
Learning to Compose SuperWeights for Neural Parameter Allocation Search

Piotr Teterwak*

Boston University
piotrt@bu.edu

Soren Nelson*

Physical Sciences Inc
snelson@psicorp.com

Nikoli Dryden
ETH Zürich

nikoli.dryden@inf.ethz.ch

Dina Bashkirova
Boston University

dbash@bu.edu

Kate Saenko
Boston University
saenko@bu.edu

Bryan A. Plummer
Boston University
bplum@bu.edu

Abstract

Neural parameter allocation search (NPAS) automates
parameter sharing by obtaining weights for a network given
an arbitrary, fixed parameter budget. Prior work has two
major drawbacks we aim to address. First, there is a dis-
connect in the sharing pattern between the search and train-
ing steps, where weights are warped for layers of different
sizes during the search to measure similarity, but not during
training, resulting in reduced performance. To address this,
we generate layer weights by learning to compose sets of
SuperWeights, which represent a group of trainable param-
eters. These SuperWeights are created to be large enough so
they can be used to represent any layer in the network, but
small enough that they are computationally efficient. The
second drawback we address is the method of measuring
similarity between shared parameters. Whereas prior work
compared the weights themselves, we argue this does not
take into account the amount of conflict between the shared
weights. Instead, we use gradient information to identify
layers with shared weights that wish to diverge from each
other. We demonstrate that our SuperWeight Networks con-
sistently boost performance over the state-of-the-art on the
ImageNet and CIFAR datasets in the NPAS setting. We fur-
ther show that our approach can generate parameters for
many network architectures using the same set of weights.
This enables us to support tasks like efficient ensembling
and anytime prediction, outperforming fully-parameterized
ensembles with 17% fewer parameters1.

1. Introduction
Parameter sharing is used to increase the computational

efficiency and/or accuracy of neural networks (e.g., [2, 11,

*Equal Contribution, work done while Soren was at Boston University
1Code available: https://github.com/piotr-teterwak/

SuperWeights

a.) Prior Work b.) Ours (SuperWeights)

Bilinear
Warping

Layer
Representation

Layer
Weights

No
Warping

Gradient-based
SuperWeight

Representation

Layer
Weights from
SuperWeights

SSN[23] Templates warped for small and large layers

Non-warped SuperWeight templates (Section 2.1) for small and large layers

Non-warped SuperWeight templates (Section 2.1) for large layers

Figure 1. Comparison to prior work. (a) Prior work in Neu-
ral Parameter Allocation Search [23] would search for a good pa-
rameter sharing strategy by comparing the linear weights learned
by each layer over a set of shared templates that warped to the
size required by each layer using bilinear interpolation only when
searching for a good parameter sharing strategy. In contrast, (b) il-
lustrates our SuperWeight Networks, which creates SuperWeights
that are concatenated together to form a layer’s weights. Each Su-
perWeight is only shared by layers of a minimize size, helping us
to avoid warping the layers in the search step and ensuring there is
no disconnect between search and training stages.

17, 20, 23, 26, 29]). Instead of using hand-crafted heuris-
tics to obtain a good parameter sharing strategy, Plummer et
al. [23] introduced a task they called Neural Parameter Al-
location Search (NPAS), which automatically determines
where and how to share parameters in any neural network.
A key challenge in this task is learning when sharing can
occur between layers that may perform different operations
(e.g., convolutional and fully connected) and have different
sizes. Plummer et al. addressed this issue by using bilinear
interpolation to warp the shared parameters to the size of
each layer in the network (illustrated in Figure 1(a)). How-
ever, this was computationally costly as each layer would
be need to be re-warped on every forward pass. In addition,
this approach also made training the network more chal-

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2751

lenging as the effective receptive field for a set of parame-
ters would vary as its size was changed.

To address these issues, we present SuperWeight Net-
works, a method for NPAS that effectively automates pa-
rameter sharing between diverse architectures. A key con-
tribution of our work is introducing the concept of a Super-
Weight, which are groups of parameters that can be thought
of as a feature detector that captures a unique pattern (e.g.,
an edge detector). Instead of warping our parameters to fit
layers of varying size as in prior work [23], we create Super-
Weights that are small enough to be shared between layers.
Then, as shown in Figure 1(b), we compose them together
to create a layer’s weights. Thus, our search task transforms
into locating instances where two layers find the same Su-
perWeight useful.

To find effective sharing strategies between our Super-
Weights, we introduce a new mechanism for measuring
similarity between parameters. Specifically, Plummer et
al. [23] measured similarity using the value of some of the
shared parameters themselves. However, two layers could
potentially have a conflict, where they both wish to alter
the parameters in opposing directions, but effectively can-
cel their gradients out. Such conflicts have been observed
in parameter sharing settings in prior work (e.g., [38]), and
we found the likelihood that such conflicts increases as
the number of layers increase. In other words, these net-
works may contain similar parameters, but the gradients
from these layers would be very dissimilar. Thus, we pro-
pose a gradient analysis approach for determining where
SuperWeights can be reused.

To further improve our model’s parameter efficiency, we
also take advantage of template mixing methods from prior
work (e.g., [2, 23, 26]). We construct SuperWeights using a
weighted linear combination of templates made up of train-
able parameters which we call Weight Templates. This cre-
ates a hierarchical representation for neural network weight
generation, where we begin by combining Weight Tem-
plates to create SuperWeights, then concatenating together
SuperWeights to create the layer weights. This template
mixing can boost performance when reusing the same pa-
rameters many times, as each combination of templates can
use a unique set of coefficients. We can share parameters
within a layer of a single network (Section 3) or between
different members of an ensemble (Section 4 and 4.2). This
allows our method to be used for efficient ensembling and
anytime prediction, in addition to the NPAS task.

Our SuperWeight formulation has some similarities to
Slimmable Networks [35, 37], which trained multiple net-
works of varying widths to support a range of inference
times using a hand-crafted sharing strategy. In contrast, our
task is to automatically search for a good sharing strategy,
including within a single network. In addition, one goal
of NPAS methods like ours is to support training networks

with fewer computational resources, whereas Slimmable
Networks use additional resources to train each subnetwork.
Several other tasks also used parameter sharing to make
more efficient networks, including those applied to neu-
ral architecture search (e.g., [15, 34, 36, 40, 43]), mixture-
of-experts models [24, 27, 30, 42], or modular and self-
assembling networks [1, 6, 7]. However, these tasks are or-
thogonal to each other as they focus on optimizing the net-
work architecture, whereas we aim to optimize the sharing
strategy between layers. Thus, they often can be combined.

In summary, our contributions are as follows:

• We propose SuperWeight Networks, a new technique
for automated parameter sharing across layers that
composes reusable SuperWeights across layers in a
network to support diverse architectures.

• We introduce a new approach to computing parame-
ter similarity that uses gradient information rather than
the values of the parameters themselves, enabling us to
find more effective sharing strategies that consistently
improve performance over the state-of-the-art.

• We demonstrate that our approach is also effective at
searching for sharing strategies over ensembles of di-
verse models. This enables us to surpass the perfor-
mance fully-parameterized ensembles on CIFAR while
still using 17% fewer parameters as well as obtain
state-of-the-art performance on anytime inference.

2. Learning to Share with SuperWeight Net-
works

Given a parameter budget B and layers ℓ1,...,S , the goal
of Neural Parameter Allocation Search (NPAS) is to gener-
ate the weights of the layers of each member that maximize
task performance. Plummer et al. [23] only explored set-
tings where all the layers ℓi belonged to the same network,
but in this paper these layers can be separated into M tar-
get architectures, each of which can be generated and make
independent predictions. To address this task, we propose
SuperWeight Networks, an automated approach for shar-
ing parameters with a hierarchical weight construction con-
struction process. At the lowest level, we perform a linear
combination of Weight Templates that contain trainable pa-
rameters to generate our SuperWeights (discussed in Sec-
tion 2.1.1). Then we concatenate together SuperWeights to
create weights for a layer (described in Section 2.1.2). An
overview of this process is illustrated in Figure 2.

To find a good parameter sharing strategy, we use a two
step search-and-refine process. This begins by identify-
ing what layers may share trainable parameters effectively,
which we group together into SuperWeight Clusters (Sec-
tion 2.2.1). Then we determine what layers can share Su-
perWeights effectively (Section 2.2.2). In both these stages

2752

SuperWeight Cluster 2
(Section 2.2)

SuperWeight Cluster 1
(Section 2.2)

Weight Templates

Weight Templates

Model Construction
(Section 2.1.1)

Weight Templates

Layer Weight Construction
(Section 2.2.2)

Member 1

Member 2

Layer 1*✦

Layer 2*

Layer 3*

Layer 4

*Different shades represent shared Weight Templates with different linear coefficients
✦SuperWeights can be concatenated in multiple dimensions, for sharing between layers of different input and output channels

SuperWeight Construction
(Section 2.2.1)

Weight Templates

Figure 2. SuperWeight Networks overview. Left: Weight Templates are clustered into SuperWeight Clusters; layers can only share Su-
perWeights from Weight Templates in the same cluster (Section 2.2) Center Left: SuperWeights are constructed from linear combinations
of Weight Templates (see Eq. (1)) using the SuperWeight Clusters learned in Section 2.2.1. Center Right: The SuperWeights assigned
to a layer are then concatenated to generate layer weights. We automatically identify when we should use the same linear coefficients
or different coefficients for generating a layer’s SuperWeight using the procedure in Section 2.2.2. Right: These layer weights are then
assembled one or more ensemble members, which can have diverse architectures.

we will leverage gradient information to measure how simi-
lar the parameters are (and, therefore, how much they would
benefit from parameter sharing).

2.1. Generating a Neural Network using Super-
Weights

In this section we shall describe how to generate weights
for a layer in a neural network, which will provide con-
text for our search-and-refine procedure for creating our
SuperWeight Clusters in Section 2.2. Traditional meth-
ods of (hard) parameter sharing directly reuse weights
(e.g., [4, 8, 12, 41]), but this limits layer weight diversity as
shared layers then encode the same learned function. In-
stead, we take inspiration from recent work in cross-layer
parameter sharing (e.g., [2, 23, 26]) that performs template
mixing. In these works, parameters and layer weights are
decoupled; each layer’s weights are a linear combination of
parameter matrices called templates.

2.1.1 Network Generation Process

Consider our generation process outlined in Figure 2, which
we shall step through from right-to-left. In the rightmost
column describing model construction, we see seven lay-
ers across two different networks. The first layer of “Mem-
ber 1” is generated by concatenating together three Super-
Weights (labeled as “Layer Weight Construction” in the
third column). These SuperWeights are generated by a lin-

ear combination of Weight Templates (“SuperWeight Con-
struction”), whereas the Weight Templates may share pa-
rameters between any SuperWeights within the same Su-
perWeight Cluster.

Now going from left-to-right through the generation pro-
cess: our first step is to create a set of Weight Templates
T g
1,...,N with the same dimensions as the kth SuperWeight

θ
(k)
g . Following [23], these Weight Templates are created by

splitting the trainable parameters into templates and allocat-
ing them to SuperWeights in a round robin fashion. Then
we generate our SuperWeight θ(k)g via a linear combination
using coefficients α(k), i.e.,

θ(k)g =

N∑
i=1

α
(k)
i T g

i (1)

Multiple SuperWeights can share g while having different
coefficients α(k) (represented as different color shades for a
SuperWeight, e.g., green, in the second column of Figure 2).
To create a layer’s weights (third column of Figure 2), one
or more SuperWeights are generated using Eq. (1) and then
concatenated together (additional details in Section 2.1.2).
These layers are stacked together to create a neural network
(last column of Figure 2). Note that templates and coeffi-
cients are learned jointly via gradient descent.

Plummer et al. [23] also shared parameters via template
mixing between layers of different sizes, but they would
directly reshape the available parameters into templates of

2753

the target layer size. This means that it would be very dif-
ficult to accurately represent subnetworks within a larger
network. For example, let us assume we are generating the
weights for two networks that are identical except that net-
work X is twice as wide as network Y . The approach from
Plummer et al. would either have to generate layers for X
and Y independently, or we would generate the layers ofX ,
and then slice out the weights that would fit network Y . We
found that the first option was difficult to optimize that re-
sulted in lower performance in our experiments. The second
option would reduce diversity, as network X would contain
exactly the same weights as network Y . Instead, our Super-
Weight Networks can directly optimize any subnetworks,
like in the second option in our example above, but while
minimizing any diversity loss (details Section 2.2).

2.1.2 Determining SuperWeight Sizes

The target sizes for our SuperWeights are based on layer
shapes. Consider the case where we are generating weights
for a set of layers ℓ1,...,S , where each layer is a different
size. We create an initial set of SuperWeights by sorting
the layers in order from smallest to largest. The first Su-
perWeight we would create would be the same size as the
smallest layer ℓi, and every layer within that SuperWeight
Cluster that was the same size as ℓi would initially share the
same SuperWeight. Then, when we generate the weights
for the next layer ℓi+1, we assume we have the SuperWeight
from layer ℓi. Thus, the SuperWeights for layer ℓi+1 need
only generate the additional weights required beyond those
provided by the SuperWeights from ℓi.

For example, if ℓi needed 100K parameters and ℓi+1

needed 400K, then the new SuperWeights would generate
400− 100 = 300K weights. If ℓi+1 is larger than ℓi in only
a single dimension, then only a single new SuperWeight is
generated. If it’s larger in both input and output channels,
ℓi+1 generates two new SuperWeights. The first Super-
Weight extends the size in a input channels dimension, and
the second is concatenated in the output channel dimension.
See Layer 1 in the third column of Figure 2 for a graphical
illustration. Any subsequent layers would follow the same
process, but would have all the weights from the previous
layers (i.e., ℓi+2 would have 400K weights from ℓi+1, 100K
of which originally came from ℓi).

2.2. Finding Where to Share via Search-and-Refine
with Gradient Similarity

There are two components of Figure 2 that we did not
discuss in the network generation details found in Sec-
tion 2.1. First, our SuperWeight Cluster creation process,
which separates SuperWeights into groups that share train-
able parameters (shown in the first column of the figure). In
this setting we find what layers can effectively share train-

able parameters (described in Section 2.2.1). This can be
thought of as trying to learn a coarse policy where we iden-
tify layers that find any sharing detrimental.

After Plummer et al. [23] found a good sharing strategy,
they would train their model using soft-sharing, where ev-
ery layer has their own coefficients α(k) when performing
a combination of templates (e.g., similar to using Eq. 1).
However, our approach differs in that we consider the
case that some SuperWeights may find hard-sharing across
layers beneficial (e.g., the dark green SuperWeight being
reused in Layers 2 and 3 in Figure 2). Thus, after we begin
training our model, we first perform hard-sharing across all
layers in the the same SuperWeight Cluster (i.e., the same
set of coefficients α(k) are used for every SuperWeight). Af-
ter a few epochs, we refine our sharing policy so that lay-
ers that find hard-sharing challenging can begin using soft-
sharing instead, i.e., they would begin using their own coef-
ficients, but still share Weight Templates, as illustrated with
the two SuperWeights of varying blue shades in Figure 2
(described in Section 2.2.2).

2.2.1 Searching for a Coarse Parameter Sharing Policy

Our first step in finding a good sharing strategy is to deter-
mine what layers can effectively share parameters to create
Superweight Clusters. This provides our coarse sharing pol-
icy that we shall refine in Section 2.2.2. There are two key
differences with our search step from prior work [23]. First,
our SuperWeight construction allows us to avoid warping
the shared templates as discussed in the Introduction, mean-
ing that how we will perform the search step will be using
the same mechanisms as when we train our model. Second,
rather than using the coefficients learned by each layer α(k)

to measure similarity between parameters, we measure sim-
ilarly by comparing the gradients a SuperWeight is receiv-
ing from the layers that share it. The intuition behind this
approach is that layers with conflicting gradients are playing
a gradient tug-of-war, hurting optimization. In other words,
if the sum of gradients from two layers is close to zero, no
learning occurs.

More formally, given a set of layers ℓ1,...,S , our goal is to
determine which layers can share parameters. At this stage,
we treat all layers are belonging to the same SuperWeight
Cluster and are using hard-sharing of SuperWeights across
layers. This means that every set of Weight Templates has
exactly one set of coefficients. For example, if a cluster has
three layers that all need a SuperWeight of 100K dimen-
sions, then each layer would use a shared Weight Template
that produces the same 100K dimension SuperWeight (ad-
ditional details found in Section 2.1.2).

Thus, we can infer that if the gradients of the loss w.r.t.
the layers sharing SuperWeights are misaligned, then the
model will have optimization difficulties. Thus, we com-

2754

pute gradient similarity over SuperWeights to determine
what layers may be grouped. However, some layers may be
composed of multiple SuperWeights, only some of which
may share with other layers in the initial cluster. For ex-
ample, Layer 2 in the third column of Figure 2 has one Su-
perWeight, but Layer 3 has two SuperWeights (only one of
which is shared with Layer 2). υi,j refers to the set of Su-
perWeights shared by layers i and j. Wi refers to the in-
stantiated weights of layer i. Then the gradient similarity
between Wi and Wj would be computed as:

ψSW = cos

(
∂L
∂Wi

∂Wi

∂υi,j
,
∂L
∂Wj

∂Wj

∂υi,j

)
> τ, (2)

where τ is a hyperparameter representing the minimum
threshold for which two layers that share υi,j should remain
in the same cluster, and L is the loss.

After training for a few epochs, we create our Super-
Weight Clusters by placing layers sharing the same Super-
Weight into a priority queue by the cosine similarity with
respect to the gradients of the shared coefficients aggre-
gated over an epoch. We pop the first two layers, ℓi, ℓj off
the queue and check whether their cosine similarity exceeds
the threshold τ , i.e., it satisfies Eq. 2. If they do not satisfy
Eq. 2, we split any ungrouped layers into their own individ-
ual groups (e.g., 4 ungrouped layers would result in 4 ad-
ditional single layer groups). Otherwise, if they do Eq. 2
satisify and both layers belong to an existing group, we
merge their groups. If only one layer is in an existing group,
then we add the new layer into that group’s set. The final
set of layer groups is referred to as our SuperWeight Clus-
ter. We set τ via grid search on a validation set (we found
τ = 0.1 worked well in our experiments). Please refer to
the supplementary for pseudocode for our priority-queue
assignment procedure. Following [23], we reinitialize our
model and re-train from scratch with our new SuperWeight
Clusters, where we refine our sharing policy as described in
the next section.

2.2.2 Learning when SuperWeights should share
Weight Template coefficients

After we obtain a set of SuperWeights Clusters from Sec-
tion 2.2.1, we start training the network by only using hard-
parameter sharing between SuperWeights. In other words,
each layer that shares a SuperWeight will begin by using the
same set of coefficients α(k) used to combine weight tem-
plates for the first E epochs of training (we found E = 10
worked well). After that, we analyze which layers may ben-
efit from refining the sharing policy by decoupling linear
coefficients combining Weight Templates. In this way, un-
like Plummer et al. [23] which only used soft-sharing, we
allow a combination of hard and soft-sharing.

To search for a refined sharing policy, we use the same
priority-queue assignment procedure as described in Sec-
tion 2.2.1. In other words, we place the layers sharing the
same SuperWeight into a priority queue. Then, we iterate
over pairs of layers ℓi, ℓj and check whether their cosine
similarity exceeds some threshold β, i.e.,

ψcoef. = cos

(
∂L
αk,j

,
∂L
αk,i

)
> β, (3)

where αk,i is the shared coefficient corresponding to layer
ℓi. Layers that satisfy Eq. 3 will be grouped together. Any
layers that do not satisfy Eq. 3 with any other layer will
remain in their own group. After we have identified the
groups of similar layers, each obtains their own copy of
the coefficients for that SuperWeight α(k) and we resume
training. This creates a new SuperWeight for each group of
layers whose gradients point in a similar direction, allowing
for layer specialization.

3. Single Network Search Results
We first compare our SuperWeight Networks (SWN)

to prior work on the Neural Parameter Allocation Search
(NPAS) task in Section 3, whereas in Section 4 we will ex-
plore a new setting where we apply our NPAS approach to
tasks that can be implemented using an ensemble of models
that we generate from a set of shared parameters.
Datasets and metrics. We evaluate our method on three
standard benchmarks: CIFAR-10 [19], CIFAR-100 [19],
and ImageNet [5]. We evaluate the performance of a model
based on its top-1 accuracy given a parameter budget. Ad-
ditional details on our experimental setup and hyperparam-
eters can be found in the supplementary material.

3.1. Results

Table 1 compares different strategies for creating a pa-
rameter sharing strategy for image classification. Table 1(a)
reports the performance of prior work reproduced using the
author’s code. Comparing the last lines of Table 1(a) rep-
resenting the state-of-the-art NPAS approach [23] and Ta-
ble 1(b) that reports our full method, we see we obtain
a consistent boost over prior work. Notably, we receive
around a 1% boost on the ImageNet dataset. Overall, we
find that when a sharing strategy is most needed, i.e., in the
lower budget settings, we observe a larger boost to perfor-
mance (increasing to an almost 2% gain on ImageNet).

When comparing the effect of the different components
of our SuperWeight Networks in Table 1(b), find that each
contributes meaningfully to the final model performance.
The gradient similarity function provides the most benefit
on the ImageNet dataset, where we see a 0.5% gain to top-
1 accuracy. In addition, also compare to using only per-
form the search step from Section 2.2.1, but skip the refine-

2755

CIFAR-10 [19] CIFAR-100 [19] ImageNet [5]
Param Budget % 1% 10% 1% 10% 5% 10%

(a) Baseline [39] 93.54±0.19 95.73±0.17 71.49±0.29 77.43±0.24 66.89±0.22 68.12±0.18

Single Cluster 93.39±0.17 95.56±0.10 71.30±0.26 77.19±0.29 66.27±0.36 67.55±0.28

Random Cluster 93.48±0.31 95.62±0.11 70.97±0.50 76.82±0.40 66.81±0.41 67.95±0.43

SSN [23] 94.74±0.16 95.83±0.10 74.66±0.29 78.17±0.27 67.69±0.19 70.39±0.22

(b) SWN w/o Grad Sim 94.80±0.11 95.84±0.12 74.99±0.24 78.57±0.23 68.24±0.19 70.79±0.13

SWN w/o Refine 94.81±0.13 95.95±0.14 75.49±0.20 78.26±0.21 68.11±0.23 70.69±0.16

SWN (Ours) 94.87±0.14 95.99±0.11 75.77±0.34 78.94±0.26 68.42±0.21 71.14±0.18

Table 1. Comparing methods that searching for parameter sharing strategies using a WRN 28-10 [39] for CIFAR and WRN 50-2 for
ImageNet averaged over three runs. Baseline reduces the width/number of layers to support a given parameter budget, which is reported as
percentage of the original model’s parameters. (a) reports the performance of our baseline methods from prior work reproduced using the
author’s code. (b) contains ablations of our SWN, where we report a consistent boost over the state-of-the-art. See Section 3 for discussion.

ment step in Section 2.2.2, (similar to the search strategy
of SSNs [23]). Another way of thinking of this compari-
son is measuring the effect of hard-sharing SuperWeights
across layer (w/o Refine) vs. using a mix of hard and soft
sharing in our full model. Comparing the second and third
lines of Table 1(b), we see that the refinement step is key to
good performance in some settings, e.g., we see more than
a 0.5% gain on CIFAR-100 with a 10% budget. In the next
section, we will explore applications of our work where we
are tasked with finding a good parameter sharing strategy
across an ensemble of models and architectures.

4. Multi-Network Search Experiments

In this paper we explore a new application of NPAS
methods, where rather than searching for a good parame-
ter sharing strategy over a single network, they must search
over multiple architectures. We find that this work spans
two different application areas: efficient ensembling (e.g.,
[21,31,32]) and anytime inference (e.g., [12,25,31,34,37]).
In efficient ensembling the goal is to reduce the computa-
tional resources required to support a ensemble of models.
These often make strong architectural assumptions, such as
ensemble member homogeneity (i.e., each member is the
same architecture), which limits their use. For example, ho-
mogeneous ensembles are ill-suited to tasks like anytime
prediction because one only has n options for computa-
tional complexity, where n is the number of ensemble mem-
bers. In contrast, heterogeneous ensembles can select a sub-
set of its ensemble members to provide a range of inference
times (e.g., a 4 member heterogeneous ensemble can adjust
to
(
4
1

)
+
(
4
2

)
+
(
4
3

)
+
(
4
4

)
= 15 levels of inference latency). We

demonstrate the flexibility and generalization power of our
approach by addressing both tasks. Implementation details
can be found in the supplementary.

Additional datasets and metrics. , We evaluate the robust-
ness of our method on out-of-domain samples in addition to

CIFAR-10 and CIFAR-100. Specifically, we report perfor-
mance on CIFAR-100-C [14], which is the CIFAR-100 test
set corrupted by distortions such as Gaussian blur and JPEG
compression. We also supplement top-1 accuracy with cal-
ibration metrics [10]: Negative Log-Likelihood (NLL) and
Expected Calibration Error (ECE).

4.1. Efficient Ensembling Results

Table 2(a) compares our SuperWeight Networks (SWN-
HO) on the CIFAR-100 CIFAR-100-C, and CIFAR-10 with
prior work in efficient ensembling. Note that all the meth-
ods boost performance over a single model without re-
quiring additional model parameters. However, our Su-
perWeight Networks outperforms all other methods on
CIFAR-100 when using 36.5M parameters. Table 2(a) also
shows that heterogeneous SuperWeight Networks Ensem-
bles (SWN-HE), consisting of a WRN-34-8, 28-12, 28-10,
and 28-8, outperforms SWN-HO in over half of the metrics
while also supporting many inference times.

Unlike methods like BatchEnsemble (BE) [31] and
MIMO [12], which cannot change the number of parame-
ters without making architecture adjustments to the widths
and/or number of layers, our SuperWeight Networks can
support any parameter budget without requiring architec-
ture changes by adjusting the number of templates or the
amount of sharing between layers. Thus, if the number of
parameters are not a concern, our approach can increase our
parameter budget to boost performance. This is illustrated
in Table 2(b), where we outperform standard Deep Ensem-
bles, which trains independent networks for ensemble mem-
bers, while still retaining 17% fewer parameters.

Computational resources comparison. In addition to the
number of parameters that we report in Table 2, the train-
ing time and inference time is also a key contributor to an
efficient ensembling approach. Thus, our results for SWN-
HO in Table 2(a) reduces inference time by using a smaller

2756

CIFAR-100 (clean) CIFAR-100-C CIFAR-10
Method Params Top-1 ↑ NLL ↓ ECE ↓ Top-1 ↑ NLL ↓ ECE ↓ Top-1 ↑ NLL ↓ ECE ↓

(a) WRN-28-10 36.5M 79.8 0.875 8.6 51.4 2.70 23.9 96.0 0.159 2.3
BE [31] 36.5M 81.5 0.740 5.6 54.1 2.49 19.1 96.2 0.143 2.1
BE [31] + EnsBN 36.5M 81.9 n/a 2.8 54.1 n/a 19.1 96.2 n/a 1.8
MIMO [12] 36.5M 82.0 0.690 2.2 53.7 2.28 12.9 96.4 0.123 1.0
Thin Deep Ensembles 36.5M 81.5 0.694 1.7 53.7 2.19 11.1 96.3 0.115 0.8
SWN-HO (Ours) 36.5M 82.2 0.702 2.7 52.9 2.17 10.3 96.3 0.120 0.8
SWN-HE (Ours) 36.5M 82.4 0.663 3.0 53.0 2.17 10.0 96.5 0.115 0.8

(b) Deep Ensembles 146M 82.7 0.666 2.1 54.1 2.27 13.8 96.6 0.114 1.0
SWN-HO (Ours) 120M 82.9 0.666 2.2 54.7 2.00 10.3 96.6 0.119 0.8

Table 2. Homogeneous ensembling comparison on CIFAR-100 (clean) [19] CIFAR-100-C (corrupt) [14], and CIFAR-10 using WideRes-
Nets [39] averaged over three runs. (a) shows that our approach outperforms prior work in efficient ensembling [12, 31]. (b) compares the
performance of increasing the number of parameters (without changing the architecture) using our approach compared to Deep Ensembles,
which trains 4 independent networks as members.

network (WRN-28-5, the same size used by Thin Deep En-
sembles) so it has a similar inference time compared with
work like MIMO [12], which uses a WRN-28-10. For a fair
comparison to MIMO and BE, we also normalized our ex-
periments by training time (using their learning schedules).

4.2. Anytime Inference Experiments

In anytime inference the goal is to make high-performing
predictions within a given time budget. As the time bud-
get increases, a good method will use the additional time
to improve performance. A homogeneous ensemble, like
those used in the experiments in Section 4.1, would only
provide limited time budgets as each member has an iden-
tical computational complexity. Thus, their flexibility is
limited because one has only M options for computational
complexity, where M is the number of ensemble members.
However, for a heterogeneous ensemble this limitation is
removed with an ensemble since each member provides a
different inference time resulting in

(
M
1

)
+
(
M
2

)
+ ...+

(
M
M

)
possible inference times to choose from. This results in a
highly effective anytime inference model. We note that al-
though we evaluate our individual ensemble members in se-
ries, our method is trivial to parallelize to increase inference
speeds by using multiple GPUs. This is unlike many early-
exit anytime inference methods (e.g., [3, 16, 18, 22, 28, 33]),
which are intrinsically serial.

We use two settings for our Heterogeneous SuperWeight
Networks (SWN-HE) in our experiments: SWN-HE -Multi-
Width, which trains a three member WRN [39] ensem-
ble WRN-28-[7,4,3], and SWN-HE-Multi-Depth/Width, a
four member ensemble WRN-28-[7,4] 16-[7,4]. SSNs [23]
and Slimmable [37] use the same ensemble configura-
tions. Other approaches use method-specific strategies (e.g.,
HNE [25] trains a set of tree-nested ensembles). See supple-
mentary for additional details, including experiments where
we share parameters across different architecture families.

4.2.1 Anytime Inference Results

Figure 3 reports top-1 accuracy vs. average inference time
using a single P100 GPU on CIFAR-10 and CIFAR-
100 [19]. When comparing to other dynamic width meth-
ods such as Slimmable [37], Universally Slimmable [35]
and AutoSlim [34] models, SuperWeight Networks perform
on par or better than them for inference times they support,
but our approach can provide a wider range of inference
times that improve performance. We reiterate that other
efficient ensembling methods such as BatchEnsemble [31]
and MIMO [12] are not suitable for Anytime Inference, be-
cause each ensemble member has the exact same inference
time. This results in a very limited set of possible infer-
ence times (see Figure 1). We also significantly outper-
form the tree-based ensemble HNE [25] on both datasets,
as well as the early-exit model MSDNet [16]. Lastly, we
use SuperWeight Networks to construct a dynamic width
and depth network. Our main comparison is to adapta-
tion of Shapeshifter Networks [23] to ensemble dynamic
widths and depths. We show a consistent improvement over
Shapeshifter Networks across inference times. These re-
sults demonstrate that SuperWeight Networks can share pa-
rameters across members of diverse architectures more ef-
fectively than other approaches.

Comparison of SuperWeight Clustering methods. Table
3 demonstrates the effectiveness of our SuperWeight Clus-
tering approach described in Section 2.2. We provide four
baselines: Shared Coefficients, which learns SuperWeight
Clusters, but shares coefficients between all layers (i.e., re-
moving Section 2.2); Single SuperWeight Cluster, which
allows layers to have their own coefficients, but does not
learn clusters (i.e., removing Section 2.2.1); Depth-binning,
a heuristic where we group together layers of the same rel-
ative depth across network architectures; and Coefficient
Clustering from prior work [23], which clusters coefficients

2757

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Average Inference Time (ms)

75

77

79

81

83

Ac
cu

ra
cy

CIFAR-100

MSDNet (Multi-Depth)[16]
HNE (Multi-Depth)[25]
Slimmable (Multi-Width)[37]
AutoSlim (NAS Multi-Width)[34]
US (Multi-Width)[35]
SSN (Multi-Depth/Width)[23]
SWN-HE Multi-Depth/Width(Ours)
SWN-HE Multi-Width(Ours)

MSDNet (Multi-Depth)[16]
HNE (Multi-Depth)[25]
Slimmable (Multi-Width)[37]
AutoSlim (NAS Multi-Width)[34]
US (Multi-Width)[35]
SSN (Multi-Depth/Width)[23]
SWN-HE Multi-Depth/Width(Ours)
SWN-HE Multi-Width(Ours)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Average Inference Time (ms)

94.0

94.5

95.0

95.5

96.0

96.5

97.0

Ac
cu

ra
cy

CIFAR-10

MSDNet (Multi-Depth)[16]
HNE (Multi-Depth)[25]
Slimmable (Multi-Width)[37]
AutoSlim (NAS Multi-Width)[34]
US (Multi-Width)[35]
SSN (Multi-Depth/Width)[23]
SWN-HE Multi-Depth/Width(Ours)
SWN-HE Multi-Width(Ours)

Figure 3. Anytime Inference comparison using CIFAR-100 and CIFAR-10 [19] top-1 accuracy vs. inference time (ms) averaged over 3
runs on a single P100 GPU. Most methods [16,23,34,35,37] use WRN backbones [39], except HNE [25] which modifies ResNet-50 [13].

Method WRN-28-3 WRN-28-4 WRN-28-7 Full Ensemble

Shared Coefficients 77.3 ± 0.09 78.0 ± 0.15 79.7 ± 0.10 80.4 ± 0.06
Single SuperWeight Cluster 76.3 ± 0.37 77.6 ± 0.30 78.8 ± 0.20 81.1 ± 0.17
Depth-binning 76.8 ± 0.15 77.7 ± 0.17 79.2 ± 0.19 81.4 ± 0.15
Coefficient Clustering [23] 76.1 ± 0.19 77.0 ± 0.15 78.9 ± 0.15 80.7 ± 0.14
SWN-HE (Ours) 78.9 ± 0.26 79.7 ± 0.08 80.9 ± 0.03 81.5 ± 0.13

Table 3. Multi-width SuperWeight Cluster creation using top-1 accuracy on CIFAR-100 over three runs. See Section 4.2 for discussion.

α in Eq. (1) to group layers. We show that our approach out-
performs these baselines. Notably, we find that Coefficient
Clustering performs in par or worse than other baselines. In
contrast, our gradient analysis approach (Section 2.2) takes
into account the direction of change rather than just the cur-
rent coefficient value. Thus, we obtain a 2% gain on indi-
vidual models and a small boost to ensembling performance
with our approach (Table 3). We show a visualization of Su-
perWeight cluster assignment in the supplementary.

5. Conclusion

We introduce SuperWeight Networks, a method for
learning parameter sharing patterns in single models as well
as model ensembles. Our automatic sharing improves sin-
gle model performance by up to 4% compared to the base-
lines (Section 3). SuperWeight Networks also match perfor-
mance of efficient ensembles in the low-parameter regime,
compared to prior work (Section 4.1). When we add param-
eters, we outperform even deep ensembles on CIFAR with
17% fewer parameters (Section 4.1). Finally, SuperWeight
Networks enables effective anytime inference (Section 4.2).

We believe that SuperWeight Networks are a promising step
forward in parameter-efficiency. Future work will include
more deeply exploring architecture diversity; [9] show that
model architecture heterogeneity can be key to ensemble
diversity on challenging tasks.
Broader Impacts and Limitations. Effective parameter
sharing allows one to use less compute, potentially running
networks in efficient modes and conserving energy. How-
ever, it can also be used to maximize the use of compute if
it’s available, using more energy with corresponding draw-
back. We urge readers to be aware of the carbon and energy
footprint of the models they train.

Although learning the sharing pattern (SuperWeight
Clusters and coefficient sharing) is relatively lightweight,
it does add computation to the learning process. Neverthe-
less, the improved predictive performance makes this a rea-
sonable trade-off.
Acknowledgements This material is based upon work
supported, in part, by DARPA under agreement number
HR00112020054. Any opinions, findings, and conclusions
or recommendations are those of the author(s) and do not
necessarily reflect the views of the supporting agencies.

2758

References
[1] Ferran Alet, Erica Weng, Tomás Lozano-Pérez, and

Leslie Pack Kaelbling. Neural relational inference with fast
modular meta-learning. In Advances in Neural Information
Processing Systems (NeurIPS), 2019. 2

[2] Hessam Bagherinezhad, Mohammad Rastegari, and Ali
Farhadi. Lcnn: Lookup-based convolutional neural network.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017. 1, 2, 3

[3] Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh
Saligrama. Adaptive neural networks for efficient inference.
In Doina Precup and Yee Whye Teh, editors, Proceedings
of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research,
pages 527–536. PMLR, 06–11 Aug 2017. 7

[4] Ronan Collobert and Jason Weston. A unified architecture
for natural language processing: Deep neural networks with
multitask learning. In Proceedings of the 25th international
conference on Machine learning, pages 160–167, 2008. 3

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 5, 6

[6] Coline Devin, Abhishek Gupta, Trevor Darrell, Pieter
Abbeel, and Sergey Levine. Learning modular neural net-
work policies for multi-task and multi-robot transfer. In In-
ternational Conference on Robotics and Automation, 2017.
2

[7] Leslie Pack Kaelbling Ferran Alet, Tomas Lozano-Perez.
Modular meta-learning. In Conference on Robot Learning
(CoRL), 2018. 2

[8] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian
approximation: Representing model uncertainty in deep
learning. In international conference on machine learning,
pages 1050–1059. PMLR, 2016. 3

[9] Raphael Gontijo-Lopes, Yann Dauphin, and Ekin D Cubuk.
No one representation to rule them all: Overlapping features
of training methods. arXiv preprint arXiv:2110.12899, 2021.
8

[10] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger.
On calibration of modern neural networks. In International
Conference on Machine Learning, pages 1321–1330. PMLR,
2017. 6

[11] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks.
arXiv preprint arXiv:1609.09106, 2016. 1

[12] Marton Havasi, Rodolphe Jenatton, Stanislav Fort,
Jeremiah Zhe Liu, Jasper Snoek, Balaji Lakshminarayanan,
Andrew Mingbo Dai, and Dustin Tran. Training indepen-
dent subnetworks for robust prediction. In International
Conference on Learning Representations, 2021. 3, 6, 7

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 8

[14] Dan Hendrycks and Thomas Dietterich. Benchmarking neu-
ral network robustness to common corruptions and perturba-

tions. Proceedings of the International Conference on Learn-
ing Representations, 2019. 6, 7

[15] Shoukang Hu, Ruochen Wang, Lanqing Hong, Zhenguo Li,
Cho-Jui Hsieh, and Jiashi Feng. Generalizing few-shot nas
with gradient matching. arXiv preprint arXiv:2203.15207,
2022. 2

[16] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens
van der Maaten, and Kilian Weinberger. Multi-scale dense
networks for resource efficient image classification. In Inter-
national Conference on Learning Representations, 2018. 7,
8

[17] Andrew Jaegle, Felix Gimeno, Andrew Brock, Andrew Zis-
serman, Oriol Vinyals, and Joao Carreira. Perceiver: General
perception with iterative attention. In International Confer-
ence on Machine Learning (ICML), 2021. 1

[18] Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras.
Shallow-deep networks: Understanding and mitigating net-
work overthinking. In International conference on machine
learning, pages 3301–3310. PMLR, 2019. 7

[19] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. University of Toronto,
2009. 5, 6, 7, 8

[20] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin
Gimpel, Piyush Sharma, and Radu Soricut. ALBERT: A lite
BERT for self-supervised learning of language representa-
tions. In International Conference on Learning Representa-
tions (ICLR), 2020. 1

[21] Stefan Lee, Senthil Purushwalkam, Michael Cogswell,
David Crandall, and Dhruv Batra. Why m heads are bet-
ter than one: Training a diverse ensemble of deep networks.
arXiv preprint arXiv:1511.06314, 2015. 6

[22] Hao Li, Hong Zhang, Xiaojuan Qi, Ruigang Yang, and Gao
Huang. Improved techniques for training adaptive deep net-
works. 2019 IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 1891–1900, 2019. 7

[23] Bryan A. Plummer, Nikoli Dryden, Julius Frost, Torsten
Hoefler, and Kate Saenko. Neural parameter allocation
search. In International Conference on Learning Represen-
tations (ICLR), 2022. 1, 2, 3, 4, 5, 6, 7, 8

[24] Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim
Neumann, Rodolphe Jenatton, André Susano Pinto, Daniel
Keysers, and Neil Houlsby. Scaling vision with sparse mix-
ture of experts. In Advances in Neural Information Process-
ing Systems, volume 34, 2021. 2

[25] Adria Ruiz and Jakob Verbeek. Anytime inference with dis-
tilled hierarchical neural ensembles. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2021. 6, 7, 8

[26] Pedro Savarese and Michael Maire. Learning implicitly re-
current CNNs through parameter sharing. In International
Conference on Learning Representations, 2019. 1, 2, 3

[27] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy
Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. Outra-
geously large neural networks: The sparsely-gated mixture-
of-experts layer. In International Conference on Learning
Representations (ICLR), 2017. 2

[28] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung
Kung. Branchynet: Fast inference via early exiting from

2759

deep neural networks. In 2016 23rd International Con-
ference on Pattern Recognition (ICPR), pages 2464–2469.
IEEE, 2016. 7

[29] Matthew Wallingford, Hao Li, Alessandro Achille, Avinash
Ravichandran, Charless Fowlkes, Rahul Bhotika, and Ste-
fano Soatto. Task adaptive parameter sharing for multi-task
learning. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7561–7570, 2022. 1

[30] Xin Wang, Fisher Yu, Lisa Dunlap, Yi-An Ma, Ruth Wang,
Azalia Mirhoseini, Trevor Darrell, and Joseph E Gonzalez.
Deep mixture of experts via shallow embedding. In Uncer-
tainty in artificial intelligence, pages 552–562. PMLR, 2020.
2

[31] Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble:
an alternative approach to efficient ensemble and lifelong
learning. In International Conference on Learning Repre-
sentations, 2020. 6, 7

[32] Florian Wenzel, Jasper Snoek, Dustin Tran, and Rodolphe
Jenatton. Hyperparameter ensembles for robustness and un-
certainty quantification. Advances in Neural Information
Processing Systems, 33:6514–6527, 2020. 6

[33] Le Yang, Yizeng Han, Xi Chen, Shiji Song, Jifeng Dai, and
Gao Huang. Resolution adaptive networks for efficient infer-
ence. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 2369–2378,
2020. 7

[34] Jiahui Yu and Thomas Huang. Autoslim: Towards one-
shot architecture search for channel numbers. arXiv preprint
arXiv:1903.11728, 2019. 2, 6, 7, 8

[35] Jiahui Yu and Thomas S Huang. Universally slimmable net-
works and improved training techniques. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 1803–1811, 2019. 2, 7, 8

[36] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender,
Pieter-Jan Kindermans, Mingxing Tan, Thomas Huang, Xi-
aodan Song, Ruoming Pang, and Quoc Le. Bignas: Scaling
up neural architecture search with big single-stage models.
In European Conference on Computer Vision, pages 702–
717. Springer, 2020. 2

[37] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and
Thomas Huang. Slimmable neural networks. In Interna-
tional Conference on Learning Representations, 2019. 2, 6,
7, 8

[38] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine,
Karol Hausman, and Chelsea Finn. Gradient surgery for
multi-task learning. Advances in Neural Information Pro-
cessing Systems, 33:5824–5836, 2020. 2

[39] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. In British Machine Vision Conference 2016. British
Machine Vision Association, 2016. 6, 7, 8

[40] Sheheryar Zaidi, Arber Zela, Thomas Elsken, Chris Holmes,
Frank Hutter, and Yee Whye Teh. Neural ensemble search
for performant and calibrated predictions. arXiv preprint
arXiv:2006.08573, 2:3, 2020. 2

[41] Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou
Tang. Facial landmark detection by deep multi-task learning.
In European conference on computer vision, pages 94–108.
Springer, 2014. 3

[42] Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang,
Vincent Zhao, Andrew M Dai, zhifeng Chen, Quoc V Le,
and James Laudon. Mixture-of-experts with expert choice
routing. In Advances in Neural Information Processing Sys-
tems, 2022. 2

[43] Zixuan Zhou, Xuefei Ning, Yi Cai, Jiashu Han, Yiping Deng,
Yuhan Dong, Huazhong Yang, and Yu Wang. Close: Cur-
riculum learning on the sharing extent towards better one-
shot nas. arXiv preprint arXiv:2207.07868, 2022. 2

2760

