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Abstract

Anticipating traffic accidents early using dashcam
videos is an important task for ensuring road safety and
building reliable intelligent autonomous vehicles. How-
ever, factors like high traffic on the roads, different types
of accidents, limited angles of vision, etc. make this task
very challenging. Using the early frames, a lot of exist-
ing methods predict a large number of false positives which
poses a huge risk for all vehicles on the road. In this pa-
per, we propose a novel end-to-end learning, nested graph-
based framework named Graph(Graph) for early accident
anticipation. It uses interactions between the objects in
the same as well as the neighboring frames along with
the global features to make precise predictions as early as
possible. This way it is able to embed the local as well
as global temporal information into the extracted features.
Graph(Graph) outperforms state-of-the-art methods on dif-
ferent datasets by a large margin demonstrating its effec-
tiveness. With empirical evidence, we highlight the impor-
tance of each component in Graph(Graph) and show their
effect on the final performance. Our code is available at
https://github.com/ thakurnupur/Graph-Graph.

1. Introduction

Due to recent rapid progress in the self-driving cars and
intelligent transportation industry [7,22], early accident an-
ticipation task has gained significant importance to ensure
safety on the roads and avoid any casualties [1, 5, 18]. Hu-
man drivers learn to detect potential accidents from experi-
ence by observing the surrounding objects and their move-
ments. The goal of the accident anticipation system is to
predict potential hazards happening in the future given the
current state of the surroundings by learning subtle cues like
the human drivers do. Early anticipation will help in alert-
ing the self-driving cars beforehand so that safety mecha-
nisms to avoid accidents can be employed.

Nowadays, there are several kinds of sensors put on self-
driving cars [19] to collect surrounding information. From
the perception point of view, one of the ways to get such
information is the videos recorded by dashboard cameras
(shortly known as dashcams). Installing dashcams on cars
has become popular in various countries, mainly to deter-
mine the responsible party in case of any accidents. Fol-
lowing existing literature [5, 16], we utilize these dashcam
videos to predict if there is a possibility of an accident in
the future.

This task of anticipating accidents using dashcam videos
comes with several challenges. Firstly, the accidents are
rare events (as compared to other events happening on the
road) with diverse nature and happen suddenly. Second,
these road scenes are generally cluttered as there are a lot
of objects and events happening that are not relevant to the
accident.

To address these challenges, there have been a number
of methods [1, 5, 9, 18] proposed in the past. For exam-
ple, [8] created a benchmark dataset called KITTI that con-
tains videos covering a variety of driving scenarios to help
learn the diverse nature of accidents. To address the sec-
ond challenge, methods such as [1, 5] proposed converting
the frames into object-based graph representation to elimi-
nate the majority of background noise irrelevant to the an-
ticipation task. However, the existing methods do not use
temporal information while creating these graphs or while
extracting the global frame features, which is necessary be-
cause the interaction of the objects in a frame is relative to
their interactions in the previous frames. For example, con-
sider the two frames in Fig. 1 where the bike (green bound-
ing box) and car (red bounding box) collide with each other.
Given the individual frame at time step t+1, it is difficult to
determine if they will collide but given the reference of the
previous frame, we can observe that these objects are mov-
ing closer meaning there may be a possibility of collision.

In this paper, we propose a novel end-to-end learn-
ing framework named Graph(Graph) (shortly referred to as
GG) for early accident anticipation that incorporates tem-
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Figure 1. Illustration of spatio-temporal object graph represen-
tation of video frames (from DAD dataset). si and mi denote
the spatial edge weights and temporal edge weights respectively.
The spatial edges provide the within-frame interaction information
while the temporal edges help propagate the object information
from previous frames to the next.

poral dependencies in local (object graph) as well as global
(full frame) features. In particular, Graph(Graph) utilizes
a nested graph representation of video frames which pro-
motes learning subtle temporal cues by using rich spatio-
temporal features. Our proposed method embeds temporal
information at different stages of the framework by - 1) in-
troducing temporal edges between objects across the frames
in the object graph; 2) introducing the use of a pretrained
feature extractor like I3D [4] that captures spatio-temporal
global information from the frames; 3) introducing tempo-
ral connections from previous frames in the frame graph,
built on top of the object graph. With extensive experiments
on two dashcam video datasets - DAD [5] and CCD [1], we
show Graph(Graph) is able to predict the accidents with the
highest precision at the earliest, outperforming the state-of-
the-art methods.

The rest of the paper is organized as - Section 2 describes
the related work followed by Section 3 which contains our
proposed methodology, Graph(Graph). Next, we present
the experiment results and ablation study in Sections 4 and
5 respectively. Finally, we conclude in Section 6.

2. Related Work
Anticipation of traffic accidents is dependent on many

factors like the relative location of the vehicles, pedestrians,
etc. Recurrent Neural Networks (RNN) and Convolution
Neural Networks (CNN) have been used to model such spa-
tial and temporal data for this task. [5] proposed Dynamic-
Spatial-Attention (DSA) RNN with soft attention to learn
subtle cues about the candidate objects. [6] proposed a two-
stream approach to predict the traffic risk. One stream is for
spatial information extraction analyzing the appearance fea-

tures using RCNN and the second stream is for extracting
the high-level motion features using LSTM. [9] utilized a
dynamic spatial attention module to learn attention weights
for aggregating object-level features from the frames. Dy-
namic temporal attention was then used to aggregate the
learned object features.

The probability of risk is dependent on the regions
around an ego-vehicle (or agent) and the behavior of the
agent and [23] makes use of the holistic representation of
the agent appearance and the region information to predict
the accident probability. Lead time to the occurrence of
an event proves handy in accident warning for autonomous
driving systems. As the lead time to the occurrence of
the accident is crucial for building safe autonomous sys-
tems, [17] predicted such lead time for an accident using
CNN + RNN framework which was trained to find cues
in the video that point to a future accident. The authors
use survival analysis to predict the final accident occurrence
probability.

Taking a different direction, [18] proposed a novel ap-
proach that considers the deviation from the future location
of the object to predict the accident. The two-step process
consisted of future object localization by predicting the im-
mediate future bounding box of the object of interest, using
GRU and RNN networks and the odometry change of the
ego-vehicle. [16] proposed an adaptive exponential loss for
early anticipation (AdaLEA) which gradually promotes ear-
lier anticipation during training and uses Quasi-RNN [2] to
get stable latent features. [11] models an event as either a
discrete-time (such as heuristic heatmaps) or a continuous-
time (such as Gaussian distribution) model. They proposed
a Gaussian Mixture Model Heatmap (GMMH) combining
Gaussian distribution and heuristic heatmaps for accident
anticipation.

Many existing methods [1, 5] represent the frames as
graphs of objects in the video. This has led to increased
use of Graph Neural Networks (GNN) to process the graph
input due to their expressive power of modeling dynamic
state transition systems. GNNs have proven to be effec-
tive in many computer vision applications like action recog-
nition in videos [12, 24] etc. For early accident anticipa-
tion, [1] proposed the use of graph convolutional recurrent
network (GCRN) to extract relational latent features from
the input graph created from objects and predict final scores
using Bayesian Neural Networks. [21] used a combination
of GCN and RNN for risk assessment in autonomous vehi-
cle decisions. The scene graphs built from the objects in the
frame are passed through graph attention and LSTM layers
to get the final predictions.

These methods show that using such a graph representa-
tion of the frames is beneficial for precise predictions, but
these graphs are built from individual frames only. We pro-
pose to embed temporal dependencies in such graph repre-
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sentations to enhance the extracted features, thereby making
precise predictions.

3. Graph(Graph): Methodology
In this section, we discuss the details of our proposed

method, Graph(Graph). The aim of this task is, given a
dashcam video, predict - 1) if there will be an accident in
the future and 2) predict it as early as possible. For the first
part, given a sequence of observed video frames denoted by
(X1, X2, .., XN ) where N is the number of frames, the ex-
pected output is (p1, p2, ...pN ) where pi denotes the prob-
ability of how likely an accident will occur in the future.
For the second part, the time is known as Time-to-Accident
(TTA) denoted by τ [1]. For videos containing accident
(positive), it is defined as τ = a − t for t < a where a
marks the beginning of an accident and t is the first time
step when the pt > α where α is the threshold. Ideally, τ
should be as high as possible so there is more time to pre-
vent the anticipated accident.

We propose Graph(Graph) for this task and its overview
is shown in Fig. 2. From a pretrained object detector, the ob-
jects, their features, and labels are used to create the spatio-
temporal object graph. The objects are linked within the
frames as well as across the frames to allow the flow of spa-
tial and temporal information. It is processed using GCN
and pooling layers to get a per-frame representation. The
second graph, the frame graph is built on top of the object
graph, using the extracted graph embedding and global fea-
tures. The final probabilities are obtained after passing this
graph through graph attention and fully-connected layers.

3.1. Spatio-Temporal Object Graph Learning

Usually, the road scenes contain numerous objects in-
teracting with each other in various manners at all times.
However, only a few of them, usually the ones nearby are
relevant to the self-driving car. Modeling such object inter-
actions explicitly is important as their interactions over time
help in deciding if there will be a potential accident in the
future. Therefore, instead of using only the global features
extracted from the entire frame, using graph representation
created using the objects in the frames helps in predicting
the accident while getting rid of background noise.

The first step of Graph(Graph) is using state-of-the-art
object detectors like [14] to detect objects like cars, bikes,
etc. in the observed video frames. For every frame Xi, we
create a spatio-temporal object graph denoted by Gobj

i hav-
ing S nodes where S is the number of detected objects in
a frame. The initial node embeddings for this graph con-
sists of two concatenated parts - 1) object features from the
object detector fe

obj ∈ RS×d1 where d1 is the feature di-
mensionality and 2) the word embeddings of the detected
object labels f l

obj ∈ RS×d2 where d2 is the dimension of
the word embeddings. Inspired by [1], we define spatial

adjacency matrix Aobj
s as,

Aobj
s (i, j) =

e−d(ci,cj)∑
ij e

−d(ci,cj)
(1)

where d(ci, cj) is the Euclidean distance between the cen-
ters ci and cj of ith and jth object bounding boxes detected
in a frame, respectively. This matrix is defined in a way that
nearby objects contribute more as compared to far objects
during message passing in the GCN layers. When using dis-
tance in pixel space, cases like object occlusions can lead to
some false perception of how close the objects actually are
physically. Despite that, this spatial adjacency matrix can
get rid of irrelevant, far-away objects. Complex distance
metrics can be used if camera intrinsics are known as men-
tioned in [1].

This spatial adjacency matrix Aobj
s is created from iso-

lated, individual frames. Existing methods use this repre-
sentation and depend solely on temporal models to learn the
temporal dependencies. However, we propose to explicitly
include the temporal information in the features to make
them richer in information, thereby helping the final pre-
dictions. We introduce another adjacency matrix Aobj

tm that
connects objects with the same label from previous frames.
If O is the number of unique object labels detected in the
current frame Xt, then temporal adjacency matrix Aobj

tm is
defined as,

Aobj
tm (i, j) =

{
s(i, j), li = lj

0, otherwise
(2)

where s(i, j) is the cosine similarity between the object fea-
tures of ith and jth objects with labels li and lj belonging
to frames at time t and t − u, u < t, respectively. These
edges ensure the flow of information between the objects of
the same class across frames and avoid irrelevant informa-
tion flow between objects from different classes. The node
embeddings are updated using the message-passing mech-
anism by sending them through graph convolutional layers
(GCN) [10],

fs
obj = GCN([ϕ(fe

obj), ϕ(f
l
obj)], A

obj
s )

f tm
obj = GCN([ϕ(fe

obj), ϕ(f
l
obj)], A

obj
tm )

f ′
obj = [fs

obj , f
tm
obj ]

(3)

where ϕ represents fully-connected (FC) layer used to re-
duce the feature dimensionality and [.] represents the con-
catenation operator.

Fig. 1 shows an illustration of a spatio-temporal object
graph. The spatial edges provide the relative position infor-
mation of three objects in the frame. Once the node embed-
ding is updated using these edges for the frame at time t, this
information is propagated to the same class objects in the
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Figure 2. Overall framework of Graph(Graph). The objects detected in a frame form the object-level graph with spatial and temporal
edges. This graph processed by graph convolution and pooling layers along with the extracted global spatio-temporal feature is used to
create the frame graph and pass it through graph attention and FC layers to produce final softmax probabilities. The lock sign indicates that
the module is frozen during the training.

next frame through the temporal edges. This means while
updating the node embeddings for objects in the frame at
time t+1, there is explicit information of objects from pre-
vious frames. Also, connecting the ‘car’ object from frame
t to ‘truck’ from frame t + 1 would lead to the flow of un-
necessary information which is why only objects from the
same class are temporally connected.

3.2. Spatio-Temporal Global Feature Learning

While the graph representation of the frame helps in
modeling the object interactions explicitly, the full frame
feature is important to provide global information about the
scene. Unlike the existing approaches [1, 5, 16] which use
pretrained image models like VGG16 [15] to extract these
global features, we propose to use pretrained video mod-
els like I3D [4] network for global feature extraction. This
is beneficial as these models take a sequence of frames as
input, having spatial and temporal knowledge while extract-
ing the frame feature.

To extract this global frame feature f t
fr for a frame at

time t, a sequence of frames Xseq = (Xt−u, ..., Xt) is
passed to the pretrained network Q. For every frame (we
drop superscript t for ease of reading), a h−dimensional
feature is produced. To avoid high computation for the
frame graph in the next phase of learning, we use a FC
(fully-connected) layer to reduce the feature dimensions,

ffr = Q(Xseq)

f ′
fr = ϕ(ffr)

(4)

where ϕ represents a FC layer.

3.3. Frame Graph Learning

The frame graph is created to learn the temporal de-
pendencies between the frames using the features extracted
from the object graph and the global features. In the frame
graph, every node represents a frame at time step t and the
edges connecting them are unidirectional (going from the
previous frames to the current frame) to avoid the flow of
information from future frames to past frames. For every
node at time t, there are k edges from previous k nodes.
Formally, the adjacency matrix Afr for this graph is defined
as,

Afr(i, j) =

{
1, i− j <= k

0, otherwise
(5)

where i represents the current node.
This graph is passed through two parallel graph attention

layers [3] (GAT) with f ′
obj and f ′

fr being the node features
for first and second layer respectively,

f ′′
obj = GAT(f ′

obj , A
fr)

f ′′
fr = GAT(f ′

fr, A
fr)

f ′′ = [f ′′
obj , f

′′
fr]

(6)

The graph attention is used here to learn the impor-
tance of different frames (nodes) for predicting future
accidents. These concatenated features are then passed
through FC layers to yield the final frame-wise probabili-
ties (p1, p2, ..., pN ) of how likely an accident will occur in
the future.

This entire system is trained in an end-to-end fashion
with the only frozen components being the object detection
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and the global feature extraction modules. We use the stan-
dard cross-entropy loss to train Graph(Graph),

L(p, y) = −
M∑

m=1

ymlog

(
epm∑M
j epj

)
(7)

where M is the number of classes (M = 2 in this case), p
denotes the softmax probabilities and y ∈ {0, 1} represents
the ground-truth labels for the frames.

4. Experiments and Results
In this section, we begin by describing the experimental

settings like the datasets, network architecture, and base-
lines used for comparison and evaluation metrics followed
by an explanation of different experiment results.

4.1. Experimental Settings

4.1.1 Datasets

We use two datasets of dashcam videos for our experiments.
Dashcam Accident Dataset (DAD) [5] is a dataset contain-
ing dashcam videos from different cities in Taiwan. With
fps (frames per second) of 20, each of these videos is 5 sec-
onds long. It consists of 678 videos divided into 1750 clips
of which 620 are accident clips (positive) with the accident
in the last 10 frames and 1130 are normal (negative) videos.
The training set has 455 positive and 829 negative videos
making a total of 1284 videos. The test set has 165 positive
and 301 negative videos, summing to 466 videos.

Car Crash Dataset (CCD) [1] consists of 4500 dashcam
videos of which 1500 are positive videos with the accident
in the last 2 seconds and 3000 normal videos are taken from
BDD100K [20]. Each video is 5 seconds long with tempo-
ral and environmental annotations like weather, day/night,
etc. provided. The train and test sets consist of 3600 videos
and 900 videos respectively.

4.1.2 Networks and Baselines

We may use pretrained networks like Faster R-CNN [14] for
the object detection module. For fair comparison, we use
the detected object bounding boxes, their features and la-
bels provided on the datasets’ official code repositories1, 2.
The top 19 objects are used with object feature vector di-
mension d1 = 4096. We use the GloVe embedding [13]
function from the spaCy library to get the word embeddings
(d2 = 300) for the object labels. As the videos are short (5
seconds), we set u = 1 for all the experiments, i.e. tempo-
ral edges between the objects from the previous frame only
and k = 20. For all the datasets, we keep the same network
architecture and configuration as shown in Fig. 3.

1https://github.com/smallcorgi/Anticipating-Accidents (DAD)
2https://github.com/Cogito2012/UString (CCD)

Figure 3. Graph(Graph) architecture configuration details

For global feature extraction, we use the I3D network3

[4]. For every frame, the feature is h-dimensional where
h = 2048. We use the PyTorch library for all our experi-
ments.

We compare with three state-of-the-art methods - DSA
[5], adaLEA [16] and Ustring [1]. We chose them for com-
parison as these are recent methods using a graph represen-
tation of the video frames as input. We quote the numbers
for these baselines as reported in [1].

4.1.3 Evaluation Metrics

While anticipating accidents, we need to be 1) as precise
as possible and 2) as early as possible. Following [1, 5],
we use Average Precision (AP) and mTTA (mean Time-to-
Accident) as evaluation metrics. Average precision helps in
evaluating how correct the prediction is. For an accident
video, if the prediction probability pt > α, then it is consid-
ered a correct prediction. Different values of the threshold
α are used to get corresponding pairs of precision and recall
values and calculate the Average Precision. The higher the
AP, the more precise the model in predicting the accidents.

3We use the pretrained model and code provided at https://github.com/
piergiaj/pytorch-i3d
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To evaluate if the system is able to detect the accident
early, we use the Time-to-Accident (TTA) metric. It is cal-
culated by checking the difference between the start of the
accident and the first frame where pt > α. For different
values of α, different recall values and TTA values are ob-
tained and mTTA is calculated by taking the mean of all of
these TTA values. Even for low AP, a very high TTA value
can be obtained where there are a lot of false positives. This
is not meaningful as the technique is predicting accidents
arbitrarily. Therefore, we report this metric corresponding
to the highest AP achieved.

4.2. Evaluation Results

We discuss different evaluation results like comparison
with baseline methods, visualization of the predictions of
Graph(Graph), etc. in this section.

4.2.1 Comparison with State-of-the-art Methods

Tab. 1 summarizes our comparison results on DAD and
CCD datasets. It is clear from the table that Graph(Graph)
(shortly denoted as GG) outperforms all the baselines for
both evaluation metrics. This implies it can predict the ac-
cident at the earliest and with the highest precision among
all the compared methods. This also indicates that using
spatio-temporal features (graph and global) instead of just
spatial features significantly helps in modeling the behavior
of the objects in the scene, thereby making precise predic-
tions at the earliest.

Note that the videos in the DAD dataset are from vari-
ous cities and generally have crowded traffic. Graph(Graph)
results in a huge increase (almost +10% for AP and +1
second for mTTA) for this dataset as compared to the Us-
tring [1]. This increase in performance showcases the versa-
tility of Graph(Graph) in handling videos with diverse con-
ditions like varying traffic density, roads, and backgrounds.
mTTA value of 4.45 seconds is extremely helpful to send
early alerts to the drivers/autonomous cars and avoid sev-
eral accidents and resulting casualties.

4.2.2 Visualizing the Predictions

In Fig. 4, we visualize predictions of different positive (ac-
cident) and negative (no accident) videos. The first two
graphs are for positive videos and the last one is for a nega-
tive video from the DAD dataset. For positive videos, it can
be observed that Graph(Graph) predicts an accident with a
high probability from the very start (∼4.5 seconds before
the beginning of the accident). For a normal video, the
scores are significantly lower than the threshold indicating
fewer occurrences of false positives.

Based on the proximity of different objects, the confi-
dence scores produced by Graph(Graph) change. For exam-
ple, in the first row of Fig. 4, there is a dip in the confidence

Dataset Method AP mTTA (s)

DAD
DSA [5] 48.1% 1.34

adaLEA [16] 52.3% 3.43
Ustring [1] 53.7% 3.53
GG (Ours) 63.6% 4.45

CCD
DSA [5] 99.6% 4.52

Ustring [1] 99.5% 4.74
GG (Ours) 99.9% 4.96

Table 1. Experiment results on DAD and CCD datasets. mTTA
values are in seconds. Graph(Graph) (GG) outperforms all the
baselines for both datasets. The numbers for baselines are quoted
from [1].

score near frame 40 where the objects (car, bike) seem to be
moving away from each other. However, the score starts to
go up after frame 50 where the objects are moving closer.
Similarly, for the video shown in the second row in Fig. 4,
the score starts to drop around frame 50 as the objects seem
far away from each other. As we use pixel distance between
the objects in the object graph, occlusions (like in frame
30 in the second row) can lead to high scores momentarily.
Nonetheless, the performance of Graph(Graph) shows how
the interactions of objects in pixel space can still help in
eliminating irrelevant objects as well as in making precise
predictions.

4.2.3 Comparison of Different Global Features

Pretrained image networks like VGG16 [15] can be used
for feature extraction for individual frames. However, these
features are based on spatial information only and have no
information about neighboring frames. As video frames
are dependent temporally, using spatio-temporal frame fea-
tures is very crucial, especially for accident anticipation task
where relative movements of objects matter.

Feature type AP mTTA (s)
VGG-16 [15] 62.0% 4.21

I3D [4] 63.6% 4.45

Table 2. Results for different types of global frame features used
in Graph(Graph) for DAD dataset. The spatio-temporal feature
extracted from pretrained I3D performs better than only using the
spatial feature extracted from VGG-16.

To extract a spatio-temporal global frame feature, we use
a pretrained I3D [4] network. We present experiments us-
ing spatial (extracted using VGG16) and spatio-temporal
(extracted using I3D) global features in the Graph(Graph)
framework. All other modules remain the same, with only
the type of global feature used changed. The results are pre-
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Figure 4. Prediction probability plots for different videos from the DAD dataset. The first two videos belong to the positive (accident) class
and the last one belongs to the negative (no accident) class. Graph(Graph) is able to predict an accident very early for positive videos while
the probability is lower than the threshold for all the frames for a negative video.

sented in Tab. 2. There is an increase in both precision and
the mTTA when the I3D feature is used. As the I3D network
takes a short sequence to generate the per-frame feature, the
extracted feature has knowledge of previous frames making
it richer in both spatial and temporal information than the
one produced using spatial information only.

We also display the Precision-Recall curve and Time-to-
Accident-Recall curve for both these cases in Fig. 5. For
a high recall value i.e. Recall@80% the precision when
using the I3D feature is higher than when the VGG16 fea-
ture is used, whereas the Time-to-Accident (TTA) for Re-
call@80% is similar for both cases. This indicates that there
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Figure 5. Precision vs. Recall curve (left) and Time-to-Accident (TTA) vs. Recall curve (right) for Graph(Graph) using I3D and VGG16
frame features for DAD. Precision when Recall@80% is higher for I3D features highlighting the importance of the temporal information.

are more false positives in the first case (VGG16 feature) as
compared to the second one. Overall, including temporal
information in the global feature enhances the performance
as well as reduces the chances of false accident alerts.

5. Ablation Study
In this section, we present experiments to demon-

strate the significance of different components used in
Graph(Graph) - the spatial and temporal adjacency matrix
for spatio-temporal object graph, Aobj

s and Aobj
tm respec-

tively and the spatio-temporal global features, ffr. Using
experiments on the DAD dataset, we show how these com-
ponents affect both the evaluation metrics.

Aobj
s Aobj

tm ffr AP mTTA (s)

! % % 55.8% 4.03
! ! % 60.5% 4.43
% % ! 48.8% 4.45
! ! ! 63.6% 4.45

Table 3. Ablation study results on DAD dataset. mTTA values
are in seconds. The effect of every component on the final perfor-
mance is significant with the highest performance achieved when
all components are used.

Tab. 3 summarizes the ablation study results. There is
almost a 5% increase in AP from case 1 (first row) to case
2 (second row), which is a result of using Aobj

tm adjacency
matrix that links objects across frames. This showcases
the importance of our proposed Aobj

tm adjacency matrix and
how temporal information flow across the frames is crucial
in making confident predictions. The third row uses only
the global spatio-temporal feature ffr and the frame graph.

There is a good amount of confidence in the predictions for
this case showing how these features contain meaningful
and relevant information for the task. However, there is a
huge dip in the performance (almost 15% as compared to
the one when the entire framework is used) which highlights
the importance of the object graph. Also, even with low AP,
the mTTA value is high for this case, indicating a large num-
ber of false positives. This means the model is overfitting
on accident videos. Finally, the last row is the performance
when all the components are used together which yields the
highest AP and mTTA values.

6. Conclusion

As early accident anticipation is one of the major tasks
towards building safe autonomous vehicles, we propose a
novel end-to-end learning, nested graph-based framework
named Graph(Graph) for handling this task. The graph rep-
resentation of frames provides explicit information about
the interactions between the objects while the global fea-
tures provide the overall scene information. Our method in-
troduces a simple way of incorporating the flow of temporal
information in the features for object graphs, frame graphs,
and global feature extraction. We evaluate Graph(Graph) on
DAD and CCD datasets and show how it can increase per-
formance from that achieved by the state-of-the-art methods
by a large margin.
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