
maps the high dimension feature F ⊆ Rh into the lower
dimension feature F ⊆ Rd. The classification layer with
the parameter ϕ outputs the probability of all classes. The
whole parameters of the model in the t-th session can be
denoted as Mt = {θt, φt, ϕt}. We regard the parameter set
{φt, ϕt} as the task-specific parameters and θt as the gen-
eralizable parameters that are fixed during training.

3.2. Overview

The whole pipeline of our proposed method is shown
in Fig. 2. We decouple the whole learning process into
the base classes training stage and incremental classes (new
classes) training stage and train their classifier respectively.
Thus, the goal of FSCIL is to learn the classification proba-
bility p(Ck,i0 |x) and the probability can be decoupled into
two probabilities, in-task probability p(Ck,i0 |x ∈ Ck) and
task-prediction probability p(Ck|x) the same as [15]. The
classification probability can be defined as

p(Ck,i0 |x) =
∑
k=0,1

p(Ck|x)p(Ck,i0 |x ∈ Ck) (1)
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Figure 2. The proposed framework for incremental point-cloud recognition. The model in the base session is trained with a cosine classifier
on a large synthetic dataset. In the incremental sessions, part of the parameters of the model is modified with few-shot real-world samples.
At inference, samples are first identified as the base or new classes and then passed to different branches of the model for prediction.

Figure 3. Histograms of the maximum of logits over all classes.
The samples of base classes are in red and the samples of new
classes are in blue. (a) Standard cross-entropy. (b) Cross-entropy
with the scaled cosine classifier.

where C0 = Cbase, C1 = Cnew, i0 stands for a specific class
in the base classes set or new classes set. We use the base
model as the OOD detector to predict whether test samples
belong to the base classes training stage or the new classes
training stage. As deep layers learn task-specific informa-
tion, we retain the deep layers of the base model and add
an extra block for new class training. To further alleviate
the new classes forgetting, we adopt soft label and hard la-
bel replay. In the testing stage, we first discriminate the
base/new classes and then pass them to the corresponding
classifier. Effectively discriminating between the base and
new samples is essential for obtaining high performance.

3.3. Base-classes training with a cosine classifier

As base classes have abundant training instances, the
model trained in the base session is equipped with strong

feature representation ability, and the confidence in the pre-
dicted results should also be relatively high. Thus, we
utilize the base model as an OOD sample detector to dis-
criminate base samples and new samples during the testing
stages. The base model needs to maintain the classification
ability of base class samples (ID data) while being able to
detect new samples (OOD data) without access to new sam-
ples. Since the softmax function may smooth the confidence
of the model predictions, we use the maximum logit instead
of Maximum Softmax Probability (MSP) as the score to dis-
criminate the ID/OOD samples.

Most methods use a linear classifier in the base model
and optimize the standard cross-entropy loss, which is for-
mulated as

Lce = −log
ew

T
c f+bc∑C(0)

i=1 ew
T
i f+bi

, (2)

where W = [w1, w2, .., wC(0)] is the weight of the classi-
fier layer and b = [b1, b2, .., bC(0)] stands for the bias of
the classifier layer. We suppose new classes have a low
logit response, and base classes should have a high logit
response. However, as shown in Fig. 3, when training the
base model with standard cross-entropy loss, the maximum
logit exhibits less distinguishable information between base
classes (ID data) and new classes (OOD data). There is a
large overlapping area between maximum logits, and it is
hard to classify the base and new classes through the logits.
Additionally, since the logit outputted by the linear classi-
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Figure 4. Results of different fine-tuning methods w and w/o re-
play in the first incremental session. Accall stands for the accu-
racy for all classes, and Acchar stands for the harmonic accuracy
of base and new classes.

fier is unbounded, it is hard to define a logit threshold which
is crucial for classifying base samples and new samples.

As shown in Fig. 3, when we replace the standard
classifier with a cosine classifier, the maximum logits are
bounded in [-1,1] and are more discriminative between the
base and new classes. Thus, we train the base model us-
ing the softmax of scaled cosine similarities instead of the
ordinary softmax of logits. The loss is formulated as

Lb = −log
eτsc∑C(0)

i=1 eτsi
, (3)

where sc =
wT

c f
||wc||.||f || stands for the cosine similarity of the

feature f and the weight w of the classifier layer, and τ is a
scale factor.

3.4. Incremental-classes training with dual replay

Some methods freeze the whole backbone and only train
the new classifier layer to avoid forgetting base classes.
However, when base classes and incremental classes come
from different domains, only fine-tuning the linear classi-
fier layer cannot guarantee the good performance of the new
classes. As shown in Fig. 4, when only training the classi-
fier layer, the accuracy of new classes is much lower. We
initialize the f(·; θt) using the base model f(·; θ0) and then
freeze it to avoid over-fitting in the incremental training ses-
sion. As shallow layers tend to learn generalized represen-
tations, we only fine-tune deep layers.

Moreover, we also adopt the cosine classifier in the in-
cremental session as it can solve the norm and bias [41]
problem usually encountered in FSCIL. To further alleviate
the forgetting of past new samples, we use a small buffer
that stores only one instance per past class. As soft labels
contain more information than one-hot labels, we also store
the logits of the old model for past samples. Although soft
labels contain more information than hard labels, we also
use hard labels as auxiliary information to avoid the mis-
classification of the soft labels produced by the model. It is
an effective way to avoid the incremental model mimicking
incorrect information from the previous model. Through
the hard label and soft label replay, the model can preserve
more information about past classes.

We train the classification layer and projection layer with
the normalized cross-entropy loss and logit match loss. We
used mean squared error (MSE) instead of KL divergence
the same as [19] because logit matching has better general-
ization ability. The total loss is defined as

Lt = −
Nt+NB∑
n=1

log
eτs

n
c∑Cnew

i=1 eτs
n
i

+

NB∑
n=1

||ot−o(t−1)||2, (4)

where Nt is the number of new training samples in the ses-
sion t , NB stands for number of the samples in the buffer
B, o stands for the output logits and Cnew stands for the all
incremental classes till session t. For each session, we ran-
domly select one example of each class and put them into
the buffer Bt which is defined as

Bt =

C(t)∑
j

{xi
j , y

i
j , o

i
j}(i = 1) ∪ Bt−1, t > 1. (5)

The buffer Bt is empty in the first session as we retain no
base sample and only update in the incremental sessions.

3.5. Testing pipelines with base/new detection

A robust base model should have a high response for
base class testing samples (i.i.d. with the training samples)
and a low response for new class testing samples out of the
distribution. It is supposed that the output of the base model
has a lower response to new classes and a much higher re-
sponse to base classes. Thus, we use the output of the base
model to detect base classes and new classes. For the in-
put x, we compute the cosine similarity cosθi =

wT
i f

||wi||.||f ||
through the base model. We choose the maximum cosine
similarity as the binary classification score

S(x) = max(cosθi)
C(0)
i=1 , (6)

where x is the 3D point object input and C(0) is the class
set of base classes and we set a threshold γ to classify the
base and new classes. The detection of base classes and new
classes can be regarded as a binary classification problem

G(x) =

{
0 S(x) ≥ γ

1 S(x) < γ
(7)

We set the label of all base class examples as 0 and all incre-
mental samples as 1. By convention, samples with higher
scores S(x) are classified as base classes and vice versa.
As we get the predicted task ID, we can decouple the base
classes and new classes testing. The classifier output can be
formulated as

o(x) =

{
ϕT
0 g(f(x, θ0), φ0) G(x) = 0

ϕT
t g(f(x, θ0), φt) G(x) = 1

(8)

where G(x) is the binary label (base or new) of the input
data x and o(x) is the output logit.
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4. Experiments
4.1. Datasets and evaluation

Datasets. We use four 3D object classification datasets
including two synthetic datasets (ModelNet [40], ShapeNet
[5]) and two real-scanned datasets (CO3D [30] and
ScanObjectNN [33]). We construct three datasets the
same as paper [8] which contains three cross-domain FS-
CIL tasks, e.g., ModelNet → ScanObjectNN, ShapeNet →
CO3D and ShapeNet → ScanObjectNN. For ModelNet →
ScanObjectNN (M2S), we choose 26 classes from Model-
Net as the base classes and the incremental sessions contain
11 classes from ScanObjectNN. And for the ShapeNet →
CO3D (S2C), 39 classes from the ShapeNet are chosen as
base classes, and 50 classes from CO3D are used as incre-
mental classes. For the ShapeNet → ScanObjectNN (S2S),
we choose 44 base classes from ShapeNet and use all of the
classes of ScanObjectNN as the incremental classes. We
use all the training samples from base classes in the base
session training and randomly select 5-shot samples from
each new class for incremental sessions.

Evaluation Metric. The SOTA [8] method only reports
the total accuracy. However, this evaluation cannot reveal
the balance between forgetting the old class samples and
learning the new class. The majority (70% ∼ 80%) of the
test samples come from the base class, and only a tiny frac-
tion of the test samples are new classes. The total accu-
racy would be high if the model does not learn new classes
and only retains the base class classification ability. Thus,
we use a more reasonable evaluation metric proposed in the
paper [24] to represent the model’s ability to balance base
classes and new classes. We formulate the harmonic accu-
racy as

Ah =
2×Ab ×An

Ab +An
, (9)

where Ab is the accuracy of the base classes and An stands
for the accuracy of new classes. Additionally, we report the
performance of the base classes and the new classes in each
learning session.

4.2. Implementation details

We use DGCNN [35] as the backbone for all the com-
pared methods. We adopt the farthest 1024 points as the
model input, the same as [8] for a fair comparison. We train
the base model for 50 epochs using the Adam optimizer and
set the batch size as 32. The learning rate is initialized to
0.0001 with decay by a factor of 0.5 in epoch 30. For the
training in incremental sessions, the learning rate is 0.001
for all the compared methods, and in our proposed method,
the initial learning rate is 0.0005. The epochs in incremental
sessions are set as 60. To explore different backbones, we
also use PointCLIP [46] as the backbone which shows sig-
nificant performance improvement in the new classes. We

fine-tune the visual encoder and text encoder in the base
session and only train the adapter in the incremental session
to avoid over-fitting.

4.3. Comparison with SOTA

We compare our methods with several proposed SOTA
FSCIL methods for image classification and one method [8]
for 3D object recognition. FT is regarded as lower-bound
of the proposed setting which fine-tunes the whole network
initialized with the previous model without any past exam-
ples. In joint training, incremental classes are jointly trained
using all samples of the classes. However, joint training can
not be regarded as the upper bound as it tends to classify the
new classes into base classes which harms the performance
of novel classes. LwF [18] is a no-rehearsal-based method
that uses distillation loss to regularize the change of param-
eters. ScaIL [3], IL2M [2], and Micro [8] all store examples
of base and new classes. FACT [50] and ALICE [24] store
prototypes of past classes. Our method does not store any
base samples and only constructs a small buffer to store
past few-shot new samples and logits of the past model.

ModelNet → ScanObjectNN. We evaluate the perfor-
mance of our proposed method on the M2S dataset to vali-
date its effectiveness. Tab. 1 shows all the compared results,
where our method outperforms other methods by a large
margin. FACT is the prototype-based method that greatly
alleviates the forgetting of base classes. However, the per-
formance of new classes of our method in the last session
surpasses FACT by a substantial margin. ALICE also uses
the cosine classifier and data augmentation for base session
training, but it tends to maintain the performance of base
classes and have a lower accuracy of new classes. Micro
has the strongest ability to maintain the performance of old
classes but has the lowest performance in new classes. The
best average harmonic accuracy confirms that our method
can better learn new classes while preserving the perfor-
mance of old ones.

ShapeNet → ScanObjectNN. As shown in Tab. 2, our
approach outperforms other proposed methods by a large
margin. LwF which retains no old examples performs worst
due to its severe forgetting of past samples. Since ScaIL and
IL2M store limited old samples, the performance drop of
base classes is much lower than LwF. Our method outper-
forms ScaIL and IL2M both in the learning of new classes
and the ability to maintain the classification ability of base
classes. While the performance drop of base classes is
the lowest in FACT, the performance of new classes is the
worst. Our method strikes a better balance between learn-
ing new classes and maintaining base class performance.
Furthermore, our approach outperforms Micro, recent work
on FSCIL for 3D object recognition, with a higher average
harmonic accuracy of 55.0% vs. 20.0%. When we replace
DGCNN with PointCLIP as the backbone, the performance
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Method Session-0 Session-1 Session-2 Session-3 Incre. Avg↑
Base Base New Har Base New Har. Base New Har. Base New Har.

Joint 90.8 78.1 18.7 30.2 71.6 22.4 34.1 72.0 24.8 36.9 73.9 22.0 33.7
FT 90.8 20.5 44.9 28.1 0.0 17.3 0.0 0.0 7.8 0.0 6.8 23.3 9.4

LwF [18] 90.8 17.6 14.7 16.0 8.0 11.5 9.4 6.7 3.8 4.8 10.8 10.0 10.1
ScaIL [3] 90.8 51.1 43.1 46.8 47.1 27.6 34.8 41.3 16.4 23.5 46.5 29.0 35.0
IL2M [2] 90.8 50.3 40.0 44.6 49.7 26.5 34.6 48.5 15.4 23.4 49.5 27.3 34.2

FACT [50] 90.5 83.8 12.0 21.0 74.5 4.8 9.0 74.2 2.9 5.6 77.5 6.6 11.9
Micro [8] 87.1 85.0 1.8 3.5 80.2 4.8 9.1 75.0 2.9 5.6 80.1 3.2 6.1

ALICE [24] 88.7 85.0 10.7 19.0 84.2 9.9 17.7 83.2 6.1 11.4 84.1 8.9 16.0

Ours (DGCNN) 90.7 72.8 61.8 66.8 72.8 43.4 54.4 72.8 29.3 41.7 72.8 44.8 54.3
Ours*(PointCLIP) 92.2 71.1 54.2 61.5 71.1 41.8 52.7 71.1 38.9 50.3 71.1 45.0 54.8

Table 1. Comparison with SOTA methods on M2S dataset. ‘Base’ stands for the accuracy of base classes, and ‘New’ represents the
accuracy of all the incremental classes till t-th the session.

Method Session-0 Session-1 Session-2 Session-3 Incre. Avg↑
Base Base New Har Base New Har. Base New Har. Base New Har.

Joint 87.9 52.6 9.7 16.4 49.1 11.2 18.2 45.0 15.5 23.1 48.9 12.1 19.2
FT 87.9 4.1 23.1 7.0 0.0 16.0 0.0 0.0 5.0 0.0 1.4 14.7 2.3

LwF [18] 87.9 20.3 25.6 22.6 13.3 8.8 10.6 1.1 8.4 1.9 11.6 14.3 11.7
ScaIL [3] 87.9 64.3 28.6 39.6 60.3 16.9 26.4 57.4 9.5 16.3 60.7 18.3 27.4
IL2M [2] 87.9 70.2 18.1 28.8 63.5 16.7 26.5 60.8 13.0 21.4 64.8 15.9 25.6

FACT [50] 82.3 81.6 9.7 17.3 80.0 4.2 8.0 78.2 3.8 7.3 79.9 5.9 10.9
Micro [8] 84.2 75.1 12.6 21.6 70.5 13.6 22.8 68.5 8.8 15.6 71.4 11.7 20.0

ALICE [24] 77.8 71.2 8.4 15.0 69.8 11.4 19.6 69.0 9.8 17.2 70.0 9.9 17.3

Ours (DGCNN) 87.1 76.6 60.1 67.4 76.6 38.2 51.0 76.6 33.4 46.5 76.6 43.9 55.0
Ours*(PointCLIP) 89.6 80.8 62.2 70.3 80.8 44.4 57.3 80.8 33.9 47.8 80.8 46.8 58.5

Table 2. Comparison with SOTA methods on S2S dataset. ‘Base’ stands for the accuracy of base classes, and ‘New’ represents the accuracy
of all the incremental classes till t-th the session.

of the new class increases due to its excellent performance
for few-shot point-cloud recognition.

ShapeNet → CO3D. The ShapeNet→ CO3D dataset
has the longest number of tasks and it is the most compli-
cated of all datasets. We report the class-wise average accu-
racy and harmonic accuracy of each session in Fig. 5. The
prototype-based methods have high class-wise average ac-
curacy which reveals it can better maintain the performance
of base classes. However, the harmonic accuracy of FACT
is much lower than ours in the last session. When freez-
ing the whole network and saving prototypes of old classes
can maintain the performance of base classes but performs
worse for the new classes. Our method outperforms Micro
in both class-wise average accuracy and harmonic accuracy.

4.4. Ablation study

Different base model training strategies. In this sec-
tion, we compare different training methods on the base ses-
sion and evaluate their ability to detect base classes and in-
cremental classes. We regard base classes as ID data and all
the incremental classes as OOD data. As base classes/new
classes detection is a binary classification problem, we use
one standard metric: Area Under the ROC Curve (AUROC)

Figure 5. Comparison with SOTA methods on S2C dataset. We
report the class-wise average accuracy and harmonic accuracy.

which is widely used in evaluating binary classification per-
formance and also commonly used in OOD detection tasks.
For the OOD score, we adopt two simple but effective score
functions MSP [12], and MLS [34]. As shown in Tab. 3,
using the cosine classifier achieves the best OOD detec-
tion performance ( the highest AUROC) of all the compared
methods, and the incremental performance is the best (the
highest average harmonic accuracy).

Different base/new detection methods. We also com-
pare our method with other detection-based methods, in-
cluding confidence-based [38] and learning-based [38]. The
confidence-based method compares the maximum proba-
bility of the base model output and the incremental model
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Method MSP [12] MLS [34] Task Per.
AUROC ↑ Avg(Har.) In Acc

Cross Entropy 87.4 89.9 42.3 87.6
LogitNorm [36] 86.5 85.9 42.4 87.4
CenterLoss [37] 90.7 92.5 50.0 87.3
Cosine(τ=30) 86.4 92.6 55.0 87.1

Table 3. Different base model training methods in S2S dataset.
AUROC stands for the performance of base/new class detection
(higher is better). In Acc is the accuracy of base classes. Average
harmonic accuracy (Avg) is used to evaluate the performance of
the incremental tasks.

Method Session-1 Session-2 Session-3

Upper Bound 73.1 57.8 52.3

Confidence-Based [38] 57.2 42.0 36.4
Learning-Based [38] 8.7 13.4 9.4

Ours 67.4 51.0 46.5

Table 4. The harmonic accuracy of different detection methods in
the S2S dataset.

output. As shown in Tab. 4, the harmonic accuracy of the
confidence-based method in each session is nearly 10 points
(36.4% vs. 46.5%) lower than our method. The harmonic
accuracy of the learning-based method is extremely lower
than our method due to the binary classifier tends to clas-
sify all the examples to the base classes.

Different incremental models training methods. We
compare three fine-tuning ways: 1) only fine-tuning the
classifier layer; 2) fine-tuning the projection layers with the
classifier layer, and 3) fine-tuning the whole network. Be-
sides that, we also compare our simple fine-tuning meth-
ods with one cross-domain few-shot learning method [22].
As shown in Tab. 5, the harmonic accuracy is the high-
est when fine-tuning the last three layers. Fine-tuning the
last three layers outperforms the second-best results, fine-
tuning the whole network by up to 4.9% in the last session
as it can somewhat avoid over-fitting. When fine-tuning the
last layer, the channel importance method [22] outperforms
the fine-tuning ones, but the whole performance is much
lower than fine-tuning the previous three layers. As shown
in Tab. 6, only storing one example of past classes can lead
to 3.5% performance improvement in the average harmonic
accuracy. Compared to directly using the one-hot label of
the past samples, matching the soft label can better retain
the performance of past classes. When retaining both the
hard labels and soft labels for replay, the harmonic accu-
racy achieves the best.

Discussion. As there exists the label and domain shift
between base samples and new samples, the OOD detection
performance is better when the difference between ID data
and OOD data is significant. We are curious whether our
approach still performs well when the new class samples
and base class samples come from the same dataset. As
shown in Tab. 7, the high last and average accuracy have
confirmed that our method can generalize to the standard

Method Session-1 Session-2 Session-3

Harmonic Accuracy
channel import.(0.5) [22] 51.0 35.5 22.3
channel import.(1.2) [22] 51.0 33.9 23.1

finetune last one 42.5 34.4 19.5
fine-tune last three 67.4 50.0 41.4

fine-tune all 65.2 46.3 36.5

Table 5. Results of different training methods in S2S dataset.

Method Session-1 Session-2 Session-3 Avg

Harmonic Accuracy

No Label 67.4 47.0 33.8 49.4
Hard Label 67.4 50.0 41.4 52.9
Soft Label 67.4 50.4 45.6 54.5

Hard+Soft Label 67.4 51.0 46.5 55.0

Table 6. The harmonic accuracy in each incremental session of
different replay methods in the S2S dataset.

Method Sess.1 Sess.2 Sess.3 Sess.4 Sess.5 Avg ↑
FACT [50] 90.4 81.3 77.1 73.5 65.0 77.5
Micro [8] 93.6 83.1 78.2 75.8 67.1 79.6

Ours 93.9 78.9 77.6 74.8 73.2 79.7

Table 7. Results in ModelNet dataset. We report the class-wise
average accuracy in each session.

FSCIL learning where the detection of base and new classes
can be regarded as the open-set problem.

5. Conclusion
This paper focuses on how to balance the performance of

base classes and new classes during the FSCIL process for
point-cloud recognition, where the base session may con-
tain many synthetic objects, and the coming data is from
the real world. We discriminate between the base and new
classes from an OOD detection perspective and use the
maximum cosine logit of the base model as the score. Then,
we adopt the two-branch structure to avoid catastrophic for-
getting of the base classes. By discriminating base and new
samples to achieve parameter isolation, the model can bet-
ter adapt to new classes without sacrificing the performance
of base classes. To better mitigate the forgetting of incre-
mental classes, we adopt the soft label and hard label replay
together to retain the performance of past new samples. We
conduct extensive evaluations of the proposed method on
three synthetic-to-real point-cloud datasets and the results
show the superiority of our proposed method.
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