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Abstract

We propose an appearance-based curriculum (ABC) for
a semi-supervised learning scenario where labeled im-
ages taken from limited angles and unlabeled ones taken
from various angles are available for training. A common
approach to semi-supervised learning relies on pseudo-
labeling and data augmentation, but it struggles with large
visual variations that cannot be covered by data augmen-
tation. To solve this problem, ABC incrementally expands
the pool of unlabeled images fed to a base semi-supervised
learner so that newly added data are the ones most sim-
ilar to those already in the pool. This way, the learner
can assign pseudo-labels to the new data with high ac-
curacy, keeping the quality of pseudo-labels higher than
that when all the unlabeled data are processed at once,
as customarily done in existing semi-supervised learning
methods. We conducted extensive experiments and con-
firmed that our method outperforms the state-of-the-art
semi-supervised learning methods in our scenario.

1. Introduction

We study a scenario where labeled training images taken
from limited angles and unlabeled ones taken from various
angles are available for training. Such settings are signifi-
cant in real-world applications. For example, consider prod-
uct recognition (Fig. 1 (a)). One can obtain annotated im-
ages from a digital catalog, typically one or two images per
product taken from the front. On the other hand, unlabeled
images can easily be collected in shops or stores using se-
curity cameras from unconstrained viewpoints. If such data
can be used to train a product recognition model, annotation
costs are greatly reduced.

Such a combination of labeled and unlabeled data is nat-
urally handled using semi-supervised learning [7,37]. It is a
subfield of machine learning much older than deep learning,
but in the era of big data, its importance has become greater

(a) Product recognition.

(b) Schematic figure of appearance-based curriculum.

Figure 1. Overview of the problem setting and our method. (a)
Product image recognition as an example of our problem set-
tings. The labeled images in the catalogs are taken from the front,
and unlabeled images from security cameras in stores are taken
from various angles. (b) Our method. Unlike conventional semi-
supervised methods that process all the unlabeled data at once,
unlabeled data are fed into the training step by step in the order of
similarity.

than ever because nowadays datasets that are too large to
annotate fully are widely available. In the aforementioned
example of product recognition, a large retail chain might
be able to collect images from stores located across the
country, and the dataset size could easily exceed the limit
of the annotation budget. Motivated by such problems, re-
searchers have developed numerous semi-supervised learn-
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Figure 2. Overview of ABC learning. In the first phase, it constructs a curriculum using the ranking algorithm, which determines the
schedule along which the unlabeled data are fed to a semi-supervised learning algorithm. The pool of unlabeled images used in the training
is gradually expanded by incrementally adding new images that are most similar to those already in the pool. Then, in the second phase,
the semi-supervised learning algorithm is executed step by step following the constructed curriculum.

ing algorithms for deep learning [32, 34].
Recent approaches to deep semi-supervised learning

have combined pseudo-labeling strategies with data aug-
mentation. For example, FixMatch [27], one of the state-
of-the-art semi-supervised learning algorithms, is designed
by combining data augmentation-based consistency regu-
larization and a pseudo-labeling strategy. Such approaches
implicitly assume that most of the unlabeled data can be
covered by data augmentation.

Although the assumption is helpful for studying semi-
supervised learning algorithms, it is too idealized for our
purpose. In reality, the labeled data are so sparse in the sup-
port of the data distribution that data augmentation is not
enough to cover the distribution. Indeed, our scenario is
hard for conventional algorithms because widely available
data augmentation cannot transform a photo taken from the
front into, e.g., the one taken from the back. Therefore, we
need a novel approach that does not rely on such an assump-
tion.

In this paper, we propose Appearance-Based Curricu-
lum (ABC) learning to tackle this problem. The key in-
sight behind ABC learning is that even the conventional
semi-supervised methods can handle unlabeled images with
shooting angles close enough to those of labeled ones be-
cause they have similar appearances. Therefore, by grad-
ually expanding the camera angle range of unlabeled data
consumed by the model in training, pseudo-labels can be
assigned with high accuracy, even to images with distant
angles (Fig. 1 (b)). A downside of this method is that
it requires the camera angle information. To circumvent

this limitation, we also propose two surrogate measures of
camera angle similarity, local-descriptor-based and global-
feature-based, that can be used when angle information
is unavailable. Extensive experiments we conducted us-
ing the public and our privately collected datasets demon-
strate that our method outperforms the state-of-the-art semi-
supervised learning methods in our scenario.

2. ABC learning

In this section, we introduce ABC learning for semi-
supervised scenarios in which unlabeled images taken from
various angles are available. The core hypothesis is that a
model trained on labeled data can generate accurate pseudo-
labels of unlabeled instances “similar” to the labeled ones.
In our scenario, we adopt resemblance in the appearance
and the camera angles as the similarity. To substantiate this
idea, we propose to expand gradually the pool of unlabeled
data used in semi-supervised learning so that newly added
data are the ones most similar to the labeled data or those
already in the pool. This way, the quality of pseudo-labels
should be higher than that when we use all the unlabeled
data simultaneously.

Our framework consists of two phases, as shown in
Fig. 2. The first is to construct a curriculum by a rank-
ing algorithm that determines the order in which unlabeled
data are fed to a given semi-supervised learning algorithm
(Sec. 2.1). The second is the training phase to execute semi-
supervised learning following the schedule set by the first
phase (Sec. 2.2). This is a generic framework that relies on

2781



Algorithm 1 Ranking algorithm of unlabeled data

Input: Labeled data DL = {(xi, yi)}NL
i=1, unlabeled data

DU = {xi}NU
i=1, image-to-image-set distance dist, the

number of object categories K
Output: Sorted list of unlabeled data W

1: U ← DU

2: Vc ← {(x, y) ∈ DL | y = c} for each class c
3: W ← [ ]
4: repeat
5: for c = 1, . . . ,K do
6: x← argminx∈U dist(x, Vc)
7: U ← U \ {x}
8: Vc ← Vc ∪ {x}
9: W ←W + [x]

10: end for
11: until U is empty
12: return W

the similarity between an image and a set of images, or the
distance function, which the ranking algorithm utilizes in
sorting unlabeled images from easy to hard. The design
of the distance function is the key to the success of this
framework. In Sec. 2.3, leveraging the current scenario, we
propose three appearance-based distance functions between
object images that quantify visual (dis)similarity.

2.1. Constructing a curriculum

Algorithm 1 shows the ranking algorithm that deter-
mines how to expand the pool of unlabeled images given to
a semi-supervised learning algorithm. The algorithm first
initializes K bags of images with the labeled ones, where
K is the number of object categories. Then, it expands the
bag by adding the unlabeled image closest to the bag by
using the given distance function, dist, that quantifies the
closeness between an image and a set of images. This pro-
cess is repeated until all the unlabeled images are added to
the bags. The algorithm returns the order in which the un-
labeled data are picked in this iteration.

This process is similar to how the Dijkstra-Jarnı́k-Prim
(DJP) algorithm [9, 14, 24] selects a new node in finding
a minimum spanning tree in a weighted undirected graph.
However, our method is different from the DJP algorithm
in two ways. First, our method has several separate pools
for every category, which are initially filled with labeled in-
stances. This is to balance the distribution of unlabeled data
over categories, especially in the earlier stages. The second
difference resides in the distance function, dist, that quan-
tifies the (dis)similarity between an unused instance and an
existing pool of used data. In the DJP algorithm, dist, the
node-to-set distance, is defined as the minimum of node-

to-node distances (or weights, in the context of graph al-
gorithms), but we choose to use a function that does not
conform to this convention, as discussed in Sec. 2.3.

2.2. Training phase

Once the unlabeled data are sorted, we repeatedly run the
base algorithm following the determined ranking. Specifi-
cally, let SSL be the base semi-supervised learning algo-
rithm, n be the maximum number of steps, and W be the
ordered list of unlabeled data. Suppose that SSL has a stop-
ping criterion so that once it is satisfied, the execution is
suspended. Then, we can write the update rule of the model
parameters Θ and the checkpoint C as

Θ, C ← SSL(DL,W [: iNU/n],Θ, C), (1)

where DL is the labeled data, NU is the number of unla-
beled images, and W [: iNU/n] represents the first iNU

n en-
tries in W . The checkpoint C holds SSL’s internal state
so that the execution can be resumed with additional data
from the point of suspension. We can use an arbitrary semi-
supervised method for SSL if we equip it with some stop-
ping criterion. The initial value of Θ can be a random value
or that of some pretrained models, including the one fine-
tuned on the labeled data.

In this study, we used FixMatch [27] as SSL in
Eq. (1) because it is one of the state-of-the-art deep semi-
supervised methods and yet is simple and flexible enough
to accept add-ons like ABC. FixMatch assigns a pseudo-
label to an unlabeled image if the confidence of the model’s
prediction is higher than a preset threshold, so the number
of pseudo-labeled images varies along the course of train-
ing. This variation is used to determine when to proceed to
the next step. Specifically, we employ the Feed-on-Plateau
(FoP) criterion, which suspends the algorithm when the pro-
portion of pseudo-labeled images in the unlabeled set has
stayed within a preset width wth for a patience period tp.
We allow SSL to be completed before consuming all the
unlabeled images, which can be the case with adaptive stop-
ping criteria like this one, depending on the progress of
training. We set n as the number of outer repetitions in
Algorithm 1, which is approximately NU/K.

2.3. Distance function

So far, we have discussed the general framework that can
potentially be applied to various scenarios by designing an
appropriate distance function dist. In this section, we focus
on the situation in which labeled images taken from limited
angles and unlabeled ones taken from various angles are
available for semi-supervised learning.

The discussion can be simplified by utilizing dist, the
distance between an instance and a pool of instances, which
is defined with a distance function d that quantifies the
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(a) dangle (b) dlocal

(c) dglobal

Figure 3. Schematic images of the three distance functions. (a)
dangle measures the difference in the camera angles between the
two images. (b) dlocal utilizes key-point matching based on the
local descriptors like AKAZE [2] to quantify the similarity. (c)
dglobal is calculated using the cosine similarity between the two
feature vectors extracted by a learned feature extractor.

(dis)similarity between two instances. We specifically use
as dist the following form:

dist(u, V ) =
1

|V |
∑
v∈V

d(u, v). (2)

One may instead utilize the following form:

dist(u, V ) = min
v∈V

d(u, v). (3)

Intuitively, the latter selects a point closest to the edge of the
set, while the former prefers the one closest to the center of
the set. We choose the form of Eq. (2) because it is more
stable and robust against outliers. The following paragraphs
discuss the design of the instance-wise distance function d.

Under the current scenario, we hypothesize that two im-
ages of an object taken from similar viewpoints are similar
and that if one in such a pair is in a pool of labeled data, the
prediction on the other tends to be accurate. In this case,
an appropriate distance function can measure the similarity
of viewpoints. Because a viewpoint is characterized by the
spherical coordinates, i.e., the elevation angle and the az-
imuthal angle, a straightforward way to quantify the simi-
larity of two viewpoints is to use the following angle-based
distance function (Fig. 3 (a)):

d(∆θazim,∆θelev) =
√
(∆θazim)2 + (∆θelev)2, (4)

where ∆θelev is the difference of the elevation angles and
∆θazim is that of the azimuthal angles. This function can

be used in our framework when labeled and unlabeled data
have viewpoint information.

Because collecting information of camera angles is unre-
alistic in practice, we also propose using two distance func-
tions, dlocal and dglobal, that require no additional annota-
tion besides a small number of ground-truth labels as in reg-
ular semi-supervised learning. Instead of relying on extra
manual efforts to annotate images, they use local and global
appearance features that are either hand-crafted or learning-
based.

The local-descriptor-based distance dlocal utilizes off-
the-shelf hand-crafted local descriptors, such as a scale-
invariant feature transform (SIFT) [20], speeded up ro-
bust features (SURF) [3], KAZE [1], accelerated KAZE
(AKAZE) [2], and oriented FAST and rotated BRIEF
(ORB) [26] (Fig. 3 (b)). They were at the center of image
registration, object detection, and tracking until learning-
based approaches prevailed. They are still valuable for ap-
plications where collecting training data is infeasible. We
utilize them as dlocal because they are good at finding im-
ages of an object taken from similar angles without using
any training data.

Specifically, we use AKAZE [2] to extract keypoints
and local features and brute-force matching to match them
across two images. Then, the distance function dlocal is cal-
culated as the Hamming distance between local descriptors
for the compared images averaged over matched keypoints.
See Appendix A for an OpenCV implementation of dlocal.

The global-feature-based distance dglobal, on the other
hand, uses a pretrained model to extract global image fea-
tures (Fig. 3 (c)). Specifically, we first train a model on the
labeled data of the current task and then use its feature ex-
tractor fΘ to convert an image into a fixed-length feature
vector. The distance function dglobal between two image
instances u and v is calculated as one minus the cosine sim-
ilarity between the extracted feature vectors:

dglobal(u, v) = 1− fΘ(u) · fΘ(v)
∥fΘ(u)∥∥fΘ(v)∥

, (5)

where ∥fΘ(u)∥ is the L2 norm of fΘ(u).

3. Related work
Semi-supervised learning is a learning paradigm with

labeled and unlabeled data, and its performance has im-
proved substantially, especially in image classification
tasks. One commonly used approach for deep semi-
supervised learning is pseudo-labeling [19]; it assigns
pseudo-labels to unlabeled images for which the model’s
prediction score exceeds a threshold value. Another one
is consistency regularization, which enforces consistent
model predictions with different augmented images (e.g.,
Π-model [25], Mean Teachers [31], and VAT [21]). Meth-
ods combining these two approaches have also been
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proposed (e.g. ReMixMatch [5], UDA [33], and Fix-
Match [27]) and have achieved high accuracy on public
datasets such as CIFAR-10/100 [17] and ImageNet [8].

Label propagation (LP) [36] is a semi-supervised learn-
ing method that has existed since before the advent of deep
learning. LP constructs a graph representing each image as
a node and the similarity between images as an edge weight
and propagates labels from labeled to unlabeled nodes. In
contrast with other methods, LP leverages knowledge about
how to measure similarity between instances. This is simi-
lar in spirit to ABC learning, which uses similarity metrics
to construct a curriculum. However, as we will empirically
show, our method performs much better than LP because
ours can incorporate such knowledge into state-of-the-art
algorithms.

Curriculum learning [4] is a method of machine learn-
ing that consumes training data in the order of ”easy” to
”hard.” It reportedly can improve model performance in
many kinds of tasks [28]. Various data difficulty criteria,
such as annotation time [13] and classification loss [15, 18,
30], have been studied in image classification tasks. Some
previous studies also incorporate the curriculum idea into
semi-supervised learning [6, 35]. They use prediction con-
fidence to determine the curriculum, but the confidence
scores in deep learning are often misleading [11]. In con-
trast, ABC learning is based on the appearance of objects
and does not rely on the model’s confidence, thereby cir-
cumventing problems caused by over- or under-confidence.

4. Experiments
This section presents our evaluation of our method

(ABC) on three object recognition benchmarks. We com-
pared ABC with three deep semi-supervised learning algo-
rithms, Π-model [25], VAT [21], and FixMatch [27], as well
as LP [10, 36] and supervised learning.

4.1. Experimental setup

Datasets. We evaluated our methods on three datasets,
the MIRO dataset [16], DRINK dataset, and COIL-100
dataset [22]. They contains images of objects from vari-
ous angles. Moreover, the information of camera angles is
also included, which makes them useful for the purpose of
evaluating our method. Some basic statistics about these
datasets are summarized in Tab. 1.

MIRO [16] is a public dataset of commodity images from
various viewpoints. It contains 120 objects (12 objects per
class× 10 classes), and images of each object is taken from
160 angles (16 angles, ranging from 0 to 337.5◦ every 22.5◦

in azimuth, and ten angles, ranging from −90 to 90◦ ev-
ery 20◦ in elevation) (Fig. 4 (a)). In this study, we treated
this dataset as a 120-class object classification task. The
160 images of each object were split into the training, val-
idation, and test splits containing 80, 40, and 40 images,

(a) MIRO [16]

(b) DRINK

Figure 4. Illutration of MIRO and DRINK. (a) Images of the
Bus 1 class in the MIRO dataset. The ones taken from the camera
angles θ1,θ2, and θ3 are boxed in the red, green, and blue boxes,
respectively. (b) Concept images of the DRINK dataset.

respectively. Of the 80 training images, one image was se-
lected as labeled, and the remaining 79 were selected unla-
beled images. We chose three camera angles for labeled im-
ages: (θazim, θelev) = (180, 10), (270, 10), and (225, 50),
denoted by θ1,θ2, and θ3, respectively. We also evaluated
the case in which a labeled angle is randomly picked from
the three angles for each class; we denote this setting by θr.

We also privately collected DRINK, a real-world bever-
age product dataset, which contains images of 65 brands
available in Japan (Fig. 4 (b)). This dataset requires fine-
grained recognition based on patterns on the package sur-
face than general object recognition because the beverages
have a small variation in shape. Each product was placed
on a rotating stage with the representative side facing front
(θazim = 0◦) and shot at 0◦, 30◦, and 60◦ elevation angles
while rotating the stage in 5◦ increments. Of the 216 im-
ages for each product, 108 were used as training data, 54 as
validation data, and 54 as test data. Of the 108 train data,
we chose as labeled images the ones taken from the camera
angle (θazim, θelev) = (0, 0), while the others were chosen
as unlabeled images.

COIL-100 [22] is also a public dataset of commodity im-
ages from various viewpoints. COIL-100 contains images
of 100 objects. Each object was placed on a rotating stage,
and images were taken at every 5 degrees in a 360-degree
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# of classes Train Val Test Azimuth Elevation

MIRO [16] 120 80 40 40 0◦ : 22.5◦ : 337.5◦ −90◦ : 20◦ : 90◦

DRINK 65 108 54 54 0◦ : 5◦ : 355◦ 0◦ : 30◦ : 60◦

COIL-100 [22] 100 36 18 18 0◦ : 5◦ : 355◦ Fixed

Table 1. Dataset summary. Train, Val, and Test show the number of images per object class in the respective splits. Azimuth and Elevation
show the ranges of the azimuthal and elevation angles, respectively. The notation S◦ : I◦ : E◦ represents the regularly spaced angles from
S◦ to E◦ with the increments of I◦, including both ends. The elevation angle of COIL-100 is fixed at about 25◦.

rotation. The camera elevation angle was fixed. In the 72
images for each product, 36 were used as training data, 18
as validation data, and 18 as test data. In the 36 train data,
only the front image taken from θazim = 0◦ was considered
labeled, while images taken from other angles were consid-
ered unlabeled.

With all the datasets, the three splits were made in a way
in which the angular distribution of each split was nearly
uniform. This ensures that all the splits have similar distri-
butions of camera angles.
Implementation details. We used ResNet50 [12] as a clas-
sification model. In the experiments on MIRO and COIL-
100, it was initialized with the parameters of the model pre-
trained on ImageNet [8], while in DRINK, we randomly
initialized the model. The evaluation of semi-supervised
learning algorithms uses the exponential moving average of
model parameters over a training trajectory as in [27, 31].
We applied random flip and random crop as the data aug-
mentation unless otherwise noted. The parameters of the
entire model were optimized using SGD with Nesterov mo-
mentum [23, 29] of 0.9. For each setting, the learning rate,
the total number of training iterations, and some of the
algorithm-specific hyperparameters were tuned using grid
search. The complete list of hyperparameters is given in
Appendix B. We also note that we adopted dist(u,DL) in-
stead of dist(u, V ) in ABC with dangle.

We utilized the framework in [10] as the LP-based semi-
supervised learning. This framework uses transductive LP
to assign pseudo-labels to unlabeled data and feed them to
supervised learning. We used the method of [36] as a trans-
ductive method.

We also conducted experiments with three supervised
settings: Oracle, Supervised, and Supervised (w/ rot. aug.).
“Oracle” indicates fully supervised learning, i.e., using all
the training images as annotated data, while “Supervised”
indicates only one annotated image per object. “Supervised
(w/ rot. aug.)” is similar to Supervised but with the addi-
tional inclusion of rotational data augmentation.

4.2. Experimental results

Table 2 shows the results on the MIRO dataset. With
dglobal as a distance function, ABC outperformed all the

Accuracy [%]
θ1 θ2 θ3 θr

Oracle 99.9

Supervised 45.2 39.8 65.8 50.3
Supervised (w/ rot. aug.) 45.1 44.3 70.7 57.6

LP (local desc.) 41.2 37.6 68.7 48.2
LP (global feat.) 49.8 52.4 72.4 59.8

Π-model 36.6 37.0 66.9 47.8
VAT 42.6 40.4 71.0 51.1
FixMatch 39.3 43.5 65.4 50.7

ABC (dangle) 47.7 54.9 75.9 60.8
ABC (dlocal) 48.6 50.9 78.4 60.4
ABC (dglobal) 64.9 67.6 86.5 75.3

Table 2. Accuracy on the MIRO dataset. Each column shows
the results with labeled images taken from the given angle (see
Sec. 4.1). ABC (dglobal) outperformed the other methods. ABC
(dangle) and ABC (dlocal) also outperformed deep semi-supervised
methods.

baseline methods by a large margin. Although ABC with
dglobal achieved better accuracy than that with dangle or
dlocal, the latter still outperformed the deep semi-supervised
learning methods. For example, ABC with dglobal provided
an accuracy gain of more than 20% over FixMatch. Even
ABC with dlocal achieved 50.9% for θ2, compared with
43.5% for FixMatch. In fact, deep semi-supervised meth-
ods including FixMatch struggled with this dataset and even
failed to beat “Supervised,” depending on the camera an-
gle of a labeled image. On the other hand, LP showed
strong performance with the edge weights determined by
the global feature similarity. These results indicate the util-
ity and importance of incorporating appearance similarity
into semi-supervised learning in this scenario. We also note
that rotation data augmentation can boost supervised learn-
ing, but its utility depends severely on the camera angle of
labeled images. This reflects the fact that perspective pro-
jection and rotation transformations can mimic viewpoint
changes to some extent but not completely.
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Accuracy

Oracle 99.9

Supervised 46.4
Supervised (w/ rot. aug.) 36.1

LP (local desc.) 64.4
LP (global feat.) 50.1

Π-model 38.1
VAT 48.8
FixMatch 48.3

ABC (dangle) 79.9
ABC (dlocal) 81.4
ABC (dglobal) 71.5

Table 3. Accuracy on the DRINK dataset. ABC outperformed
the other methods. Among them, ABC (dlocal) and ABC (dangle)
achieved much higher accuracy than that of ABC (dglobal).

Accuracy

Oracle 100.0

Supervised 84.8

FixMatch 99.4

ABC (dangle) 100.0
ABC (dlocal) 98.7
ABC (dglobal) 99.4

Table 4. Accuracy on the COIL-100 dataset. ABC and the baseline
FixMatch both performed nearly perfectly.

Table 3 shows the results on the DRINK dataset. Again,
ABC outperformed all the other methods, but ABC with
dlocal and dangle this time performed much better than ABC
with dglobal. A similar trend was observed with LP, i.e.,
LP using the AKAZE descriptor achieved higher accuracy
with DRINK, while the global features were preferred in the
MIRO experiment. We will discuss this point in Sec. 4.3.

Table 4 shows the results on the COIL-100 dataset,
which consists of images taken at a fixed elevation angle.
Because no change occured in elevation angle, supervised
learning with only labeled data achieved high accuracy than
other datasets. Furthermore, FixMatch also achieved 99.4%
accuracy. Our method achieved almost the same accuracy
as FixMatch, demonstrating no adverse effects.

4.3. Analysis and ablation study

Quantity and quality of pseudo-labels. Here, we analyze
the effect of ABC on pseudo-labeling. Figure 5 visualizes
the accuracy of pseudo-labels and the proportion of pseudo-
labeled images in the bag of unlabeled data over training

iterations in the MIRO experiments.
With FixMatch, the number of pseudo-labels quickly

increased and most of the unlabeled images got pseudo-
labeled in the first half of training. At the same time, their
accuracy degraded fast from nearly 100% until it reached a
plateau at about 15K iterations. The last-iteration accuracy
was 65.8%. This was approximately equal to the test accu-
racy and reasonable because the unlabeled and test data had
similar distributions.

In contrast, ABC slowed the generation and deteriora-
tion of pseudo-labels. With dangle, almost all the images
were pseudo-labeled at about 50K iterations, but the rate
of pseudo-labeling was much slower in the early phase of
training. The accuracy stayed near 100% for about 15K it-
erations and then started to lower gradually to 74.9%. With
the other two distance functions, it took the whole train-
ing to assign pseudo-labels to the entire image pool. The
accuracy curves did not have large plateaus like the ones
observed in FixMatch and dangle. Instead, they steadily but
slowly degraded to 77.0% (dlocal) and 86.6% (dglobal).

These observations indicate that by controlling the order-
ing and speed of feeding unlabeled data, ABC exposes the
underlying learner to cleaner pseudo-labeled data. This, in
turn, leads to higher test accuracy.
When to feed additional unlabeled data. One important
factor determining the performance of curriculum learn-
ing is the timing to add new data or the stopping criterion
of SSL in Eq. (1). As explained in Sec. 2.2, we utilized
the Feed-on-Plateau (FoP) criterion, which suspends SSL
when the proportion of pseudo-labeled images in the unla-
beled set reaches a plateau. Here, we also present an exam-
ination of the simpler, Even-Interval (EI) criterion, which
feeds new unlabeled images at regular intervals. Specifi-
cally, if the curriculum has N steps and the total duration of
training is T iterations, then this schedule brings additional
data every ⌊T/N⌋ iterations.

We evaluated the schedules on the MIRO θ3 and DRINK
datasets. The results are shown in Tab. 5. Regardless of the
schedules, ABC outperformed the baseline FixMatch and is
robust to a change in the stopping criteria. In both cases,
ABC + FoP performed slightly better than ABC + EI. This
suggests that FoP is a sensible default that does not require
severe tuning.
Value of curriculum design. To quantify the importance
of good curricula, we examined a curriculum based on the
random ordering of unlabeled data. Specifically, we applied
the update rule Eq. (1) with a randomly ordered W . As
Tab. 6 shows, the randomized curriculum deteriorated the
accuracy to 62.3%, which is even worse than 65.4% of the
baseline FixMatch. On the other hand, ABC reached 75.9%
to 86.5%, depending on the distance function used to con-
struct the curricula. This suggests that the careful design of
our curriculum is a crucial factor leading to the success of
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(a) FixMatch (b) ABC (dangle) (c) ABC (dlocal) (d) ABC (dglobal)

Figure 5. Analysis of pseudo-labels during training on the MIRO θ3 dataset. The red marks represent the accuracy of pseudo-labels and
the blue marks represent the proportion of pseudo-labeled images in the set of unlabeled data. The number of pseudo-labels in ABC grows
much slower than that in FixMatch. Also, the accuracy of pseudo-labels stays higher in ABC than in FixMatch.

Accuracy
MIRO θ3 DRINK

FixMatch 65.4 48.3

ABC (dangle) + EI 74.4 79.5
ABC (dangle) + FoP 75.9 79.9

Table 5. Effect of timing of feeding the next unlabeled dataset on
the MIRO θ3 and DRINK datasets. The FoP criterion achieved a
slightly better accuracy than that of EI.

Accuracy

FixMatch 65.4

ABC (dangle) 75.9
ABC (dlocal) 78.4
ABC (dglobal) 86.5

Random order 62.3

Table 6. Effect of ranking strategies on the MIRO θ3 dataset. With
the random order, the test accuracy became lower than the baseline
FixMatch, indicating the importance of designing a good distance
function for ABC to perform well.

our method.
The number of AKAZE descriptors. Because dlocal re-
lies on the matching of AKAZE descriptors between im-
ages, having the sufficient number of key points is crucial
for the method to work successfully. In particular, the dis-
tance dlocal between two images cannot be defined if one
of them does not have any key point detected, and such an
image is not utilized in constructing a curriculum. An unla-
beled image with no key point detected is ranked the lowest
in ABC, while a labeled image without any key points is not
involved in the curriculum construction.

To understand the implication of this effect on the current
experiments, we counted the number of key points found.
Figure 6 shows the distribution of the number of AKAZE

Figure 6. Histogram of the number of the detected AKAZE de-
scriptors per image for each dataset. MIRO and COIL-100 have
the modes close to zero key points per image, while more than 100
key points are detected in images in the DRINK dataset.

descriptors per image. This revealed that MIRO and COIL-
100 had many images in which zero or very few key points
were detected. On the other hand, most of the images in
DRINK had 100 or more key points detected. This differ-
ence explains why ABC with dlocal outperformed ABC with
dglobal on this dataset. It also suggests that the distribution
of the AKAZE key points can be a good indicator of which
distance function to use with a given dataset.

5. Conclusion

In this paper, we proposed an appearance-based curricu-
lum (ABC) for a semi-supervised learning scenario where
labeled images taken from limited angles and unlabeled
ones taken from various angles are available for training.
ABC incrementally expands the pool of unlabeled images
fed to a base semi-supervised learner so that newly added
data are the ones most similar to those already in the pool
and that the quality of pseudo-labels is kept high during
training. Extensive experiments showed that our method
outperformed the state-of-the-art semi-supervised learning
methods in our scenario. Analyses suggested that ABC and
the proposed distance functions together succeeded in as-
signing correct pseudo-labels with high probability.
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