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Abstract

This paper presents an unsupervised transformer-based
framework for temporal activity segmentation which lever-
ages not only frame-level cues but also segment-level cues.
This is in contrast with previous methods which often rely
on frame-level information only. Our approach begins with
a frame-level prediction module which estimates framewise
action classes via a transformer encoder. The frame-level
prediction module is trained in an unsupervised manner via
temporal optimal transport. To exploit segment-level infor-
mation, we utilize a segment-level prediction module and a
frame-to-segment alignment module. The former includes
a transformer decoder for estimating video transcripts,
while the latter matches frame-level features with segment-
level features, yielding permutation-aware segmentation re-
sults. Moreover, inspired by temporal optimal transport,
we introduce simple-yet-effective pseudo labels for unsu-
pervised training of the above modules. Our experiments on
Sfour public datasets, i.e., 50 Salads, YouTube Instructions,
Breakfast, and Desktop Assembly show that our approach
achieves comparable or better performance than previous
methods in unsupervised activity segmentation.

1. Introduction

Temporal activity segmentation [5, 8, 11, 17,31, 34,37,

,54] aims to associate each frame in a video capturing a
human activity with one of the action/sub-activity classes.
Temporally segmenting human activities in videos plays an
important role in several computer vision, robotics, health-
care, manufacturing, and surveillance applications. Exam-
ples include visual analytics [2,22, 23] (i.e., compute time
and motion statistics such as average cycle time from video
recordings), ergonomics risk assessment [40,41] (i.e., seg-
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Figure 1. Prior works often use only frame-level cues via frame-
level prediction modules (i.e., red) to predict framewise action
classes. We adopt a segment-level prediction module and a frame-
to-segment alignment module (i.e., green/blue), which exploit
segment-level cues for permutation-aware results. Also, we intro-
duce simple-yet-effective pseudo labels for unsupervised training.
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ment actions of interest in videos for analyzing ergonomics
risks), and task guidance [7, 19, 39] (i.e., offer instructions
to workers based on expert demonstration videos).

Considerable efforts have been made in designing fully-
supervised methods [12,17,32,33,37] or weakly-supervised
methods [5, 8, 13,25,29,34,38,43,44,46,51] for temporal
activity segmentation due to their great performance. How-
ever, acquiring dense framewise labels or weak annotations
such as transcripts [29] and timestamps [38] is generally
hard and expensive especially for a large number of videos.
Therefore, we are interested in unsupervised approaches for
temporal activity segmentation, which simultaneously ex-
tract actions and segment all video frames into clusters with
each cluster representing one action. Early unsupervised
methods [30, 36,49, 57, 59] separate representation learn-
ing from clustering, preventing effective feedback between
them, while using offline clustering, resulting in memory
inefficiency. To address that, UDE [54] and TOT [31] de-
velop joint representation learning and online clustering ap-
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proaches. The above methods often leverage frame-level
information only (i.e., red block in Fig. 1), while not ex-
plicitly utilizing high-level information such as transcript,
which is crucial for handling permutations of actions, miss-
ing actions, and repetitive actions.

In this work, we present an unsupervised activity seg-
mentation framework which is based on transformers [56]
and exploits both frame-level cues and segment-level
cues. Motivated by the strong performance of supervised
transformer-based architectures [5, 4] in supervised activ-
ity segmentation, our unsupervised model includes a trans-
former encoder and a transformer decoder. The former per-
forms self-attention to learn dependencies within the video
sequence, while the latter relies on cross-attention to learn
dependencies between the video sequence and the tran-
script sequence, resulting in effective contextual features.
In addition to the frame-level prediction module for exploit-
ing frame-level cues, we include a segment-level predic-
tion module and a frame-to-segment alignment module (i.e.,
green and blue blocks in Fig. 1) to leverage segment-level
cues, yielding permutation-aware segmentation results. For
unsupervised training of the above modules, we propose
simple-yet-effective pseudo labels based on temporal opti-
mal transport [31]. We demonstrate comparable or superior
performance of our approach over previous unsupervised
activity segmentation methods on four public datasets.

In summary, our contributions include:

* We introduce a novel combination of modules and un-
supervised losses to exploit both frame-level cues and
segment-level cues for permutation-aware activity seg-
mentation.

* We propose simple-yet-effective pseudo labels based
on temporal optimal transport, enabling unsupervised
training of the segment-level prediction module and
the frame-to-segment alignment module.

¢ Extensive evaluations on 50 Salads, YouTube Instruc-
tions, Breakfast, and Desktop Assembly datasets show
that our approach performs on par with or better than
prior methods in unsupervised activity segmentation.

2. Related Work

Fully-Supervised Activity Segmentation. Early works in
fully-supervised activity segmentation often rely on sliding
temporal window with non-maximum suppression [24,47]
or structured temporal modeling via hidden Markov mod-
els [28, 55], while recent methods are mostly based on tem-
poral convolutional networks (TCNs) [12, 17, 32, 33, 37].
Lea et al. [32] develop the first TCN-based solution, which
includes an encoder-decoder architecture with temporal
convolutions and deconvolutions to capture long-range tem-
poral dependencies. TricorNet [12] replaces the above de-

coder by a bi-directional LSTM, while TDRN [33] em-
ploys deformable temporal convolutions instead. Since
these methods downsample videos to a temporal resolution,
they fail to capture fine-grained details. Thus, multi-stage
TCNs [17,37] are introduced to maintain a high temporal
resolution. However, due to performing framewise predic-
tion, the above methods suffer from over-segmentation. To
address that, refinement techniques, e.g., graph-based rea-
soning [20] and boundary detection [21], are proposed.

Weakly-Supervised Activity Segmentation. Weakly-
supervised activity segmentation methods utilize different
forms of weak labels, including the ordered list of actions
appearing in the video, i.e., transcript supervision [8, 13,

,34,44,46], or the set of actions occurring in the video,
i.e., set supervision [18, 35,45]. Recently, timestamp su-
pervision [25, 38,43, 51], which requires labeling a single
frame per action segment, has attracted research interests,
since it has similar annotation costs as transcript supervi-
sion but it yields better results thanks to the additional ap-
proximate segment location information in timestamp la-
bels. More recently, Behrmann et al. [5] introduce a unified
fully-supervised and timestamp-supervised method, achiev-
ing competitive results. The above methods need either
framewise labels for full supervision or weak labels for
weak supervision, whereas our approach does not.

Unsupervised Activity Segmentation. Early attempts [3,
] in unsupervised activity segmentation often utilize the
narrations accompanied with the videos, however, these
narrations are not always provided. That motivates the de-
velopment of methods with only visual inputs [30, 31, 36,
,54,57,59]. Mallow [49] learns an appearance model
and a temporal model of the activity in an alternating man-
ner. CTE [30] first learns a temporal embedding and then
clusters the embedded features with K-Means. To im-
prove CTE, VTE [57] adds a visual embedding, while
ASAL [36] adds an action-level embedding. SSCAP [59]
first uses a video-based self-supervised model for feature
extraction and then performs co-occurrence action parsing
to capture the temporal structure of the activity. The afore-
mentioned methods separate representation learning from
offline clustering, preventing effective feedback between
them, whereas we follow recent approaches, i.e., UDE [54]
and TOT [31], to perform joint representation learning
and online clustering. Furthermore, unlike UDE [54] and
TOT [31], which exploit frame-level cues only, we propose
modules for exploiting segment-level cues and pseudo la-
bels for unsupervised training, yielding improved results.

Transformers in Activity Segmentation. After successes
of transformers [56] in natural language processing, there
has been a wide adoption of transformers in computer vi-
sion [4, 6, 9, 14]. Transformers focus on attention mecha-
nism to extract contextual information over the entire se-
quence. Recently, a few methods [5, 60] have applied trans-

6427



formers for temporal activity segmentation. ASFormer [60]
consists of encoder blocks, each of which includes a dilated
temporal convolution and a self-attention layer, and decoder
blocks, where cross-attention is used to gather information
from encoder blocks. Due to making framewise predic-
tion, ASFormer suffers from over-segmentation. To address
that, UVAST [5] uses a transformer decoder to predict the
transcript and exploit segment-level cues. In this work, we
adopt the transformer encoder of ASFormer [60] and the
transformer decoder of UVAST [5]. However, our overall
architecture is different from them. Also, they require labels
for supervised training, whereas we propose pseudo labels
for unsupervised training.

3. Our Approach

We present below our main contribution, an unsuper-
vised transformer-based framework for temporal activity
segmentation. Fig. 2 shows an overview of our approach.
Notations. Let us first represent the encoder function
and the decoder function as fg and gy respectively (with
learnable parameters @ and ¢). Our approach takes as
input a sequence of B frames, represented as X =
[x1, T2, .. .,scB]T. The encoder features of X are ex-
pressed as B = [el,eg,...,eg]T € RBXd with ¢; =
fo(x;) € RY (d is the feature dimension). Next, let us
denote A = [1,2,...,K]" € R¥ as the sequence of K
action classes in the activity. Our approach learns a group
of K prototypes, represented as C' = [cy, Ca,...,cx] €
REX4 with cj € R? corresponding to the j-th action class
in A. We denote T = [a1,as,...,ay]’ € RN (with
a; € A) as the transcript which contains the sequence
of actions appearing in X, and § € RM*? as the tran-
script features. The decoder features are written as D =
[d1,ds,...,dn]"T € RV*4 with d; € R? corresponding to
a; in T'. Finally, we represent Py € REXK p_c RNxK
and P, € RB*K ag the predicted assignment probabili-
ties (i.e., predicted “codes”) at the frame-level prediction
module (i.e., between frames and actions), the segment-
level prediction module (i.e., between transcript positions
and actions), and the frame-to-segment alignment module
(i.e., between frames and actions) respectively. Similarly,
Q; € RP*K, Q. e RV*K, and Q, € RP*X denote the
corresponding pseudo-label assignment probabilities (i.e.,
pseudo-label “codes”) for Py, P, and P, respectively.

3.1. Unsupervised Frame-Level Prediction

Here we describe our frame-level prediction module. In
particular, we adopt the joint representation learning and
online clustering method of [31]. Unlike [31], we include
modules and unsupervised losses in Secs. 3.2 and 3.3 for
exploiting segment-level cues. Also, instead of the MLP
encoder of [31], we utilize the transformer encoder of [5] to
capture long-range dependencies via self-attention.

The input frames X are first fed to the transformer en-
coder fp to yield the encoder features E. The frame-level
predicted codes P (with P}] denoting the probability that
the i-th frame in X is assigned to the j-th action in A) are

then computed as Py = softmax (%EC T) with a temper-

ature 7. We follow [31] to obtain the frame-level pseudo-
label codes Q¢ by solving the below fixed-order temporal
optimal transport problem:

max Tr(Q'ECT) = pKL(Q|IMa), ()

1 1
Q= {Q : Qlg = ElB,QHB = KlK}, )

where p is a balancing parameter, and 15 and 1 are vec-
tors of ones with B and K dimensions respectively. The
first term in Eq. 1 measures the similarity between the fea-
tures E and the prototypes C, while the second term de-
notes the Kullback-Leibler divergence between Q ; and the
prior distribution M 4 [53]. In particular, M 4 assumes the
fixed order of actions A, and enforces initial frames in X
to be assigned to initial actions in A and subsequent frames
in X to be assigned to subsequent actions in A. In Sec. 3.2,
we will discuss relaxing the above fixed-order prior by in-
troducing the transcript T and enabling permutations of ac-
tions. Eq. 2 represents the equal partition constraint, which
imposes that each action in A is assigned the same number
of frames in X to avoid a trivial solution. As mentioned
in [31], the method works relatively well for activities with
various action lengths since the above equal partition con-
straint is applied on soft assignments. The solution for the
above fixed-order temporal optimal transport problem is:

ECT +plogM 4
p

Q; = diag(u)exp ( ) diag(v), (3)

where u € RE and v € RX are renormalization vec-
tors [10]. Fig. 3 shows an example of M 4 and Q £ where
the red boxes highlight the fixed order of actions {3,4,5}.
We minimize the below cross-entropy loss with respect to 8
and C (note that we do not backpropagate through Q ;):

B K
1 i i
Lf:fEE > QY log PY. (4)
i=1 j=1

3.2. Unsupervised Segment-Level Prediction

The above module leverages frame-level cues and the
fixed-order prior. In this section, we describe the segment-
level prediction module to exploit segment-level cues and
allow permutations of actions. In particular, we introduce
the transcript T', which indicates the sequence of actions

6428



! Frame-to- Segment
I Alignment
I (Sec.3.3)

Alignment

> Transformer
Decoder 2,

I positional
1 Encoding

Encoding

3 uonoipaid

x,

RBxK RBxK
Permutation-Aware

TOT “
1
1
F

Segment-Level
Prediction
(Sec.3.2)

I
.
|

| Frame-Level

Transformer
Encoder f,

| Prediction
1 (Sec. 3.1)

Fixed-Order

Figure 2. Our approach includes a frame-level prediction module (i.e., red) which extracts frame-level features E via a transformer
encoder and uses temporal optimal transport to compute frame-level pseudo labels Q ; for unsupervised training. To exploit segment-level
information, we utilize a segment-level prediction module (i.e., green), which extract segment-level features D via a transformer decoder,
and a frame-to-segment alignment module (i.e., blue), which matches frame-level features E and segment-level features D. In addition,
we introduce segment-level pseudo labels @ and alignment-level pseudo labels @, for unsupervised training of the above modules.
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Figure 4. (a) Permutation-aware transcript T'. (b) Segment-level
pseudo-label codes Q.

of A occurring in the input sequence X. For example,
let us assume A = [1,2,3,4,5], it is possible that T' =
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Figure 5. (a) Permutation-aware prior distribution M. (b)
Alignment-level pseudo-label codes Q..

[1,3,2,5,4], which is a permutation of A. We will discuss
later how T’ is estimated for unsupervised training.
Assuming the transcript 7" is given, we first pass it to
the embedding layer g, to obtain the transcript features S,
which are then fed to the transformer decoder g¢. In addi-
tion, we also feed the encoder features E (after positional
encoding) to the transformer decoder g4, which performs
cross-attention between E and S to yield the decoder fea-
tures D. The segment-level predicted codes P, (with P?
corresponding to the probability that the ¢-th position in T
contains the j-th action in A) are computed by passing the
decoder features D to the prediction layer g,.. In practice,
we employ the transformer decoder of [5], which computes
P, in an auto-regressive manner, i.e., a part of T up to the
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i-th position is used to predict the (i+1)-th row of P,. In
parallel, we convert the transcript T into the segment-level
pseudo-label codes Q. Specifically, we set Qij = 1 if the
i-th position in T contains the j-th action in A, and Qij =0
otherwise. We minimize the following cross-entropy loss
between P, and Q, with respect to 6, ¢, ¢, and x (note
that we do not backpropagate through Q. ):

| MK -
— X%} ¥
L = 7N§ > Q¥ log PY. (5)

i=1 j=1

In contrast with the supervised method of [5], where
framewise labels or timestamp labels are required for su-
pervised training, we estimate the transcript T' from the
frame-level pseudo-label codes Q  for unsupervised train-

ing. For each j-th action, we find the i-th frame where Qifj
has the maximum assignment probability along the j-th col-
umn, yielding an action-frame pair (j, 7). Next, we sort all
action-frame pairs by their frame indexes. The resulting
temporally sorted list of actions is considered as our esti-
mated transcript T". Our motivation is that to predict each
action correctly, the method only needs to select a single
frame correctly, which is easier than obtaining the correct
framewise segmentation result. Note that the above imply
that IV (the length of the transcript T') is equal to K (the
length of the action list A), and our predicted transcript T’
shares the same set of unique actions with A despite having
different orderings. Fig. 4 illustrates an example of comput-
ing T from Q) , and computing @ from T'. Similar to [31],
our method tends to assign a small number of frames to
the missing actions, leading to minor impacts on the over-
all segmentation accuracy. Handling repetitive actions is
an interesting topic and remains our future work. As we
will show later in Sec. 4.2, despite using the above sim-
ple heuristic for transcript estimation, our method achieves
state-of-the-art results on four public datasets.

3.3. Unsupervised Frame-to-Segment Alignment

To further exploit segment-level cues and improve seg-
mentation results, we employ the frame-to-segment align-
ment module of [5], which matches frame-level features
with segment-level features and models permutations of ac-
tions. We pass both the encoder features E and the decoder
features D (after positional encoding) to the frame-to-
segment alignment module, which performs cross-attention
between E and D to predicts the alignment-level predicted
codes P,. Here, Pﬁlj corresponds to the probability that
the i-th frame in X is mapped to the j-th action in A. We
compute P, = softmax (%EDT) with a temperature 7.

Unlike with the supervised method of [5], where frame-
wise labels or timestamp labels are required for supervised
training, we propose a modified temporal optimal trans-
port module which is capable of handling permutations of

actions to compute the alignment-level pseudo-label codes
Q,, for unsupervised training. Specifically, instead of using
the prior distribution M 4 which enforces the fixed order
of actions A, we utilize the prior distribution M 1 which
imposes the permutation-aware transcript T, yielding the
permutation-aware temporal optimal transport problem:

T T
max 11(Q EC') - pKL(Q|[Mr). (6)

The solution for the permutation-aware temporal optimal
transport problem is:

ECT +plogMy
p

Q, = diag(u) exp < ) diag(v). (7)

Fig. 5 shows an example of M1 and Q,, where the green
boxes highlight the permutations of actions {3, 5,4}. This
is in contrast with M 4 and Q f in Fig. 3, where the red
boxes highlight the fixed order of actions {3,4,5}. As we
will show later in Sec. 4.1.2, using the permutation-aware
Q. derived from T yields better performance than using
the fixed-order @, derived from A. We minimize the cross-
entropy loss between P, and Q, with respect to 6, 1, and
¢ (note that we do not backpropagate through Q,):

K

B
La=—5 3> Qilog P! ®)
i=1 j

1j5=1

Our final loss for unsupervised training is a combination
of the fixed-order loss Ly (Eq. 4) and the permutation-aware
losses L, (Eq. 5) and L, (Eq. 8):

L=1Ly+als+ L, )

where « and f3 are the balancing parameters for L and L,
respectively. Following [5], we seta = 8 = 1.

4. Experiments

Implementation Details. We train our model in two stages.
In the first stage, we train only the frame-level prediction
module with the loss in Eq. 4 for 30 epochs, which is then
used for initialization in the second stage, where we train
the entire model with the loss in Eq. 9 for 70 epochs. Note
that we reduce the transformer encoder and transformer de-
coder of [5] to two layers to avoid overfitting. We imple-
ment our approach in pyTorch [42]. We use ADAM op-
timization [26] with a learning rate of 10~ and a weight
decay of 10~5. For inference, we follow [31] to compute
cluster assignment probabilities for all frames and then pass
them to a Viterbi decoder which smooths out the probabil-
ities given the action order T' (instead of A in [31]). More
details are provided in the supplementary material.

Competing Methods. We compare our approach,
namely UFSA (short for Unsupervised Frame-to-Segment
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Alignment), against a narration-based method [3], sequen-
tial learning and clustering methods [30,36,49,57,59], and
joint learning and clustering methods [3 1, 54].

Datasets. We evaluate our approach on four public datasets,
i.e., 50 Salads [52], YouTube Instructions (YTI) [3], Break-
fast [27], and Desktop Assembly [31]:

* 50 Salads includes 50 videos capturing 25 actors mak-
ing 2 types of salads. The total duration of all videos
is over 4.5 hours with an average of 10k frames per
video. We test on 2 granularity levels, i.e., Eval with
12 action classes and Mid with 19 action classes. Fol-
lowing [30], we use pre-computed features by [58].

* YouTube Instructions (YTI) contains 150 videos cap-
turing 5 activities with 47 action classes in total and
an average video length of about 2 minutes. These
videos contain many background frames. We use pre-
computed features provided by [3].

* Breakfast includes 70 hours of videos (30 seconds to a
few minutes long per video) capturing 10 cooking ac-
tivities with 48 action classes in total. We follow [49]
to use pre-computed features proposed by [28].

* Desktop Assembly contains 2 sets of videos. Orig con-
tains 76 videos of 4 actors performing desktop assem-
bly in a fixed order. Extra includes all Orig videos
and additionally 52 videos with permuted and missing
steps, yielding 128 videos in total. We evaluate on both
sets using pre-computed features provided by [31].

Evaluation Metrics. Following [30, 31, 49], we perform
Hungarian matching between ground truth and predicted
segments, which is conducted at the activity level. This
is unlike the Hungarian matching performed at the video
level in [1, 15,48]. Note that video-level segmentation, e.g.,
ABD [15], (i.e., segmenting just a single video) is a sub-
problem and in general easier than activity-level segmenta-
tion, e.g., our work, (i.e., jointly segmenting and clustering
frames across all videos). Due to space limits, we convert
video-level segmentation results of ABD [15] to activity-
level segmentation results via K-Means and evaluate them
in the supplementary material. We compute Mean Over
Frames (MOF), i.e., the percentage of frames with correct
predictions averaged over all activities, and F1-Score, i.e.,
the harmonic mean of precision and recall, where only pos-
itive detections with more than 50% overlap with ground
truth segments are considered. We compute F1-Score for
each video and take the average over all videos.

4.1. Ablation Studies
4.1.1 Impacts of Different Model Components

We first study the effects of various network components on
the 50 Salads (Eval granularity) and YTI datasets. The re-

Method MOF F1
— Frame 43.1 34.4
g Frame+Segment 43.2 38.1
= Frame+Segment+Alignment 55.8 50.3
_ Frame 42.8 30.2
; Frame+Segment 45.0 30.8
Frame+Segment+Alignment 49.6 324

Table 1. Impacts of different model components on 50 Salads with
the Eval granularity (Eval) and YouTube Instructions (Y77). Best
results are in bold, while second best ones are underlined.

sults are reported in Tab. 1. Firstly, using only the frame-
level prediction module presented in Sec. 3.1 yields the
lowest overall results. The frame-level prediction module
exploits frame-level cues only and utilizes the fixed-order
prior which does not account for permutations of actions.
Next, we expand the network by adding the segment-level
prediction module described in Sec. 3.2 to exploit segment-
level cues. For 50 Salads, MOF is not changed much, while
Fl1-score is improved by 3.7%. For YTI, MOF is increased
by 2.2%, while F1-Score is slightly improved by 0.6%. Al-
though the segment-level prediction module estimates the
permutation-aware transcript, the framewise predictions are
still suffered from over-segmentation. To address that, the
frame-to-segment alignment module proposed in Sec. 3.3 is
appended to the network to simultaneously leverage frame-
level cues and segment-level cues and refine the framewise
predictions, leading to significant performance gains. On
50 Salads, the results are boosted to 55.8% and 50.3% for
MOF and F1-Score respectively, while on YTI, MOF is in-
creased to 49.6% and F1-Score to 32.4%.

4.1.2 Impacts of Different Pseudo Labels

Here, we conduct an ablation study on the 50 Salads (Eval
granularity) and YTI datasets by using various versions of
pseudo labels @, and Q, computed from either the fixed
order of actions A or the permutation-aware transcript 7.
Tab. 2 presents the results. Firstly, using the fixed or-
der of actions A for computing both Q, and Q, (i.e., we
use T' = A in both Secs. 3.2 and 3.3) yields the low-
est overall numbers on both datasets, i.e., on 50 Salads,
46.1% and 45.2% for MOF and F1-Score respectively, and
on YTI, 44.3% and 29.4% for MOF and F1-Score respec-
tively. Next, we experiment with using the permutation-
aware transcript 1" for computing either Q or Q,, resulting
in performance gains, e.g., for the former (T for Q,, A for
Q,), we achieve 50.8% for MOF and 46.9% for F1-Score
on 50 Salads, while for the latter (A for Q,, T for Q,), we
obtain 54.0% for MOF and 48.7% for F1-Score on 50 Sal-
ads. Finally, we employ the permutation-aware transcript
T for computing both Q, and @, leading to the best per-
formance on both datasets, i.e., 55.8% for MOF and 50.3%

6431



Q.| Q, | MOF | F1
A A 46.1 45.2
= T A 50.8 46.9
Q| A | T | 540 | 487
T T 55.8 50.3
A A 443 29.4
; T A 45.7 29.7
| A | T | 465 | 298
T T 49.6 324

Table 2. Impacts of different pseudo labels on 50 Salads with the
Eval granularity (Eval) and YouTube Instructions (Y77). Best re-
sults are in bold, while second best ones are underlined.

for F1-Score on 50 Salads, and 49.6% for MOF and 32.4%
for F1-Score on YTI. The above results confirm the benefits
of using the permutation-aware transcript T' for computing
both pseudo labels Q, and Q,,.

4.2. Comparisons with the State-of-the-Art
4.2.1 Results on 50 Salads

We now compare the performance of our approach with
state-of-the-art unsupervised activity segmentation methods
on the 50 Salads dataset for both granularities, i.e., Eval
and Mid. Tab. 3 illustrates the results. It is evident from
Tab. 3 that our approach obtains the best MOF and F1-Score
numbers on both granularities, outperforming all compet-
ing methods. In particular, UFSA outperforms TOT [31]
by 8.4% and 4.9% on MOF on the Eval and Mid granu-
larities respectively, and UDE [54] by 15.9% on F1-Score
on the Eval granularity. Although TOT [31] and UDE [54]
conduct joint representation learning and online cluster-
ing as our approach, they only exploit frame-level cues,
whereas UFSA leverages segment-level cues as well. More-
over, our approach achieves better results than SSCAP [59],
which uses recent self-supervised learning features [16],
and ASAL [36], which exploits segment-level cues via ac-
tion shuffling, e.g., on the Eval granularity, UFSA achieves
55.8% MOF, whereas SSCAP [59] and ASAL [36] obtain
41.4% MOF and 39.2% MOF respectively. The substantial
improvements of UFSA over previous methods demonstrate
the effectiveness of our approach.

4.2.2 Results on YouTube Instructions

Tab. 4 presents the quantitative results of our approach
along with previous unsupervised activity segmentation
methods on the YTI dataset. We follow the protocol of
prior works and report the accuracy excluding the back-
ground frames. It is clear from Tab. 4 that our approach
achieves the best MOF, outperforming all previous meth-
ods, and the second best F1-Score, slightly worse than
TOT+TCL [31] (note that our approach currently relies
on TOT only, and can further include TCL for potential

Method Eval Mid
MOF F1 MOF F1
CTE [30] 35.5 36.3 30.2 25.6
VTE [57] 30.6 - 24.2 -
ASAL [36] 39.2 - 34.4 -
UDE [54] 422 34.4 - -
SSCAP [59] 414 30.3 - -
TOT [31] 47.4 42.8 31.8 22.5
TOT+TCL [31] 44.5 48.2 343 28.9
Ours (UFSA) 558 | 50.3 36.7 30.4

Table 3. Results on 50 Salads. Eval denotes the Eval granularity,
while Mid denotes the Mid granularity. Best results are in bold,
while second best ones are underlined.

Method MOF F1
Frank-Wolfe [3] - 24.4
Mallow [49] 27.8 27.0
CTE [30] 39.0 28.3
VTE [57] - 29.9
ASAL [36] 44.9 32.1
UDE [54] 43.8 29.6
TOT [31] 40.6 30.0
TOT+TCL [31] 45.3 329
Ours (UFSA) 49.6 | 324

Table 4. Results on YouTube Instructions. Best results are in bold,
while second best ones are underlined.

bl
__ |

Ground truth

Ours
(UFSA)

TOT

Figure 6. Segmentation results on a YouTube Instructions video
(changing _tire_0005). Black color indicates background frames.

improvements). Specifically, UFSA has an improvement
of 9.0% MOF and 2.4% F1-Score over TOT [31], and
an improvement of 5.8% MOF and 2.8% F1-Score over
UDE [54]. In addition, our approach obtains a noticeable
gain of 4.7% MOF and a slight gain of 0.3% F1-Score
over ASAL [36]. Fig. 6 plots the qualitative results of
UFSA, TOT [31], and CTE [30] on a YTI video. Our ap-
proach demonstrates significant advantages over CTE [30]
and TOT [31] in terms of capturing the temporal order of
actions and aligning them closely with the ground truth.
Due to space constraints, please refer to the supplementary
material for more qualitative examples, especially with per-
muted, missing, and repetitive actions.
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Method MOF F1

Mallow [49] 34.6 -
CTE [30] 41.8 26.4

VTE [57] 48.1 -
ASAL [36] 52.5 37.9
UDE [54] 474 31.9
SSCAP [59] 51.1 39.2
TOT [31] 47.5 31.0
TOT+TCL [31] 39.0 30.3
Ours (UFSA) 52.1 38.0

Table 5. Results on Breakfast. Best results are in bold, while
second best ones are underlined.

Method MOF | F1
o CTE [30] 476 | 449
‘s TOT [31] 563 | 517
C | TOT+TCL[31] | 581 | 53.4

Ours (UFSA) 654 | 63.0
s CTE [20] 408 | 356
< TOT [31] 510 | 404
= | TOT+TCL [31] | 57.9 | 54.0

Ours (UFSA) | 586 | 55.9

Table 6. Results on Desktop Assembly. Orig includes original
fixed-order videos only, while Extra further includes additional
permuted-step and missing-step videos. Best results are in bold,
while second best ones are underlined.

4.2.3 Results on Breakfast

Tab. 5 includes the performance of different methods on
the Breakfast dataset. From Tab. 5, our results are on par
with ASAL [36], which leverages segment-level informa-
tion via action shuffling, and SSCAP [59], which employs
more sophisticated self-supervised features [16]. Partic-
ularly, ASAL [36] and SSCAP [59] yield the best MOF
number (i.e., 52.5%) and the best F1-Score number (i.c.,
39.2%) respectively, while UFSA achieves the second best
results for both metrics (i.e., 52.1% and 38.0%). In addition,
our approach outperforms a number of competing methods,
namely Mallow [49], CTE [30], VTE [57], UDE [54], and
TOT [31], which exploit frame-level cues only.

4.2.4 Results on Desktop Assembly

We test the performance of our approach on the Desktop
Assembly dataset for both Orig and Extra sets. The re-
sults are reported in Tab. 6, which shows superior per-
formance of our approach over CTE [30], TOT [31], and
TOT+TCL [31]. For example, UFSA achieves an improve-
ment of 14.9% MOF and 20.5% F1-Score over TOT [31] on
the Orig set, and a gain of 7.6% MOF and 15.5% F1-Score
over TOT [31] on the Extra set. Results on the Orig set
indicate the effectiveness of our approach in preserving the
fixed order of actions, while results on the Extra set show
the ability of our method in handling permuted actions.

Method MOF F1

_ CTE [30] 286 | 264
g TOT [31] 39.8 | 37.0
= | TOT+TCL[31] | 42.8 | 44.9
Ours (UFSA) 47.6 | 418

- CTE [30] 384 | 255
e TOT [31] 404 | 280
TOT+TCL [31] | 40.6 | 26.7
Ours (UFSA) 468 | 282

Z CTE [30] 39.8 | 255
= TOT [31] 40.6 | 27.6
® | TOT+TCL [31] | 374 | 232
M Ours (UFSA) 4.0 | 367
o CTE [30] 356 | 31.8
= TOT [31] 55.3 | 502
© | TOT+TCL[21] | 492 | 446
Ours (UFSA) 63.9 | 63.7

< CTE [30] 357 | 304
< TOT [31] 436 | 350
= | TOT+TCL[31] | 459 | 40.0
Ours (UFSA) 579 | 54.0

Table 7. Generalization results. Best results are in bold, while
second best ones are underlined

4.2.5 Generalization Results

We follow [31] to evaluate the generalization ability of our
approach. We divide the datasets, i.e., 50 Salads (Eval),
YTI, Breakfast, Desktop Assembly (Orig, Extra) into 80%
for training and 20% for testing. For instance, for 50 Salads
with 50 videos, 40 videos are used for training and 10 for
testing. Tab. 7 shows the results. UFSA continues to outper-
form CTE [30], TOT [31], and TOT+TCL [3 1] in this exper-
iment setting. Note the results of CTE [30], TOT [31], and
TOT+TCL [31] in Tab. 7 differ from those reported in [31]
since different training/testing splits are used (we could not
acquire the splits from the authors of [31]). Our splits are
available at https://tinyurl.com/57ya6653.

5. Conclusion

We propose a novel combination of modules and un-
supervised losses to exploit both frame-level cues and
segment-level cues for permutation-aware activity segmen-
tation. Our approach includes a frame-level prediction mod-
ule which uses a transformer encoder for obtaining frame-
wise action classes and is trained in unsupervised manner
via temporal optimal transport. To leverage segment-level
cues, we utilize a segment-level prediction model based on
a transformer decoder for predicting video transcripts and
a frame-to-segment alignment module for corresponding
frame-level features with segment-level features, resulting
in permutation-aware segmentation results. For unsuper-
vised training of the above modules, we introduce simple-
yet-effective pseudo labels. We show comparable or supe-
rior results over prior methods on four public datasets.
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