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Abstract

The widespread adoption of Neural Radiance Fields
(NeRFs) have ensured significant advances in the domain
of novel view synthesis in recent years. These models cap-
ture a volumetric radiance field of a scene, creating highly
convincing, dense, photorealistic models through the use
of simple, differentiable rendering equations. Despite their
popularity, these algorithms suffer from severe ambiguities
in visual data inherent to the RGB sensor, which means that
although images generated with view synthesis can visually
appear very believable, the underlying 3D model will of-
ten be wrong. This considerably limits the usefulness of
these models in practical applications like Robotics and
Extended Reality (XR), where an accurate dense 3D re-
construction otherwise would be of significant value. In
this paper, we present the vital differences between view
synthesis models and 3D reconstruction models. We also
comment on why a depth sensor is essential for model-
ing accurate geometry in general outward-facing scenes
using the current paradigm of novel view synthesis meth-
ods. Focusing on the structure-from-motion task, we prac-
tically demonstrate this need by extending the Plenoxel
radiance field model: Presenting an analytical differen-
tial approach for dense mapping and tracking with radi-
ance fields based on RGB-D data without a neural net-
work. Our method achieves state-of-the-art results in both
mapping and tracking tasks, while also being faster than
competing neural network-based approaches. The code is
available at: https://github.com/ysus33/RGB-
D_Plenoxel_Mapping_Tracking.git.

1. Introduction
In the computer vision field, a dense map can be de-

fined as a continuous 3D surface map generated using all
observed pixels in an image set. The RGB-D sensor is a

*Authors contributed equally to this work.

Figure 1. Visualization of the generated map and estimated trajec-
tory on Office-3 of Replica dataset. The figure illustrates the voxel
grid radiance field of the map.

popular sensor choice for creating dense maps due to its rich
geometric and photometric information. Dense maps are
very useful for many tasks, such as path planning and col-
lision avoidance in robotics, the interaction between real-
world geometry and digital objects in extended reality (XR),
and simply as maps for human inspection. However, deal-
ing with the prevalence of noise and missing measurements
in the sensor data and the sheer amount of data collected
can be challenging. In many cases, efficient processing
of such data may require the utilization of a GPU. Dense
maps can also be created from only RGB images, but this
requires some assumption regarding areas of the scene that
contain no gradients. Although dense mapping generally re-
quires more effort than sparse, feature-based mapping, they
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contain much more information, and tracking the camera
motion in a known environment with a good dense map is
highly accurate as all image and model information can be
used. This is opposed to sparse tracking, which only uses
a subset of the available information, usually in the form
of easily recognizable points in the images/model. There-
fore, dense tracking is positioned to result in a smoother and
more accurate trajectory.

The learned radiance field algorithms, such as Neural
Radiance Fields (NeRF) [20], were introduced as a math-
ematically simple formulation for creating photorealistic
dense models using RGB images. This works very well for
some types of scenes, especially object-centric and inward-
facing scenes and scenes with significant gradient cover-
age. These kinds of scenes significantly reduce the need to
make assumptions in the modeling stage, resulting in highly
accurate photogrammetry models. However, if you apply
these algorithms on outward-facing scenes and/or scenes
with sparse gradient coverage, they will be incapable of cap-
turing the geometry, and the view synthesis will not be valid
outside of the camera pose distribution that was used for
the training of the model. Imbuing the NeRF optimization
scheme to allow for full use of the RGB-D sensor removes
ambiguities in gradient-less regions of the scene and makes
it more useful for practical applications.

We base our work on the Plenoxel algorithm [11]: The
analytical radiance field representation that does not use a
neural network but rather a voxel grid representation. Build-
ing upon this representation, we make it more applicable
for practical tasks by augmenting the algorithm to incorpo-
rate depth data. We then implement a pose optimization
algorithm to track a camera throughout the scene, using
volumetric, dense image-to-model alignment based on the
radiance field rendering equations. We show the analyti-
cal derivations of all equations used for both optimization
strategies and implement them in CUDA for fast computa-
tion times. Leveraging the inherent speed of the Plenoxel
model of more than two magnitudes faster than the original
NeRF algorithm, we create a very efficient mapping algo-
rithm and a real-time, highly accurate tracking algorithm.

Our contributions are summed up as follows:

• Present a discussion on the differences between mod-
els for novel view synthesis and models for 3D recon-
struction and why this might lead to problems directly
attempting to use NeRF for many practical applica-
tions like robotics and XR.

• Derive the analytical derivative equations for mapping
and tracking in a voxel-based radiance field based on
RGB-D data for efficient optimization in CUDA.

• Showing improvement in both mapping and tracking
results compared to existing radiance field mapping
and tracking methods given the same time constraints.

2. Related Work

2.1. Dense Mapping and Tracking

Despite the usefulness of dense visual mapping and the
accuracy of dense tracking [10], dense mapping and track-
ing methods [15, 24] have received relatively little attention
compared to their sparse counterparts [9,22]. This is mostly
due to their technical and computational complexity as well
as their reliance on either a depth sensor or an assumption
for image regions with no gradients. Despite this, there have
still been several noteworthy papers on the topic in the past
few years: The DTAM algorithm [24] by Newcombe et al.
first proposed the idea of performing dense simultaneous lo-
calization and mapping (SLAM) by separating the problem
into alternating the tasks of updating a dense 3D model and
tracking the camera pose by aligning the camera image to
the model using randomly sampled image pixels. Kinect-
fusion [15] built on the premise , but distinguished itself
by relying only on a depth-only sensor and representing the
entire model as a truncated signed distance field, using the
iterative closest point algorithm for pose optimization. A
more recent RGB-D SLAM paper: Bad-SLAM [28] creates
a dense map based on surfels instead of individual pixels.
The surfels’ position, orientation, and size are optimized
with a clever bundle adjustment implementation.

The popularity of dense mapping and tracking has in-
creased through the use of deep learning-based meth-
ods [3, 33], often by the use of pixel-level depth estima-
tors. CodeSLAM [3] does this by training a variational
auto-encoder offline and estimating pixel depth based on
RGB images. DROID-SLAM [33] is a surprisingly robust
method compared to other pre-trained deep learning-based
SLAM algorithms, providing good results on several dif-
ferent datasets, even for some datasets not included in the
training set.

2.2. Radiance Fields

Neural Radiance Fields (NeRF) [20] is a new technol-
ogy that has taken the research community by storm. It
allows for the creation of photo-realistic, dense, volumetric
3D view synthesis models of real-world objects, only
requiring posed RGB images of the scene. NeRF natively
stores a model in a highly compressed format as a neural
network. The model is trained using ray-based volumetric
rendering functions for training on images using multi-view
consistency to produce a globally consistent model. Ever
since NeRF was proposed, there has been a lot of research
to expand its applicability:

Speed and efficiency. Despite the original NeRF’s re-
markable capabilities, early versions were hindered by
limitations of slow convergence rates. Numerous strate-
gies [2,25,38] have been proposed to improve its efficiency
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for both training and rendering. Several papers [11, 21]
also show that it is possible to improve the speed by several
orders of magnitude by changing the model representation.
Muller et al. [21] do this by utilizing a hash encoding
that enables disambiguation of hash collisions and con-
sequently allows a smaller neural network to represent a
larger scene. Fridovich et al. [11] completely discard the
neural network, favoring a voxel grid where each vertex
is modeled by 28 float values, with samples at arbitrary
locations are retrieved by linear interpolation of the
eight closest voxels. Direct data access greatly improves
the efficiency at the cost of increased memory consumption.

Depth guided NeRF. One direction of NeRF research
has been to incorporate depth sensors to aid conver-
gence speed [6] and geometric accuracy [7] of the NeRF
model. The optimization based on the depth data uses
the same underlying rendering equations as the color-only
optimization and integrates seamlessly with the base model.

Pose optimization. Wang et al. [34] have demonstrated the
possibility of optimizing intrinsic camera parameters along
with the neural radiance fields. This was followed by Yen
et al. [36], who proposed camera pose optimization based
on a trained NeRF model, using image-to-model alignment.
Lin et al. [19] went further and showed that given a coarse
initialization of the camera poses, the pose optimization for
all training images could be done simultaneously during the
training of the model. However, to improve both the radius
of convergence and performance, gradually, more layers
of frequency encoding had to be introduced during the
optimization process, which required human supervision
due to scene-specific variations.

Mapping and tracking. Due to NeRF’s simple formulation
of dense mapping and its small storage size, several authors
have attempted to use NeRF as a map representation in
dense SLAM algorithms [31, 35, 40]. The first to attempt
this for real-time processing was Sucar et al. [31], who used
the original NeRF model [20] and an RGB-D sensor both
for speed and to solve the geometric ambiguity problem
covered in Sec. 3. Although NeRFs are slow to train, the
rapid convergence speed in the earlier epochs is a great help
in achieving passable real-time performance. They showed
promising results in a room-scale scene, but an increase
in scene size would lead to catastrophic forgetting [12].
Zhu et al. [40] addressed the weakness of catastrophic
forgetting by storing values from the learned model in a
grid, which then would be queried by pre-trained decoder
networks. Their follow-up work in [39] continued this trend
of offloading tasks to pre-trained networks, replacing the
depth sensor with two convolutional networks predicting a
depth map and a normal map, respectively. Vox-Fusion [35]

Figure 2. Color and depth rendering from two different radiance
fields trained on office-2 in the Replica dataset: One trained with
an RGB-D sensor(left column) and the other one trained with only
an RGB sensor(right column), both trained on a large set of images
viewing the scene from several different angles.

RGB PSNR↑ Depth diff. (m/pixel)↓
RGB 30.612 0.6971
RGB-D 28.570 0.0090

Table 1. Comparison of radiance field color and geometry accu-
racy, including RGB and RGB-D sensor for training on Office-2
sequence of Replica dataset.

adopts a similar concept to [31] but achieves significantly
reduced memory consumption by dynamically allocating
sparse voxels based on an octree structure.

NeRF as visual SLAM backend. Notable but less relevant
papers also use NeRF models as a visually pleasing back-
end on existing sparse SLAM algorithms [4, 26]. Several
easy-to-use NeRF libraries [21, 32] use such an approach,
using methods such as [27] as a separate front-end to calcu-
late camera poses that are then used as input for the NeRF
model. We use an entirely different method that elegantly
utilizes the simple rendering equations of NeRF to optimize
both the camera pose and the map with the same equation.

3. Novel View Synthesis vs 3D Reconstruction
We want to emphasize the difference between a model

for novel view synthesis and a 3D reconstruction. A 3D
reconstruction is a task that aims at recreating an accurate
representation of the geometry of the target scene. View
synthesis, on the other hand, is used to recreate an accurate
representation of the appearance of the target scene. While
these two statements sound similar, they are not the same.
In their current form [1, 11, 20] novel view synthesis mod-
els are trained based on RGB data from a limited number
of views and will only produce reasonable novel appear-
ance renderings within the distribution of camera poses that
were used for training the model. In the case of an image
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Figure 3. Rendered RGB images on the same camera position from trained radiance field under ScanNet scene0207. From left to right, the
order is as follows: ground truth RGB image, from ours, from Vox- Fusion, and from NICE-SLAM.

rendered from a camera pose outside of the training pose
distribution, the image will most likely not correspond to
the expected result. This is because the underlying geome-
try from a series of images is ambiguous for areas of the im-
ages with no gradients, something that has been well-known
in the photogrammetry community for decades. However,
although the spatial geometry of such a region is unknown,
the appearance of the same image region is known, at least
locally, in the training pose distribution, allowing for the
production of a model that can produce highly convincing
images with incorrect underlying geometry.

This is exactly the reason why radiance models can be so
deceiving, but it also gives us a glimpse of our own faulty
assumptions when determining scene geometry. If we are
presented with an image from a novel view synthesis model
that produces an accurate appearance but contains an incor-
rect underlying geometry, we will not perceive the incorrect
model geometry but rather assume a geometry closer to the
true scene geometry because that intuitively makes more
sense. A good example of this can be seen in Fig. 2. Al-
though the model trained with the RGB sensor looks good
in the color rendering, we can see that the underlying geom-
etry is very different from what we would expect compared
to the radiance field trained with the RGB-D sensor.

The problem of ambiguous geometry can be mitigated
either by training on a scene with color gradients cover-
ing significant parts of the scene, thereby reducing the to-
tal possible ambiguity, or by training the model with train-
ing images covering a 360-degree sphere around the model
(inward-facing scene), effectively performing space carv-
ing [18]. This will encourage the model to approach the
true scene geometry. For many practical applications like
XR and robotics, these mitigation strategies are often infea-
sible and/or impossible. Consider, for instance, an example
of a room with monocolored walls (outward-facing scene).
There will be little to no color gradient on the walls, and
capturing all objects in the room from every angle places
significant requirements on the data capture process.

However, if a depth sensor is adopted, this problem can
be eradicated, as this allows for the estimation of a geomet-
rically correct model with just a very limited coverage of

the scene. A second, less ideal solution is to adopt an as-
sumption on the geometry. For instance, assume areas with
no color gradient are smooth, planar [24], or other more
advanced solutions like inference from a pre-trained neu-
ral network [8]. This would reduce the ambiguity of the
geometry but also induce a bias that might either help or
hinder the 3D reconstruction process depending on the as-
sumption’s correctness for any particular scene.

The RGB-D sensor is becoming more ubiquitous, pro-
viding an unbiased representation of the geometry and al-
lowing for easy integration. Additionally, the depth signal
is often a lower frequency signal than the color signal, and
therefore, it also helps increase the radius of convergence
when using dense image-to-model alignment. For these two
reasons, we focus on the use of the RGB-D sensor in this
work.

4. Volumetric Rendering Basics

All radiance field learning approaches share the vol-
umetric rendering equations initially described in [16]
and discretized in [20]. They explain how a pixel color
is rendered based on a volume containing continuously
valued implicit density and color functions.

Color rendering. Let Ĉ denote the rendered RGB color
value of a single pixel from the radiance field model. Ĉ is
obtained by accumulating N rendered sample values com-
puted by the density σi and color values ci for sample points
p⃗i along the ray r⃗ = o⃗ + ti · d⃗, i ∈ [0, 1, ..., N ]. o⃗ is the
camera center, d⃗ is the ray direction from the camera center
to the pixel in the image plane and ti is the distance from
the camera center. The distances between samples are de-
noted as δi. The discrete rendering equations can then be
expressed as follows:

Ĉ(σ⃗, c⃗) =

N∑
i=1

Ti(1− exp (−σiδi))ci, (1)
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where,

Ti = exp

−
i−1∑
j=1

σjδj

. (2)

The value Ti represents the amount of light transmitted to
sample i along the ray r⃗. This is essentially the remaining
light of a quota that is not reflected by all previous samples
j = [1, .., i− 1].

Depth rendering. Let D̂ denote the expected depth value
of a single pixel rendered from the radiance field model.
Depth D̂ can be estimated analogously to color rendering
by treating the sample distance ti from the camera as the
sample color value ci in Eq. (1), resulting in the following:

D̂(σ⃗) =

N∑
i=1

Ti(σ⃗)(1− exp (−σiδi))ti, (3)

with Ti(σ⃗) as defined in Eq. (2).

5. Method

5.1. Overview

Our proposed algorithm is based on the voxel grid rep-
resentation for radiance field optimization [11, 37] and is
divided into two separate parts: One offline mapping al-
gorithm using RGB-D data with known poses to create a
model of the scene, and one online tracking algorithm using
the map in an image-to-model alignment scheme for pose
optimization. All the partial derivatives of the loss function
needed for both tasks are analytically calculated and imple-
mented in CUDA for fast processing on GPUs.

5.2. Mapping

Model representation. Instead of using a neural network
as a model representation as proposed in [20], we utilize the
Plenoxel representation [11], which represents the radiance
field as a sparse voxel grid utilizing trilinear interpolation
to produce a continuously valued implicit density and color
functions, see Fig. 4. Each vertex in the voxel grid is
represented by 28 scalar values: one density value and nine
values per color channel. The multiple values per color
channel make up the coefficients of spherical harmonics
functions, allowing for modeling view dependencies
caused by Lambertian surfaces and specular reflections.
The main advantage of using a voxel grid compared to
a single neural network is the significant reduction in
computational effort needed in both training and inference
of the model. Practically the direct data access of the voxel
grid representation reduces the training time by two orders
of magnitude and allows for real-time image rendering [11].

RGB-D mapping. Mapping based on RGB-D data involves
simultaneous optimization of the radiance field using the
RGB-D sensor color values C and depth value D from the
training images with known poses for supervision. The pho-
tometric color loss Lp and geometric depth loss Lg are de-
fined as follows:

Lp(Ĉ(σ, c)) =
1

M

M∑
i=1

||Ĉ(σi, ci)− C||2, (4)

Lg(D̂(σ)) =
1

M

M∑
i=1

||D̂(σ)−D||2. (5)

The mapping is performed by non-linear optimization
based on the differentiation of Eq. (1) and Eq. (3) with re-
spect to all color c⃗ and density σ⃗ values.

Partial derivatives of the photometric loss Lp, and geo-
metric loss Lg with respect to the variables (σi, ci) gives us:

∂Lp(Ĉ(σ, c))

∂(σ, c)
=

∂Lp(Ĉ)

∂Ĉ

(
∂Ĉ(σ, c)

∂ci
+

∂Ĉ(σ, c)

∂σi

)
,

(6)

∂Lg(D̂(σ))

∂(σ)
=

∂Lp(D̂)

∂D̂

∂D̂(σ)

∂σ
. (7)

The derivatives of the rendered color Ĉ are calculated
in [37], but for the sake of completeness, we include them
here:

∂Ĉ

∂ci
(σ, c) = wi(σ) = Ti(1− exp(−σiδi)), (8)

∂Ĉ
∂σi

(σ, c) = δi

[
ciTi+1(σ)− Ĉ +

∑i
j=0 cjwj(σ)

]
(9)

Based on the color derivative, we derive the depth deriva-
tive D̂ in an analogous fashion. By interpreting the distance
value ti as the color value ci, we can re-write the equation
Eq. (9) for the depth rendering equation:

∂D̂

∂σi
(σ) = δi

tiTi+1(σ)− D̂ +

i∑
j=0

tjwj(σ)

 (10)

As the partial derivatives for equations are all analyti-
cally defined, it allows us to implement them directly in a
custom CUDA kernel. Building on the code developed for
Plenoxel [11] to boost computational speed.

The final loss function we employ during mapping is rep-
resented as follows:

L = Lp + λdLg, (11)

where λd is the scaling factor of the geometric loss.
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5.3. Tracking

Figure 4. Illustration of trilinear interpolation on sample point pi
lying on the sample ray in a voxel base radiance field.

Up until this point, we have assumed known and fixed
camera poses while treating the model parameters (σ⃗, c⃗) as
variables. To estimate pose on a model build apriori, we use
the same volumetric equations but consider the pose as the
variable and the model parameters as static. Our objective is
then to perform image-to-model alignment using the fixed
volumetric color and density parameters from the radiance
field, referencing the RGB-D input. To achieve this, we
need to determine the camera pose by finding the derivative
of the color and depth rendering with respect to the ray r⃗ =
o⃗ + tid⃗. We do this by leveraging the use of an alternative
version of the chain rule:

∂Ĉ

∂r⃗
=

N∑
i=1

∂Ĉ

∂p⃗i

∂p⃗i
∂r⃗

=

N∑
i=i

(
∂Ĉ

∂σi

∂σi

∂p⃗i
+

∂Ĉ

∂ci

∂ci
∂p⃗i

)
∂p⃗i
∂r⃗

(12)

∂D̂

∂r⃗
=

N∑
i=i

∂D̂

∂σi

∂σi

∂p⃗i

∂p⃗i
∂r⃗

. (13)

The partial derivatives ∂Ĉ
∂σi

, ∂Ĉ
∂ci

, ∂D̂
∂σi

are already given in
equations 8, 9 and 10 and are shared by all volumetric radi-
ance field methods based on equations 1 and 3, while ∂σi

∂p⃗i
,

∂ci
∂p⃗i

and ∂σi

∂p⃗i
are model specific. For our chosen represen-

tation based on the tri-linear interpolation functions, these
partial derivatives produce quite messy functions, so we re-
serve the complete analytical equations for Appendix A.

The derivative of a sample point p⃗i with respect to the
ray r⃗ can further be broken down as:

∂p⃗i
∂r⃗

=

[
∂p⃗i
∂o⃗

,
∂p⃗i

∂d⃗

]
= [1, ti] . (14)

This allows for direct optimization of the position and
orientation of the camera parameters.

5.4. Optimization Details

The optimization heuristics are kept as simple as pos-
sible, and mapping is done using a random set of sam-
ple rays from all available images, while tracking is done
by randomly sampling rays from the current image. The
optimizers used are RMSProp [14] for the mapping, and
Adam [17] for the mapping. There is no importance sam-
pling, keyframing, or similar optimization schemes.

6. Experiments
6.1. Experimental Setup

We test both mapping and tracking algorithms on
both synthetic and real indoor datasets of varying sizes
and compare them to existing state-of-the-art algorithms
performing similar tasks.

Datasets. Two different RGB-D datasets are used: 1)
The Replica dataset [29] containing a total of 18 different
synthetic indoor environments with highly accurate sensor
data, 2) The ScanNet dataset [5], a real-world dataset also
captured from indoor scenes, containing over 1000 unique
sequences. As a real-world dataset, the latter inherently
includes a significant amount of missing and imperfect
depth measurements. We use a subset of eight sequences
from the Replica dataset and five sequences from the
ScanNet dataset. Both of these subsets have been the
standard for comparison in previous works [31, 35, 40].

Comparison algorithms. To the best of our knowledge,
no other algorithms are currently performing asynchronous
mapping and tracking in a radiance field. Therefore, to
draw comparisons with existing approaches, we select
NICE-SLAM [40], and Vox-Fusion [35] as competing
methods due to their status as state-of-the-art algorithms
for radiance field-based simultaneous localization and
mapping. To make the comparison fair, we modify these
algorithms first to optimize the map using ground truth
poses with a subset of the sequence images and then
perform tracking based on that model.

Metric. For the offline mapping task, we report on two
primary metrics to illustrate the geometrical accuracy of the
constructed map: the average L1 depth loss in metric units
and PSNR score of the RGB values of the model. These
metrics are calculated based on randomly sampled pixels
from randomly sampled images from the sequence.

To measure tracking accuracy, we use three key metrics
stemming from the root mean square error (RMSE):
Absolute Trajectory Error (ATE) [30], and the Relative
Pose Error for both translation (RPEt) and rotation (RPEr).
ATE reflects the global accuracy of the trajectory as it is
sensitive to drifting over time. We put a greater emphasis
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Methods Metric Room-0 Room-1 Room-2 Office-0 Office-1 Office-2 Office-3 Office-4 Avg. time(avg.)(ms)

Vox-Fusion [35]
ATE[m]↓ 0.0042 0.0036 0.0090 0.6539 0.0029 0.0038 0.0042 0.0046 0.0046

581.35RPEt[m]↓ 0.00391 0.0039 0.0088 0.0500 0.0032 0.0036 0.0039 0.0050 0.0046
RPEr[◦]↓ 0.1076 0.1275 0.4034 2.6541 0.1501 0.1331 0.1316 0.1471 0.1715

Ours1
ATE[m]↓ 0.0017 0.0036 0.0020 0.0077 0.0020 0.0027 0.0022 0.0027 0.0031

419.86RPEt[m]↓ 0.0008 0.0059 0.0013 0.0034 0.0012 0.0009 0.0008 0.0011 0.0019
RPEr[◦]↓ 0.0191 0.0736 0.0483 0.1564 0.0440 0.0282 0.0199 0.0278 0.0522

NICE-SLAM [40]
ATE[m]↓ 0.0119 0.0220 0.0334 0.0100 0.0042 0.0093 0.0862 0.0573 0.0293

149.57RPEt[m]↓ 0.0170 0.0229 0.0215 0.0143 0.0059 0.0131 0.0445 0.0305 0.0212
RPEr[◦]↓ 0.3267 0.5103 1.4032 0.2700 0.2037 0.3247 1.0076 0.5058 0.5690

Ours2
ATE[m]↓ 0.0093 0.0061 0.0179 0.0117 0.0027 0.0056 0.0072 0.0061 0.0083

145.20RPEt[m]↓ 0.0065 0.0090 0.0108 0.0055 0.0025 0.0033 0.0046 0.0039 0.0058
RPEr[◦]↓ 0.1494 0.1903 0.4833 0.2034 0.1196 0.1116 0.1201 0.1113 0.1861

Table 2. Trajectory estimation results on the Replica dataset. The lowest errors are indicated in bold. Time here stands for tracking time
per frame. We provide the results for two different configurations of our method, varying in number of samples per frame.

RGB PSNR↑ Depth diff. (m/pixel)↓
Vox-Fusion [35] 19.379 0.0705
NICE-SLAM [40] 18.455 0.0514
Ours 24.411 0.0469

Table 3. comparison of map geometry accuracy on ScanNet. The
values are average through 5 sequences reported in Tab. 4.

on the RPEt and RPEr due to local accuracy being a more
relevant metric when tracking based on a map known
apriori. We measure RPE in 1-meter intervals. These
tracking metrics were implemented using the ”evo” Python
package for odometry and SLAM evaluation [13].

Implementation details and parameter selection. All ex-
periments were conducted on a machine equipped with an
Intel Core i9-11900KF CPU and an NVIDIA RTX 3090
graphics card, with custom CUDA code for efficient run-
times. For all experiments, our method used a dynamic
voxel grid with a peak voxel resolution of 5123, irrespec-
tive of the size of the scene. While all images are used for
tracking, only every 10th image is used for mapping. Pix-
els with invalid depth measurements are disregarded in both
mapping and tracking.

For mapping, we allot our algorithm roughly 6 seconds
per frame for mapping, while the competing methods are
given up to 18 seconds per frame. The parameters of the
competing methods are adjusted to take full advantage of
this extra time.

For tracking, the number of sample rays and the number
of iterations varied between each method and each dataset.
We adhere to the default configurations for these parameters
provided by NICE-SLAM and Vox-Fusion for each dataset,
while we adjusted the parameters for our model to match
the per-frame tracking time of the two comparison models.

6.2. Mapping Results

RGB vs RGB-D mapping. To first demonstrate the point
highlighted in Sec. 3, we test the difference in mapping
performance between the original Plenoxel and our RGB-D
modified mapping algorithm on the Office-1 scene of the
Replica dataset. The results are shown in Fig. 2 and Tab. 1.
Despite the PSNR for RGB rendering actually being higher
for the RGB-only reconstruction, the average L1 depth
error per pixel is 70cm, compared to the RGB-D L1 depth
error of just 9mm. Confirming that although RGB alone
might look convincing for use in novel view synthesis,
it is insufficient for learning the underlying geometrical
information, especially in areas with weaker gradients.

Baseline comparison. The results of computing the aver-
age PSNR and L1 difference for five sequences of ScanNet
are presented in Tab. 3. Even with significantly less train-
ing time than the competing methods, our model achieves
a significantly better RGB PSNR and produces the best
3D reconstruction by exhibiting the smallest L1 depth loss,
keeping within a range of 5cm. The qualitative difference
in RGB estimation can be observed in Fig. 3, where our
method shows a visually more correct image compared to
the over-smoothed results from baselines. This builds a
strong foundation for achieving better tracking accuracy.

6.3. Tracking Results

Replica dataset. For the replica dataset, we report two
different sampling configurations of our system. One that
roughly matches the processing time of Vox-Fusion, and
one that matches NICE-SLAM. Tab. 2 shows the estimated
pose tracking accuracy for the entire sequence on the
Replica dataset. NICE-SLAM estimates the pose with
efficient use of samples, with relatively few rays. This leads
to a much faster processing speed than Vox-Fusion but still
with a comparative reduction in overall accuracy. When
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Table 4. Trajectory estimation results on the ScanNet dataset. The lowest errors are indicated in bold. Time here stands for tracking time
per frame. Both NICE-SLAM and ORB-SLAM2 failed to localize camera pose in the middle of sequence 0181. The average errors of
these methods were computed excluding frame 0181 and are indicated with (*) marks.

Methods Metric 0000 0106 0169 0181 0207 Avg. time(avg.)(ms)

Vox-Fusion [35]
ATE[m]↓ 0.0274 0.2424 0.0315 0.0924 0.0323 0.0852

1021.19RPEt[m]↓ 0.0222 0.0763 0.0284 0.0443 0.0303 0.0403
RPEr[◦]↓ 0.6157 2.7116 0.8805 1.8274 1.0733 1.4217

NICE-SLAM [40]
ATE[m]↓ 0.0405 0.1188 0.1952 - 0.0491 0.1009*

360.70RPEt[m]↓ 0.0360 0.0666 0.0643 - 0.0457 0.0531*
RPEr[◦]↓ 1.0862 2.3725 1.4703 - 1.4871 1.6040*

Ours
ATE[m]↓ 0.0246 0.0387 0.0165 0.0373 0.0259 0.0286

350.84RPEt[m]↓ 0.0177 0.0209 0.0160 0.0264 0.0230 0.0208
RPEr[◦]↓ 0.5030 0.6216 0.4484 0.7872 0.7231 0.6166

ORB-SLAM2 [23]
ATE[m]↓ 0.0779 0.0838 0.1038 - 0.0898 0.0888*

36.30RPEt[m]↓ 0.0933 0.0516 0.0625 - 0.0848 0.0730*
RPEr[◦]↓ 2.8584 2.9895 2.3596 - 3.5897 2.9493*

we matched our method to NICE-SLAM’s tracking speed,
our method outperformed NICE-SLAM across almost all
metrics and sequences. Notably, NICE-SLAM showed
instability in the rotational aspect of relative pose accuracy,
as it relied on neural network processing with a relatively
large voxel size, leading to challenges in precisely estimat-
ing subtle rotational differences. NICE-SLAM marginally
outperformed our method in the Office-0 sequence in
terms of ATE but is beaten on the relative pose metrics.
Vox-Fusion showed remarkable tracking performance,
taking advantage of its considerably longer tracking time.
It trailed only slightly behind our proposed method in
most of the sequences. However, like NICE-SLAM, it
also tended to have lower accuracy for the orientation of
the relative pose. For an analysis of our model’s speed vs
tracking accuracy trade-off, please see Appendix B.

ScanNet dataset. Tab. 4 displays the comparison of track-
ing performance on the five ScanNet sequences. Our
method excels in all metrics across all sequences when com-
pared to the comparison algorithms while demanding sig-
nificantly less computation time. Our method even outper-
forms Vox-Fusion, using only a third of the computation
time. Since our method relies on directly optimizing small
voxels, we initially presumed the significant amount of in-
valid depth measurements in ScanNet data might lead to
holes in the final model, but our method successfully filled
these gaps and created a seamless, hole-free model.

To ground our work with pre-NeRF research, we addi-
tionally provide comparisons with a more traditional RGB-
D SLAM method that does not use a radiance field model,
ORB-SLAM2 [23], which has long been the standard base-
line in SLAM systems. We do not separate the mapping
and tracking tasks for ORB-SLAM2 as we have done for

the other methods because we observed worse performance
when doing this, but we have included it as a point of refer-
ence. Although a feature-based system like ORB-SLAM2
produces good results in significantly less time than any of
the other algorithms, it cannot beat the accuracy of any of
the dense methods. This primarily comes down to three
factors: 1) The offline mapping gives a major advantage to
the dense systems, 2) the dense systems use all image in-
formation, and 3) the ScanNet sequences have a significant
amount of repetitive patterns on carpets and walls that make
the data correspondence task difficult for ORB-SLAM2.

7. Conclusion

We have presented the analytical augmentation of the
Plenoxel algorithm to allow for RGB-D mapping and track-
ing based on the radiance field equations. We have also ar-
gued for and shown both qualitatively and quantitatively the
need for RGB-D sensors to accurately and reliably recon-
struct outward-facing scenes when modeling using meth-
ods from the current paradigm of learning-based radiance
field algorithms. Our method achieves superior results with
much less time on both the mapping and tracking tasks com-
pared to state-of-the-art radiance field-based SLAM meth-
ods when modified to perform offline mapping based on
ground truth pose data.
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