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Abstract

Although point cloud segmentation has a principal role
in 3D understanding, annotating fully large-scale scenes for
this task can be costly and time-consuming. To resolve this
issue, we propose Point Central Transformer (PointCT), a
novel end-to-end trainable transformer network for weakly-
supervised point cloud semantic segmentation. Diver-
gent from prior approaches, our method addresses limited
point annotation challenges exclusively based on 3D points
through central-based attention. By employing two embed-
ding processes, our attention mechanism integrates global
features across neighborhoods, thereby effectively enhanc-
ing unlabeled point representations. Simultaneously, the
interconnections between central points and their distinct
neighborhoods are bidirectional cohered. Position encod-
ing is further applied to enforce geometric features and im-
prove overall performance. Notably, PointCT achieves out-
standing performance under various labeled point settings
without additional supervision. Extensive experiments on
public datasets S3DIS, ScanNet-V2, and STPLS3D demon-
strate the superiority of our proposed approach over other
state-of-the-art methods.

1. Introduction
With the rapid growth of 3D techniques and their in-

creasing scopes, point cloud segmentation has become
an indispensable component for thoroughly understanding
complex real-world scenes. It is also a critical factor in
diverse practical applications such as autonomous driving,
robotics, and smart cities to quickly capture the surrounding
environment in 3D navigation and planning. Several stud-
ies have been developed to achieve efficient performance
in large-scale point clouds, such as farthest point sampling
to deal with vast points [20], adaptation of kernel points to

local geometry [4, 25], enriched geometric features by in-
tegrating position encoding [10] or global contextual fac-
tors [7]. Additionally, transformer networks have gained
attention due to their remarkable performance in 2D im-
ages [6]. Point Transformer [34] introduces self-attention
mechanisms on raw point clouds to perform 3D understand-
ing. The network is then improved by stratified sampling
strategy [11] and group vector attention [27].

However, these works are built upon fully supervised
point clouds, and in real-world scenes, such as cities, it is
impractical and costly to annotate all points in kilometers
of areas. As a result, weakly-supervised point cloud seg-
mentation has become a more important and popular topic
for near-future scenarios. Existing approaches has been in-
troduced various techniques to overcome sparse annotations
in large-scale point clouds, including augmentation [14],
pseudo-labeling [17, 23, 26], pre-training [8, 29, 32], fine-
tuning [18], multiple instance learning [31], Siamese net-
work [13, 30], and contrastive learning [16, 33]. Although
these methods achieve encouraging performance on mul-
tiple datasets, several limitations remain to be resolved.
Firstly, existing approaches involve multiple stages of pre-
training and fine-tuning [8, 32], which can be challenging
to train and deploy in practical applications compared to
the end-to-end training scheme. Secondly, the exploration
of relationships between central points and their neighbors,
in conjunction with the global characteristics of these 3D
points, are inadequately explored [9, 30], resulting in an in-
effective utilization of the limited valuable annotations.

Motivated by these challenges, we propose an end-to-
end transformer network for weakly-supervised point cloud
segmentation. In line with previous studies [9, 34], our
network explores point representations through their corre-
sponding neighborhoods, which are constructed by kNN.
While we extract features from a query point, we define
it as ”central point” with surrounding points referred to as
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”neighboring points”. This approach implies that a single
point in 3D space can be served as central point within
its neighborhood, while concurrently role of a neighbor-
ing point within neighborhoods of other points. Fundamen-
tally, our approach addresses sparse annotations by leverag-
ing the relationships between central points and their neigh-
borhoods to improve point representations through central-
based attention. By utilizing two embedding processes, we
extract global features across various neighborhoods and in-
tegrate them with central points to enhance unlabeled point
features. Consequently, our method ensures that valuable
global features, along with relevant central point character-
istics, are efficiently shared across each point in neighbor-
hoods. This approach provides flexibility and enriches un-
labeled point representations. Furthermore, position encod-
ing also has an important role in 3D large-scale understand-
ing to provide essential geometric information. In weakly-
supervised settings, we utilize this module with additional
features to describe point positions more comprehensibly.

Overall, the proposed method, Point Central Trans-
former, presents a novel and straightforward approach that
leverages central-based attention mechanisms and trans-
former architecture to tackle the challenge of sparse anno-
tations. Our method has shown outstanding performance,
demonstrating its capability to process a limited number
of labeled points and outperforming other state-of-the-art
methods without additional supervision or complex tech-
niques, resulting in a highly efficient and effective solution.
In general, our main contributions can be described as be-
low:

• We propose a novel end-to-end trainable transformer
network with central-based attention to overcome
sparse annotations in point cloud segmentation.

• We introduce position encoding module in point cloud
weak supervision, concentrating on different geomet-
ric components to extract point representations and im-
prove model spatial reasoning.

• Our experimental results on benchmark datasets
demonstrate the outstanding performance of the pro-
posed method compared to state-of-the-art studies for
both indoor and real-world point clouds.

2. Related Work
2.1. Large-scale point cloud segmentation

To deal with large-scale point clouds, various point-
based methods have been developed. Specifically, Point-
Net++ [20], one of the prominent studies, introduces an
encoder-decoder architecture and farthest point sampling to
extract features through neighborhoods instead of the entire
point cloud in PointNet [19]. PointNeXt [21] further opti-
mizes this work with different training strategies. On the

other side, RandLA-Net [10] concentrates on geometric po-
sitions to address irregular structures. Spatial features are
incorporated into the network to reinforce point positions
during training. KPConv [25] resolves this issue by apply-
ing kernel weights to points with local geometry, which pro-
vide more flexibility than grid convolutions.

Recently, transformer architecture has been extended to
point clouds due to its remarkable performance in diverse
fields by the capacity to learn on massive data points. Point
Transformer [34] is one of the pioneering studies to pro-
pose a self-attention network on raw points and spatial fea-
ture supplements as position encoding. Stratified Trans-
former [11] further improves this approach with a stratified
sampling strategy and context-relative position encoding.
Subsequently, Point Transformer V2 [27] is introduced to
leverage the encoder-decoder process through group vector
attention. Although these methods have reached impres-
sive performance on both indoor and outdoor point clouds,
they rely on vast labeled data for training, a resource-
intensive and impractical undertaking in real-world applica-
tions. Conversely, this study aims to extract semantics from
a limited number of annotations by employing an attention
mechanism solely based on 3D points, thereby providing a
straightforward and cost-effective solution.

2.2. Weakly-supervised point cloud segmentation

Inspired by weak supervision of 2D images, several
works are proposed to perform point cloud segmentation
under sub-cloud level [26] or limited labeled point settings.∏

Model [12] and Mean Teacher [24] use ensemble models
for semi-supervised learning to tackle sparse annotations,
while SSPC [3] explores super-point graphs for weak super-
vision settings. Other approaches utilize contrastive learn-
ing and pseudo-labeling to overcome sparse annotations.
For example, 1T1C [17] introduces pseudo-labeling with
contrastive loss. PSD [33] proposes perturbed branches to
ensure predictive consistency with context-aware features.
HybridCR [14] integrates pseudo labels and consistency
regularization strategy with local and global guidance con-
trastive learning. Ren et al. [22] introduce an unsupervised
3D generation algorithm for pseudo-labeling. DAT [28] uti-
lizes consistency constraints under local and regional adap-
tive transformations. In outdoor point clouds, Coarse3D
[15] uses contrastive learning with entropy-driven sam-
pling. LESS [16] leverages contrastive prototype learning
and pre-segmentation to minimize manual labeling. Shi et
al. [23] performs pseudo-labeling through temporal match-
ing and graph propagation.

Furthermore, siamese networks are applied in weakly-
supervised point cloud segmentation. GaIA [13] embeds
relative entropy through Siamese network. Xu and Lee
[30] exploit Siamese self-supervision with color smooth-
ness constraints. Besides, pre-trained models are involved
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in this context. Hou et al. [8] propose a 3D pre-trained net-
work to transfer to complex tasks with data-efficient learn-
ing. PointConstrast [29] proposes unsupervised pre-training
in point clouds. Zhang et al. [32] utilize prior knowledge
from self-supervised pretext tasks to overcome sparse an-
notations. Using hand-crafted features and a pre-trained
model, Mei et al. [18] require a small fraction of input points
for fine-tuning. On the other side, MIL-derived Transformer
[31] integrates transformer backbone with three other losses
in multi-instance learning to explore pair-wise cloud-level
supervision. SQN [9] utilizes existing feature extraction for
point embeddings, and these encoded features are upsam-
pled by a semantic query network to explore native struc-
tures from neighboring points.

Different from previous approaches, we propose an end-
to-end trainable weakly-supervised network purely based
on 3D points to overcome limited point annotation setting.
Specifically, we introduce a central-based attention mech-
anism that capitalizes on interconnections between cen-
tral points and neighboring points, utilizing global features
across multiple neighborhoods. Although SQN also inte-
grates spatial features within its decoder stages, it computes
central point features by aggregating neighborhood individ-
ually, without considering interactions with other neighbor-
hoods. Consequently, this approach encounters limitations
under weak supervision, especially in scenarios where both
central points and neighboring points are unlabeled.

3. Proposed method
To address previous limitations, we propose a novel yet

straightforward end-to-end trainable network to perform
point cloud semantic segmentation using a small fraction
of labeled points. The approach is applied directly on 3D
raw points and can be operated without any pre-training, ac-
tive learning, or pseudo-labeling and surpasses other studies
through extensive experiments on benchmark datasets.

3.1. Preliminary

When the attention layer receives a point cloud D from
previous downsampling stages, as illustrated in Figure 1(c),
we first assume Pd = {pi}Ni=1 and Fd = {fi}Ni=1, where
pi ∈ R3 is the point position of the i-th point and fi ∈ RC

is its corresponding features with N is the total number
of points. The objective is to obtain point output features
F ′
d = {f ′

i}Ni=1 and then predicted labels Ŷ = {ŷi}Ni=1. In-
stead of processing entire point cloud scene, several works
[10, 20, 34] focus on extracting features locally based on
neighboring points through k-Nearest Neighbor. Specifi-
cally, each query point, denoted as pi, is explored through
its K neighboring points Pij = {pij : i ∈ N, j ∈ K}
and corresponding features Fij = {fij : i ∈ N, j ∈ K}.
During feature extraction of a given query point pi, we iden-
tify it as ”central point”, while surrounding points pij in its

neighborhood as ”neighboring points”.
We denote M is the number of labeled points in lim-

ited point annotation settings, Dl = (P l
M , F l

M ) and Du =
(Pu

N−M , Fu
N−M ) are the point coordinates and features of

labeled and unlabeled points. Within Dl, point labels Y l

remain unchanged, whereas for Du, point labels Y u are
assigned as unlabeled type. The network is expected to
perform fully annotated segmentation F ′

d from input point
clouds Dl ∪ Du. During training, while feature extraction
extends to all N points, only M points with labels Y l are
engaged in loss computation for back-propagation. To es-
tablish consistency and comparability, our approach aligns
with the selection strategy deployed in previous works
[9, 14, 30, 33] to choose M labeled points. In testing phase,
our network is evaluated on fully annotated scenes to ob-
tain predicted labels Ŷ on total N points. This approach
ensures a fair comparison with previous weakly-supervised
studies [9, 14, 33] and fully-supervised methods [20, 34].

3.2. Central-based attention

This section describes our proposed central-based atten-
tion to address the challenges associated with sparse point
annotations by integrating two embedding processes.

In weakly-supervised point clouds, the main challenge
revolves around effectively optimize unlabeled point fea-
tures to perform fully annotated point cloud segmentation
while using only limited number of labeled points for train-
ing. The current transformer-based networks [11, 27, 34]
employ local attention, which compute weights separately
on each neighborhood. Although this attention mechanism
demonstrates effectiveness in fully supervised large-scale
point clouds, where labeled points tend to be densely in-
terconnected and proximate to each other, it reveals several
limitations when operating under weak supervision. In lo-
cal attention, weights assigned to neighboring points within
a given neighborhood are computed using features solely
from that particular scope without considering relationships
between other neighborhoods. The corresponding central
point is integrated by weight summating of these neighbor-
ing points. However, in sparse annotations, training loss for
back-propagation is computed using only limited labeled
points. Consequently, this attention mechanism is only opti-
mized when central points are labeled and unlabeled neigh-
boring points could be updated accordingly. Conversely,
this approach underestimates the value of labeled points if
they serve as neighboring points while the central points
remain unlabeled. The situation is exacerbated when both
central points and neighboring points are unlabeled, which
we define as ”unlabeled neighborhoods”.

The above shortcomings lead us to propose central-
based attention, which effectively handles sparse annota-
tions through two embedding processes. In the initial em-
bedding, we resolve the problem related to unlabeled neigh-
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Figure 1. The overall PointCT network (a) receives input point clouds containing point coordinates and RGB colors. The features are
then encoded through downsampling (b) with corresponding transformer block depth (c) and decoded by upsampling (d) with classifier
layer to obtain predicted labels. Within each transformer block, a central-based attention layer (CA) (e) is integrated between MLP layers,
facilitated by a residual connection. The attention weights are computed from global features in neighboring points e1 and central point
sharing e2. The spatial features are then embedded through position encoding module posij .

boring points by considering relationships with other neigh-
borhoods. While previous studies [14, 26] obtain global
features from only central points, we adopt a novel ap-
proach by extracting them in terms of neighboring points
and then sharing across neighborhoods. In essence, we
leverage existing labeled neighboring points to improve un-
labeled features in multiple neighborhoods, regardless of
whether central points are labeled. As a result, neighboring
points, even in unlabeled neighborhoods, are also enhanced
through valuable global features from other areas that might
contain labeled points. Moreover, the benefits extend to un-
labeled central points, which are further optimized through
their integration from these corresponding neighborhoods.

Nonetheless, global feature extraction encounters obsta-
cles involved in neighborhood construction. In 3D space,
a single point can be served as a neighboring point in mul-
tiple neighborhoods with different order positions. Conse-
quently, if global features in terms of neighboring points are
simply aggregated from all these neighborhoods, the result
would be a blend of all points, devoid of any meaningful
semantic context. To overcome this issue, we distinguish
points that attend in various neighborhoods by embedding
their features with corresponding central weights. To be
specific, central weights are derived from central point fea-
tures, initially in dimension N × C, and then transformed
into dimension N×1. The global features in terms of neigh-
boring points, denoted as e1, are computed by aggregating
these features based on their order positions within respec-
tive neighborhoods.

Particularly, the proposed attention mechanism with two
embedding phases is illustrated in Figure 1(e). For a cen-

tral point pi, we compute central weights by linear layer
g1 with only one dimension. Then, the neighboring points
Pij = {pij : i ∈ N, j ∈ K} ∈ RN×k×3, Fij = {fij :
i ∈ N, j ∈ K} ∈ RN×k×C are explored using kNN to ob-
tain K number of points. In the first embedding, global fea-
tures are extracted by integrating central weights and neigh-
boring point features. These features are further passed
through softmax function σ to be served as neighboring
point weights in second embedding process.

e1 = σ(fT
ij × g1(fi)) ∈ Rk×C×1 (1)

e2 = fi × e1 ∈ Rk×N×1 (2)

Although e1 improves unlabeled neighboring point repre-
sentations in weakly-supervised point clouds through valu-
able global features, it tends to lack crucial local charac-
teristics specific to separate neighborhoods and diminishes
central point influence. As a result, its effectiveness in
computing neighboring point weights might be suboptimal
compared to previous studies [9, 34]. To tackle this limita-
tion, we introduce the second embedding process aimed at
sharing central point features to respective neighborhoods
through the aforementioned global features e1. This ap-
proach treats these global features as weights for neighbor-
ing points and subsequently performs matrix multiplication
in combination with central points. Therefore, the second
embedding, denoted as e2, ensures that central point fea-
tures are effectively propagated to each point within their
corresponding neighborhoods, guided by appropriate global
features.
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To construct attention weights for neighboring points,
which cover global features and valuable central weights,
we amalgamate these embedding processes with position
encoding as spatial supplements. Specifically, global fea-
tures e1 are transformed through g2 linear layer and inte-
grated with central sharing mechanism e2 using learnable
parameters α, β. This integration enhances local charac-
teristics through central point sharing while also preserving
global features. Moreover, position encoding posij is in-
corporated into attention weights to supplement appropriate
geometric features based on point positions. The enriched
attention weights are then sent through softmax function σ
and multiplied with the value feature map. Ultimately, we
aggregate all neighboring points by weighted summation to
avoid irregular point ordering problems and obtain output
features.

wij = ω(α⊙ g2(e1) + β ⊙ eT2 + posTij) ∈ Rk×C×N (3)

f ′
i =

K∑
j=1

σ(wT
ij)⊙ (g3(fij) + posij) ∈ RN×C (4)

3.3. Position encoding

Point clouds are characterized by an uneven distribu-
tion of points, leading to complex relationships and intricate
connections. In transformer architecture and attention mod-
ules, previous works [10, 11, 27, 34] have utilized position
encoding to capture spatial information and resolve features
lost in high-level transformations. However, sparse annota-
tions with limited labeled points have exacerbated this is-
sue, highlighting the need for more comprehensible meth-
ods to explore rich geometric features from various perspec-
tives. To address this demand, our proposed approach in-
troduces geometric point information, which is merged into
spatial features, as shown in Figure 1(e). We accomplish
this effect by concatenating additional geometric features,
such as altitude angle θa, azimuth angle θg , Euclidean dis-
tance ∥∆pij∥, through MLP layer δadd and integrate into
position encoding δbias with appropriate learnable parame-
ters λ.

The module enables us to capture more comprehensive
geometric information and thereby cohere point represen-
tations, particularly in weakly-supervised settings with lim-
ited labeled points. In addition, position encoding is essen-
tial in balancing neighboring features after the two central
embedding processes, ensuring that the model effectively
leverages the inner relationships between points to obtain
optimal results.

∆pij = pij − pi = (∆xij ,∆yij ,∆zij) (5)

cos(θg) =

√
(∆xij)2 + (∆yij)2

∥∆pij∥
(6)

cos(θa) =
∥∆yij∥√

(∆xij)2 + (∆yij)2
(7)

posij = δbias(∆pij)+λ⊙ δadd(∥∆pij∥ , cos(θg), cos(θa))
(8)

3.4. Network architecture

The overall encoder-decoder architecture is illustrated in
Figure 1(a). Our point-based network utilizes both XY Z
coordinates and RGB colors as input. Within the en-
coder branch, multiple Transformer blocks are integrated
into each downsampling stage to extract essential features.
Then, these encoded features are sent into the decoder
branch, where upsampling blocks are used to obtain dense
output labels for semantic segmentation.

Downsampling. The downsampling layers are illustrated
in Figure 1(b). First, we use farthest point sampling [20] to
select and group point indices through kNN from the orig-
inal point cloud Po and its corresponding features Fo. In
our experiments, we define the downsampling scale of 4,
reducing the number of points by four in each downsam-
pling layer. The selected points are then grouped, and cor-
responding features are aggregated using max pooling.

Transformer Block. The transformer block mentioned in
Figure 1(c) takes point coordinates Pd and corresponding
features Fd from previous downsampling stages as inputs
to compute the output features F ′

d. In each transformer
block, central-based attention is attached between MLP lay-
ers with a dropout module and a residual connection. The
transformer block leverages point features with geometric
factors, producing updated features for all points as its out-
put.

Upsampling. As seen from Figure 1(d), the above points
Pd and F ′

d from transformer blocks, along with correspond-
ing original ones Po and Fo are concatenated by interpo-
lation techniques [20] to get upsampling features F ′

o with
original points Po. The resulting features F ′

o are then passed
through MLP layers to obtain the output features for seman-
tic segmentation.

4. Experiment
4.1. Experiment setting

Datasets. We evaluate the proposed network performance
on three large-scale point cloud datasets: S3DIS [1],
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ScanNet-V2 [5], and STPLS3D [2]. S3DIS is one of popu-
lar indoor point cloud datasets for semantic segmentation. It
contains 271 rooms in six areas with 13 classes. We utilize
six attributes of each points as inputs, including XY Z co-
ordinates and RGB colors. ScanNet-V2 is another indoor
large-scale point cloud dataset, including 1,613 point cloud
scenes with 20 classes. It provides point clouds with RGB
attributes and well-annotated points. STPLS presents a
real-world, large-scale, and synthetic aerial photogramme-
try point cloud dataset. It was collected using a crosshatch-
type flight pattern and covers more than 16 km2 landscapes
in four areas with six classes.

Implementation details. We implement Point Central
Transformer in PyTorch. The input points are sent to grid
sampling with different grid sizes before training. Follow-
ing [9,34], S3DIS and ScanNet-V2 apply a grid size of 4cm.
STPLS3D utilizes a grid size of 30cm based on default set-
tings [2]. For a fair comparison, we follow previous stud-
ies [9, 14, 30, 33] to use Area (1,2,3,4,6) for training with
different weak label settings (10%,1%,0.1%) while reserv-
ing Area-5 solely for testing. Moreover, we also expand the
comparison on S3DIS 6-fold cross-validation, where each
area is treated as the test set once and all others are utilized
for training. Regarding the Scannet-V2 dataset, our net-
work is trained on training set and evaluates results against
the benchmarks set by the online test set [5]. For STPLS3D,
we test network performance by conducting experiments on
WMSC point cloud while training on other areas based on
original work [2].

We train for 100 epochs with AdamW optimizer using
weight decay 0.1 and cross-entropy loss. The learning rate
is first set to 0.0005, dropped by 10x at epochs 60 and 80.
In the encoder branch, transformer block depth is set to 2 –
2 – 5 – 2. The initial feature dimension is 32 and will dou-
ble after each downsampling layer. Transformer blocks are
connected to upsampling layers in decoder branch via skip
connections. MLP layers are composed of linear layers,
batch normalization, and ReLU activation functions. Fol-
lowing previous studies [9, 34], we construct neighboring
points using k nearest neighbor with K number set to 16
and downsampling scale set to 4.

Evaluation metrics. We evaluate network performance
on all points of test set. The mean Intersection-over-Union
(mIoU) is used as the standard metric in our experiments.

4.2. Experimental result

The experimental results are shown in Table 1-4 with
S3DIS, ScanNet-V2, and STPLS3D datasets. Underline
and Bold represent the best results under fully-supervised
and weakly-supervised settings, respectively.

Qualitative results on S3DIS and Scannet-V2. The
comparison between our proposed model and other state-
of-the-art methods with different point annotations has been
conducted on S3DIS Area-5, and the results are summa-
rized in Table 1. Obviously, PointCT consistently achieves
the highest results across various point annotation levels.
Compared to RandLA-Net [10], Zhang et.al [32], SQN [9],
and PointTransformer [34], we outperform in mIoU by
5.9%, 3.6%, 2.9%, and 1.6% at the setting of 10% point
annotations. Moreover, PointCT surpasses aforementioned
studies with a lower number of labeled points under 1%
setting by 7.8%, 5.8%, 4.0%, and 1.8%, respectively. Un-
der 0.1% point annotation level, we obtain remarkable per-
formance that exceeds RandLA-Net [10], SQN [9], Point-
Transformer [34] by 15.4%, 6.9%, 2.0% in mIoU. We have
also extended our experimentation to fully supervised point
clouds on Area-5 and achieved competitive performance
in comparison to current fully-supervised studies. Inter-
estingly, our observations reveal that the model configured
with the 0.1% settings achieves optimal performance, even
outperforming models utilizing more labeled points. Fur-
ther elaboration on this phenomenon can be found in Sec-
tion 4.3.

For a comprehensive comparison with [14, 32, 33], we
have also performed experiments on S3DIS using 6-fold
cross-validation with 0.1% point annotations, as reported
in Table 2. Specifically, PointCT surpasses other weakly-
supervised studies [14, 32, 33] that use 1% labeled points,
exceeding their mIoU performance by 5.3%, 3.2%, and
2.0%, respectively. Furthermore, we outperform SQN [9]
by 7.5% in mIoU using a similar point annotation level.

In ScanNet-V2, as highlighted in Table 3, PointCT
achieves exceptional performance across both annotation
settings and outperforms other weakly-supervised methods.
In comparison to Zhang et al. [32], PSD [33], and Hy-
bridCR [14], our approach under 1% point annotations ex-
ceeds their respective mIoU by 13.2%, 9.6%, and 7.5%,
respectively. Furthermore, PointCT surpasses SQN [9] by
6.2% under 0.1% point annotations.

The visualization results are shown in Figure 2. It is
observed that our proposed network achieves remarkable
performance in indoor scenes compared to Point Trans-
former [34]. As illustrated in Figure 2, the proposed net-
work demonstrates the ability to capture global context un-
der limited annotations. Surprisingly, PointCT further opti-
mizes this task by eliminating human errors in the last sam-
ple. In this instance, it accurately identifies chairs based on
crucial patterns, demonstrating its proficiency despite devi-
ations from the ground truth.

Qualitative results on STPLS3D. We evaluate our net-
work using original benchmarks from real-world point
cloud dataset STPLS3D [2], which results are detailed in
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Table 1. Semantic segmentation results on S3DIS Area-5. Underline presents the best results under fully-supervised settings, and Bold
shows the best results under weakly-supervised settings.

Settings Method mIoU ceil. floor wall beam col. wind. door chair table book. sofa board clut.

100% PointNet++ [20] 50.0 90.8 96.5 74.1 0.0 5.8 43.6 25.4 69.2 76.9 21.5 55.6 49.3 41.9
HybridCR [14] 65.8 93.6 98.1 82.3 0.0 24.4 59.5 66.9 79.6 87.9 67.1 73.0 66.8 55.7
RandLA-Net [10] 64.6 92.4 96.8 80.8 0.0 18.6 57.2 54.1 79.8 87.9 70.2 74.5 66.2 59.3
SQN [33] 63.7 92.8 96.9 81.8 0.0 25.9 50.5 65.9 79.5 85.3 55.7 72.5 65.8 55.9
PointTrans [34] 70.4 94.0 98.5 86.3 0.0 38.0 63.4 74.3 82.4 89.1 80.2 74.3 76.0 59.3
PointCT 67.9 94.0 98.3 85.5 0.0 26.1 61.0 73.9 81.1 88.3 65.1 73.6 76.3 59.1

10% RandLA-Net [10] 61.7 91.7 97.8 79.4 0.0 28.4 50.8 45.5 81.3 85.2 57.1 70.3 63.8 51.8
Zhang et.al [32] 64.0 - - - - - - - - - - - - -
SQN [9] 64.7 93.0 97.5 81.5 0.0 28.0 55.8 68.7 80.1 87.7 55.2 72.3 63.9 57.0
PointTrans [34] 66.0 93.7 98.3 83.7 0.0 35.0 48.1 70.9 81.9 88.3 60.3 73.2 67.3 57.2
PointCT 67.6 92.3 98.3 84.6 0.0 35.8 62.6 79.7 80.5 86.6 57.9 72.3 73.5 54.5

1% HybridCR [14] 65.3 92.5 93.9 82.6 0.0 24.2 64.4 63.2 81.7 78.3 74.4 69.0 68.2 56.5
RandLA-Net [10] 59.8 92.3 97.5 77.0 0.1 15.9 48.7 38.0 78.0 83.2 62.4 68.4 64.9 50.6
Zhang et.al [32] 61.8 91.5 96.9 80.6 0.0 18.2 58.1 47.2 75.8 85.7 65.2 68.9 65.0 50.2
SQN [9] 63.6 92.0 96.4 81.3 0.0 21.4 53.7 73.2 77.8 86.0 56.7 69.9 66.6 52.5
PointTrans [34] 65.8 94.2 98.2 83.0 0.0 44.2 50.4 68.8 83.0 88.1 47.4 75.2 64.3 59.0
PointCT 67.6 94.7 98.5 85.3 0.0 24.7 59.4 71.6 79.9 88.6 69.5 73.2 73.8 59.4

0.1% RandLA-Net [10] 52.9 89.9 95.9 75.3 0.0 7.5 52.4 26.5 74.5 62.2 60.2 49.1 49.3 45.1
SQN [9] 61.4 91.7 95.6 78.7 0.0 24.2 55.9 63.1 70.5 83.1 60.7 67.8 56.1 50.6
PointTrans [34] 66.3 92.6 97.7 83.5 0.0 35.4 56.9 69.6 78.9 84.8 69.3 66.2 74.0 53.0
PointCT 68.3 92.7 98.3 85.1 0.0 31.2 60.7 73.0 79.9 89.2 82.3 71.6 70.1 54.2

Table 2. Results on S3DIS 6-fold.

Setting Method mIoU

100% PointNet++ [20] 54.5
RandLA-Net [10] 70.0
PointTrans [34] 73.5

1% Zhang et al. [32] 65.9
PSD [33] 68.0
HybridCR [14] 69.2

0.1% SQN [9] 63.7
PointCT 71.2

Table 3. Results (mIoU) on ScanNet-V2.

Setting Method Val Test

100% PointNet++ [20] 53.5 55.7
RandLA-Net [10] - 64.5

1% Zhang et al. [32] - 51.1
PSD [33] - 54.7
HybridCR [14] 56.9 56.8
PointCT 65.6 64.3

0.1% SQN [9] 58.4 56.9
PointCT 63.7 63.1

Table 4. Results on STPLS3D.

Setting Method mIoU

100% KPConv [25] 53.7
RandLA-Net [10] 50.5
SCF-Net [7] 50.7
MinkowskiNet [4] 51.3
PointTrans [34] 47.6

0.1% PointCT 49.2
0.01% PointCT 53.2

Table 4. PointCT, operating under two labeled point set-
tings, consistently outperform PointTransformer [34] with
full supervision by 1.6% and 5.6% in mIoU, respectively.
Interestingly, PointCT, even with 0.01% labeled points, sur-
passes most of fully-supervised methods, except KPConv.
One of the main reason behind this outstanding perfor-
mance is the ability to eliminate noises in limited point an-
notations.

As illustrated in Figure 3, input point clouds contain con-
fusing objects (yellow boxes), which are small buildings
with similar shapes and colors to cars. Through leveraging
fewer labeled points, PointCT efficiently differentiates these
objects and improves performance in complex real-world
scenes under 0.01% point annotations. Moreover, employ-
ing our method in weakly-supervised point clouds enhances
identification of smaller objects, such as ”light pole” by a

large margin, thereby leading to impressive mIoU incre-
ments using solely 3D points in our attention mechanisms.
For further details, please refer to the per-class performance
in the Supplementary Material, Section 1.

4.3. Ablation study

Central-based attention and position encoding. The
module effectiveness is evaluated on S3DIS Area-5 under
0.1% labeled point setting by considering various factors
and integrations, including central-based attention (CA),
position encoding in attention weight (pos att), and value
features (pos value). In model I, we remove transformer
blocks in network architecture to obtain baseline model.
Model II utilize central-based attention without position en-
coding by removing posij in equations (3) and (4). Model
III and IV compare performance of position encoding sep-
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Figure 2. Visualization on indoor S3DIS Area-5 compared to Point
Transformer under 0.1% setting with ground truth (GT).

Figure 3. Visualization on real-world STPLS3D under two differ-
ent labeled point annotations with ground truth (GT).

arately in attention weight with equation (3) and value
features with equation (4). Finally, the proposed central-
based attention was obtained by combining position encod-
ing from these two modules.

As seen from Table 5, our central-based attention im-
proves baseline model by 1.5% in mIoU. Additionally,
the position encoding in value features has fewer impacts,
only enhancing by 0.4% compared to 1.8% in attention
weights. However, despite spatial features being integrated
into attention weights to express point positions, the feature
transformation process can diminish their impacts. There-
fore, our network requires additional position reinforcement
within the value features to achieve a more comprehensive
improvement. The central-based attention with these two
position encoding modules achieved the best result, improv-
ing the baseline by 6.5%.

Number of labeled points. The experimental results with
different annotation levels (100%, 10%, 1%, 0.1%) are sum-
marized in Table 1. While the overall mIoU exhibits fluctu-
ations across various labeled point settings, substantial im-
provements are observed in several categories that contain

Table 5. Ablation study on different modules.

ID CA pos att pos value mIoU

I 61.8
II ✓ 63.3
III ✓ ✓ 63.5
IV ✓ ✓ 65.1
V ✓ ✓ ✓ 68.3

noisy data. Specifically, for S3DIS-Area 5, the ”bookcase”
and ”table” categories with complex backgrounds demon-
strate interesting improvements under 0.1% point annota-
tions compared to other settings. In contrast, categories
such as ”sofa,” ”clutter,” and ”board” experience marginal
fluctuations as the number of labeled points decreases.
These findings highlight the effectiveness of our proposed
approach with limited annotations in achieving a more bal-
anced performance across diverse categories by mitigating
these noises.

Similar patterns are observed in real-world point cloud
STPLS3D, enhancing ”light pole” performance against
other methods. This situation also extends to Scannet-V2
with ”cab,” ”shower,” ”bath,” and ”sofa” improvements.
A comprehensive breakdown of per-class performance in
Scannet-V2 and STPLS3D is available in Supplementary
Section 1.

5. Conclusion
In conclusion, Point Central Transformer demonstrates

the effectiveness of transformer networks with central-
based attention for weakly-supervised point cloud segmen-
tation. Our approach achieves impressive performance
purely based on 3D points without additional supervision.
Through central-based attention, we effectively handle in-
tricate relationships between central points and neighbor-
hoods using two embedding processes with appropriate
global features. Geometric features are then improved us-
ing position encoding module. Extensive experiments vali-
date PointCT’s ability to capture global context and mitigate
noises in weakly-supervised point clouds.
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