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Abstract

In this study, we explore sketch-based object localiza-
tion on natural images. Given a crude hand-drawn object
sketch, the task is to locate all instances of that object in the
target image. This problem proves difficult due to the ab-
stract nature of hand-drawn sketches, variations in the style
and quality of sketches, and the large domain gap between
the sketches and the natural images. Existing solutions ad-
dress this using attention-based frameworks to merge query
information into image features. Yet, these methods often
integrate query features after independently learning im-
age features, causing inadequate alignment and as a re-
sult incorrect localization. In contrast, we propose a novel
sketch-guided vision transformer encoder that uses cross-
attention after each block of the transformer-based image
encoder to learn query-conditioned image features, lead-
ing to stronger alignment with the query sketch. Further,
at the decoder’s output, object and sketch features are re-
fined better to align the representation of objects with the
sketch query, thereby improving localization. The proposed
model also generalizes to the object categories not seen dur-
ing training, as the target image features learned by the
proposed model are query-aware. Our framework can uti-
lize multiple sketch queries via a trainable novel sketch fu-
sion strategy. The model is evaluated on the images from
the public benchmark, MS-COCO, using the sketch queries
from QuickDraw! and Sketchy datasets. Compared with ex-
isting localization methods, the proposed approach gives a
6.6% and 8.0% improvement in mAP for seen objects using
sketch queries from QuickDraw! and Sketchy datasets, re-
spectively, and a 12.2% improvement in AP@50 for large
objects that are ‘unseen’ during training. The code is avail-
able at https://vcl-iisc.github.io/locformer/.

1. Introduction

Detecting objects in a natural image is an exciting area
of research in computer vision. Notable progress in this

Figure 1. Sketch-based object localization: Consider a scenario
where users wish to localize all the instances of the object broccoli
on a set of natural images, and (i) images of broccoli are never
seen during training, (ii) even at the inference time users do not
have natural image of broccoli that can be used as a query, and
(iii) the category name (“broccoli”) is also unknown to the user.
In such a situation, the user chooses to draw a sketch of broccoli
by hand to localize all instances of it on the natural images. This
work significantly improves the performance on this challenging
task, namely sketch-guided object localization.

domain over the past decade is mainly attributed to the con-
tinuous advancement of deep learning architectures [1, 18,
19, 24]. Despite these advancements, contemporary object
detectors often face limitations in localizing instances of ob-
ject categories not present during training. This issue poses
challenges in practical scenarios, where a more versatile ob-
ject localization technique is required to generalize effec-
tively to unseen object categories—termed open-world ob-
ject localization. One approach in this context is to localize
objects in an image using an object image as a query [6].
However, this method may be hindered by the limited avail-
ability of object images due to copyright concerns, privacy
restrictions, and data collection overhead, especially for un-
common or non-natural objects. Additionally, situations
may arise where users lack access to query images of the
desired object and may not even know the correct name. In
these cases, they may choose to describe the object through
a hand-drawn sketch. To gain insight into our motivation
and objectives, please refer to Figure 1.

In addressing the aforesaid challenges, the problem of
sketch-based object localization was introduced by Tripathi
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et al. [25]. The primary goal is to localize all instances of
an object on a natural image given a corresponding sketch
query. However, this task presents significant challenges
due to the abstract nature or ‘crudeness’ of the sketches, the
diverse quality and style of hand-drawn sketches produced
by non-expert users, and the domain gap between the query
sketches and the target natural images. To tackle some
of these obstacles, Tripathi et al. [25] proposed a cross-
modal attention-based localization framework. Employ-
ing the Faster-RCNN architecture [19], they integrated a
novel attention mechanism into the region proposal network
(RPN), facilitating the generation of semantically relevant
region proposals through the inclusion of a sketch-guided
spatial attention score within the RPN. Subsequently, these
region proposals undergo scoring to obtain the optimal ob-
ject localization. Yet, this method heavily relies on the qual-
ity of the generated proposals, which might be rather lim-
ited, especially for occluded or underrepresented objects.
Additionally, their method solely relies on spatial atten-
tion scores, possibly limiting localization performance due
to the lack of explicit alignment between the query sketch
and the target image features. Recently, Riba et al. [21]
introduced Sketch-DETR, a novel extension of the popular
object detection transformer (DETR) [1], achieving state-
of-the-art performance in the sketch-based object localiza-
tion task. Sketch-DETR employs an encoder-decoder trans-
former model, accepting both target image and sketch fea-
tures obtained from their respective feature encoders as in-
puts. A self-attention mechanism is then applied to establish
feature alignment between sketch and image features. How-
ever, a limitation of this methodology is rooted in its need
for distinct image and sketch encoders to extract respective
features before these are input into the self-attention mech-
anism, ultimately leading to sub-optimal alignment.

Addressing the limitations of current methods, we
present a novel sketch-guided vision transformer en-
coder, which builds upon the vision and detection trans-
former (ViDT) [24]. Our sketch-guided encoder is designed
to learn the representation of the target image conditioned
on the query sketch, facilitating strong feature alignment
between the image and the sketch. Specifically, our sketch-
guided encoder takes the raw image as input, and after
each block of the image encoder, a multi-headed cross-
attention is applied to incorporate the query information
into the image features. This process computes the atten-
tion score between image and sketch features, which is
then used to fuse the sketch features into the image fea-
tures. Consequently, the obtained target image features are
more effectively aligned with the query sketch, enhancing
query-guided localization performance.1 Furthermore, af-
ter performing feature alignment within the sketch-guided

1Refer to suppl. materials for the comparison of our sketch-guided
encoder with attention mechanisms proposed in [21, 25] using ViDT.

encoder, we introduce semantic alignment at the decoder
for further refinement. By utilizing multi-headed cross-
attention between the object-level image features (repre-
sented by [DET] tokens) and sketch features, we semanti-
cally bring the representation of relevant objects closer to
the sketch query representation, enabling precise and accu-
rate localization. Thus, by proposing the novel feature and
semantic alignment between the image and query sketch,
we aim to overcome the limitations of existing methods and
pave the way for more effective and accurate sketch-based
object localization.

A key distinguishing aspect of our proposed frame-
work is its robust performance under the challenging ‘open-
world’ setting. Our framework demonstrates the ability to
achieve highly accurate object localization, even for cate-
gories that are not part of the training data. It can be at-
tributed to the effective alignment between the learned tar-
get image and the query sketch representations. Moreover,
we introduce a trainable, novel sketch fusion strategy capa-
ble of combining complementary information from various
sketches. The fusion process constructs a comprehensive
object representation, significantly improving localization
performance.

Contributions: In summary, we make the following
contributions in this work: 1) To solve the sketch query
based object localization task, we propose a novel sketch-
guided vision transformer encoder that learns the represen-
tation of the target image conditioned on the query sketch,
which leads to stronger alignment between the image and
the sketch features and hence, much-improved localization
accuracy. 2) Additionally, we propose a semantic alignment
strategy at the output of the decoder that utilizes attention
to bring the features of the relevant objects semantically
closer to the sketch query, thereby further improving the
localization performance. 3) We perform extensive evalua-
tions on publically available benchmark datasets, where our
proposed approach achieves a substantial gain of 8% over
the best-reported results for sketch-based object localization
on images from the MS-COCO dataset and query sketches
from the Sketchy dataset. It, therefore, establishes a new
state-of-the-art for this task.

2. Related Work

2.1. Object detection

Object detection is a well-studied yet open area of re-
search in computer vision. Object detection approaches
can broadly be grouped into (i) proposal-based and (ii)
proposal-free methods. Although proposal-based meth-
ods [2,26] have several advantages, their performance is of-
ten limited by the quality of proposals they generate, which
are often weak for occluded objects as well as ‘unseen’ ob-
ject categories. Improving proposal generation for unseen
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objects is an open area of research [31]. Our work falls un-
der proposal-free methods. Among proposal-free methods,
the modern transformer-based object detectors [1,24,32] are
state-of-the-art. These methods often have encoder-decoder
models and utilize a fixed set of [DET] tokens to learn to lo-
calize and classify the objects in the image. Methods such
as ViDT [24] have progressed toward an encoder-free object
detector, leading to fewer parameters and faster inference.
While these object detection techniques are reasonably suc-
cessful within the closed-world setting, there is a growing
interest in addressing the challenges of open-world object
localization [3, 6, 14]. In this space, [6] and [14] have pro-
posed object localization in the one-shot setting and use the
image of an object as a query. We address the problem of
object localization for the scenario where the object cate-
gory name is unknown, and the query image for the object
of interest is unavailable; instead, a crude sketch representa-
tion of the object is available for the query to perform one-
shot object localization. This recently introduced problem
is referred to as sketch-based object localization.

2.2. Sketch-based Object Localization

Sketches have been applied to various computer vision
tasks, e.g., sketch generation [8,16], 3D reconstruction [13],
image and video retrieval [17, 28, 29], and 3D shapes re-
trieval [15, 27]. Recently, [25] introduced the problem of
sketch-based object localization in natural images where,
given a sketch query, the task is to localize the corre-
sponding objects in the target images. They proposed a
model based on Faster-RCNN and a cross-attention mod-
ule to solve the problem. Yet, their model utilizes an in-
adequate attention mechanism that leads to subpar perfor-
mance. Recently, [21] proposed a transformer-based ap-
proach, namely Sketch-DETR, where they concatenate the
flattened sketch and image features before feeding them
through the DETR encoder. Though more expressive than
the cross-modal attention, they incorporate the sketch infor-
mation at the encoder where target image features have al-
ready been learned. In this work, we propose sketch-guided
vision transformer encoder that learns the representation of
the target image conditioned on the query sketch by fusing
the query information into the target image after each block
of the transformer-based image encoder. Representation for
the sketches has been learned using traditional CNNs [30],
RNNs [4] and transformers [22] architecture. Our proposed
framework requires the learned query representation regard-
less of the architecture used to learn the representation.

3. Methodology
3.1. Task Definition and Proposed Architecture

Consider a dataset D = {I, S} where I and S are sets of
natural images and hand-drawn sketches, respectively. Let

C be the set of all object categories in D. Each image Ii ∈ I
contains bounding box annotations Bi = {(bj , cj)}ni

j=1 cor-
responding to all object instances (any of the C categories)
present in it. Here, bj is a rectangular box tightly surround-
ing the jth object instance and cj ∈ C is the category of that
object. Given a sketch s ∈ S and an image Ii ∈ I , the prob-
lem of sketch-based object localization involves localizing
all the instances of the object in the image that correspond
to the sketch s. We address this problem in both closed-
world, i.e., when object category of sketch query is ‘seen’
during training and open-world, i.e., when examples of the
object category of sketch query are ‘unseen’ during training.
An effective approach to tackle the task of sketch-based ob-
ject localization involves extending the vision and detection
transformer (ViDT) [24] to accommodate sketch queries.
One plausible extension is to compare the representation of
objects at the output of the decoder, denoted as [DET] to-
kens of ViDT, with the representation of the query sketch.
Yet, this trivial extension might lead to suboptimal local-
ization due to the independent learning of object and query
features. In this study, we propose a novel sketch-guided
vision transformer encoder, which addresses this limitation
by learning the features of the target image conditioned on
the query sketch. This conditional learning leads to better
alignment between the target image representation and the
query sketch, resulting in much-improved localization per-
formance. Furthermore, we semantically refine the object
and query features at the output of the decoder, aiming to
bring the object features closer to the sketch query for better
scoring. These refinements contribute to more precise local-
ization results. The proposed model is end-to-end trainable
and consists of three key components: (i) sketch-guided vi-
sion transformer encoder, (ii) object and sketch refinement,
and (iii) scoring. The comprehensive architecture of our
proposed model is illustrated in Figure 2.

3.1.1 Sketch-guided Vision Transformer Encoder

Traditional image encoders, such as ResNet [5], and mod-
ern transformer-based image encoders, such as Swin [12],
consist of multiple layers of neural networks organized into
blocks. Typically, an image is passed through all these
blocks to learn its representation. Similarly, architectures
like these can be employed to learn sketch embeddings in-
dependently. However, independently learned representa-
tions have poor alignment due to the substantial domain gap
between the target natural image and the query sketch. To
overcome this issue, we propose a novel approach that in-
volves learning the representation of the target image con-
ditioned on the query sketch. We achieve this by fusing
the features of the sketch query with the image features at
the output of each block of the transformer-based image en-
coder. In this work, we utilize the Swin-tiny transformer as
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Figure 2. The proposed sketch-guided object localization model contains two primary components: (a) sketch-guided vision transformer
encoder (Sec. 3.1.1) and (b) object and sketch refinement (Sec. 3.1.3). The sketch-guided transformer encoder takes the image at the input
and generates sketch-conditioned features by fusing the sketch features into the target image after each block of the image encoder using
cross-attention. After getting object-level features at the output of the transformer decoder (ϕ[DET]), the object features and the query
sketch features are further refined to bring the features of the relevant object closer to the query sketch leading to better localization score.

our image encoder, which has demonstrated excellent per-
formance in various computer vision tasks, and ResNet50 is
used as the sketch encoder. Firstly, the features of the sketch
query s are learned by passing it through a sketch encoder,
and it is represented as ϕs ∈ Rd×w×h. Similarly, for the
target image Ii, the representation at the output of the first
block of the image encoder is given by ϕ1

i ∈ Rd×wI×hI .
Following each block in the image encoder, a pooling

layer is employed to downsample the features, resulting in
representations of the target image at different scales. We
utilize multi-headed cross-attention to effectively fuse the
sketch features into the image features at these different
granularities. The image and sketch features are flattened
before passing through the attention module. The image
representation ϕ1

i ∈ RwIhI×d is used as queries, and the
sketch representation ϕs ∈ Rwh×d is used as key and value
in the multi-headed cross-attention module. 2D sinusoidal
position embeddings are added to the query and the key fea-
tures to provide spatial features while calculating the atten-
tion weights. For brevity, we show the attention calculation
for a single head, though we use multiple heads to learn
the correspondence between the target image and the query
sketch. The features of the target image are updated as:

ϕ
′1
i = softmax

(
(ϕ1

iWQ1
) (ϕsWK1

)
T

√
d′

)
ϕsWV1 , (1)

where d
′

is the dimension of the key vectors, WQ1 ,WK1 ∈
Rd×d

′

and WV1
∈ Rd×d is the projection matrices for the

query, key, and value vectors respectively. These attended
image features ϕ

′1
i ∈ RwIhI×d are first transposed and fur-

ther processed as follows ϕ1
i = W2

(
ReLU

(
W1ϕ

′1
i

))
+

ϕ1
i . The image features ϕ1

i are reshaped to the original
shape before feeding them through the next block, and the
whole process is repeated for the remaining blocks in the
image encoder. The similarity scores between the target
image and the sketch features are first calculated in equa-
tion 1, and these scores are then used to fuse relevant sketch
features into the target image features, leading to better
alignment between the two modalities. The image features
from each block of the sketch-guided vision transformer en-
coder are extracted and concatenated before being passed
to the decoder. This concatenated representation, denoted
as ϕ

[1,...,N ]
i in Figure 2, incorporates valuable information

from all the blocks, enabling the decoder to benefit from
query-aligned multi-scale image features and achieve more
precise object localization results.

3.1.2 Object and Sketch Refinement

In our model, the decoder takes the image features at dif-
ferent scales to update the representation for the [DET] to-
kens. During training, these [DET] tokens are transformed
into the representation of various objects at different loca-
tions within the image. Given that the decoder operates on
sketch-conditioned image representations, the learned ob-
ject features are better aligned with the query sketch. Im-
portantly, the query fusion within the sketch-guided vision
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transformer encoder occurs at a coarse-grained image fea-
ture level. We introduce a fine-grained fusion mechanism
at the object/semantic level to further elevate performance.
This fine-grained semantic fusion involves utilizing atten-
tion mechanisms to incorporate sketch features into the ob-
ject features and vice versa. The proposed model brings the
features of relevant objects closer to the query sketch, en-
abling more precise and contextually relevant localization.

Therefore, at the output of the decoder, the learned ob-
ject features represented by the [DET] tokens and the sketch
features are semantically refined to bring the representa-
tions of relevant objects closer to the query sketch. Given
the flattened sketch representation ϕs ∈ Rwh×d, the rep-
resentations of [DET] tokens ϕ[DET] ∈ R100×d are refined
using multi-headed cross-attention as ϕ

′

[DET] = ϕ[DET] +

W3

(
ReLU

(
W4ϕ

′T
[DET]

))
, where ϕ

′

[DET] is obtained using
similar attention computation defined in equation 1. 2D
sinusoidal position encoding is added to the sketch repre-
sentation before calculating the attention scores. Likewise,
given the representation of [DET] tokens, the representation
of the query sketch is refined by using a separate cross-
attention module.

3.1.3 Scoring

After the semantic refinement, a scoring function Θ is
learned to score each object instance on the image, given by
[DET] tokens, against the query sketch. To do that, each of
the [DET] tokens is assigned to each box in the ground truth
using the Hungarian matching algorithm [7] as described in
[1]. Each token ([DET]k) is assigned a label yk (1 or 0) based
on whether it is assigned to a bounding box containing a
foreground object, i.e., the object that corresponds to the
sketch query. A global representation for the sketch is then
obtained by taking the max-pool of the sketch feature maps,
i.e., ϕS = Ψ(ϕs), where ϕS ∈ Rd and Ψ : Rd×w×h → Rd.

Each of the [DET] token representations is concate-
nated with the global sketch representation before pass-
ing it through a neural network to generate the score
for that token which is given by score ([DET]k, s) =
σ
(
Θ
(
[ϕ[DET]k ;ϕS ]

))
, where Θ is a neural network, σ is sig-

moid function and score : R2d → [0, 1]. The model is then
trained to give high scores to the tokens that correspond to
the objects in the query sketch by minimizing the following
loss function:

L([DET], s) =
∑
k

{
−yk ln (score([DET]k, s))−

(1− yk)(1− ln (score([DET]k, s)))
}
. (2)

Along with the classification loss defined in equation 2, re-
gression loss and Generalized IoU [20] loss are also defined

on the predicted bounding boxes with respect to the ground
truth bounding box. During inference, all the [DET] tokens
are scored with the query sketch, and the bounding boxes
corresponding to high-scoring tokens are selected as the lo-
calized objects.

3.2. Multi-query localization

While our main focus is on achieving object localiza-
tion through a single sketch query, we also explore the po-
tential advantages of using multiple sketches for the same
object to improve localization accuracy. Most hand-drawn
sketches, such as those in the datasets used, are typically
abstract and provide minimal information about object at-
tributes and shapes. However, as highlighted in [25], em-
ploying multiple sketch queries can offer complementary
information that enhances object localization in natural im-
ages. Prior techniques like Feature fusion and Attention Fu-
sion proposed in [25] utilized max and mean pooling, re-
spectively, for fusing information from multiple sketches,
without incorporating any learnable element. In contrast,
our work introduces a learnable query fusion approach,
enabling our model to exploit information from multiple
sketch queries more effectively and perform multi-query lo-
calization within our framework. While our method effec-
tively handles single sketch queries (one-shot), we adapt
Equation 1 to facilitate information fusion from multiple
sketch queries. This empowers our model to harness the
diverse information provided by multiple sketches, thereby
enhancing localization performance.

ϕ
′1
i [l] = S

(
(ϕ1

iWQ1
) (ϕslWK1

)
T

√
d′

)
ϕslWV1

, (3)

where, ϕ
′1
i [l] is the attention aggregated features for the lth

sketch query, and S(.) is the softmax function. These fea-
tures are aggregated for each query sketch, transposed, and
then added to the image representations as follows:

ϕ1
i = W2

(
ReLU

(
1

L

L∑
L=1

W1ϕ
′1
i [l]

))
+ ϕ1

i , (4)

where L is the total number of query sketches.
At the decoder, we introduce an attention-based query

fusion strategy to construct a unified sketch query represen-
tation from multiple sketches. Given n sketches and their
corresponding feature map representations, we first calcu-
late the average across the sketches to obtain the averaged
feature map representation, denoted as ϕsµ ∈ Rd×w×h.
Each query sketch representation is then flattened and con-
catenated, represented as ϕs{1,L} . Subsequently, we lever-
age attention mechanisms to incorporate complementary in-
formation present among the diverse sketches into the av-
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Model Query: Sketchy Query: QuickDraw
mAP (%) AP@50 (%) mAP (%) AP@50 (%)

Detection-based*
FasterRCNN [19] 40.2 64.4 35.5 58.1
Retinanet [9] 42.2 66.1 37.9 60.1
DETR [1] 47.0 68.7 41.1 62.7

Localization-based
Modified FasterRCNN [19] - - 18.2 31.5
CoAT [6] - - 27.9 48.6
CMA [25] - - 30.0 50.0
Sketch-DETR [21] 42.0 63.6 41.4 62.1
Ours 50.0 (8.0 ↑) 73.9 (10.3 ↑) 48.0 (6.6 ↑) 71.7 (9.6 ↑)

Table 1. Results in closed-world, one-shot setting. During inference, a single sketch from Sketchy and QuickDraw! respectively has
been used as a query to localize ‘seen’ object categories on target images from MS-COCO val2017 dataset, and mean average precision
and AP@50 computed over all sketch queries have been reported. The numbers inside the parenthesis show gain with respect to the most
competitive localization-based baseline. * Detection-based baselines assume the availability of a set of object categories.

eraged sketch representation. The attention-guided query
fusion is defined as follows:

ϕsµ = ϕsµ +W5

(
ReLU

(
W6ϕ

′T
sµ

))
, (5)

ϕ
′

sµ = S

((
ϕsµWQ3

) (
ϕs{1,L}WK3

)T
√
d′

)
ϕs{1,L}WV3 ,

(6)
where WQ3

,WK3
∈ Rd×d′

are the projection matrices
for the query ϕsµ and the key ϕs{1,L} respectively, WV3

∈
Rd×d is the projection matrix for the value ϕs{1,L} , and S(.)
is the softmax function.

In our proposed method, the first step involves learn-
ing the correspondences between the average query feature
(ϕsµ ) and all individual query features (ϕsi , where i =
1, . . . , n). These correspondences are then utilized to fuse
complementary information present in the diverse sketches
into the averaged sketch representation. This fused sketch
representation is then used as the query in the refinement
and the scoring stage. Moreover, Wi where i = {1, · · · , 6}
are the learned projection matrices.

4. Experiments and Results
4.1. Datasets and Evaluation Setup

For our evaluations, we employed images from the MS-
COCO dataset as target scenes while utilizing sketches from
the QuickDraw! and Sketchy datasets as queries to access
our model’s performance. The Sketchy dataset [23] com-
prises 75,471 samples across 125 object categories. Each
image in this dataset is paired with a crowd-drawn sketch,
establishing a fine-grained image-sketch relationship. In

Models mAP AP@50 APL

Modified FasterRCNN 3.3 7.4 6.2
CoAT [6] 5.9 12.4 10.6
CMA [25] 7.5 15.0 12.4
Ours 12.2 18.3 24.6

Table 2. Results in open-world, one-shot setting. Here, a single
sketch query from QuickDraw! has been used to perform localiza-
tion on ‘unseen’ categories of COCO val2017 dataset. We observe
that for large-sized objects, our approach outperforms state-of-the-
art published results by 12.2% as measured by APL.

contrast, the QuickDraw! dataset [4] contains an exten-
sive collection of 50 million vector drawings across 345
object categories. We rasterized these sketches prior to in-
putting them into the sketch encoders. For target scenes, the
MS-COCO dataset [11] was employed. This dataset shares
56 common categories with QuickDraw! and 27 common
categories with Sketchy. To ensure evaluation consistency,
we selected images with these shared categories from the
COCO train2017 dataset and conducted evaluations on the
COCO val2017 dataset.

The performance evaluation takes place within two dis-
tinct setups: (i) open-world one-shot and (ii) closed-world
one-shot. A single sketch is employed as a query to match
the target image in both setups. Here, the term “one-shot”
indicates the usage of a single sketch as the query. In the
open-world scenario, 14 categories are excluded from the
shared 56 categories between the QuickDraw! and MS-
COCO datasets and labeled as ‘unseen’ categories. To
strictly maintain the open-world setting, data from these
‘unseen’ categories is removed from Imagenet during pre-
training as well. The sketch encoder is also pretrained
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Model
Closed set Open set

Sketchy QuickDraw Sketchy QuickDraw
mAP AP@50 mAP AP@50 mAP AP@50 mAP AP@50

CMA - - 30.0 50.0 - - 7.5 15.0
+ Query Fusion (5Q) - - 32.0 52.6 - - 7.6 16.3
+ Feature Fusion (5Q) - - 32.0 53.1 - - 8.0 17.1

Ours 50.0 73.9 48.0 71.7 15.1 23.9 12.2 18.3
+ Attention Fusion (5Q) 50.7 74.7 49.2 72.6 16.2 24.8 13.5 20.2

Table 3. Results in multi-query setting. Here, five sketch queries (5Q) are used to query images from COCO val2017 dataset.

on QuickDraw! dataset with these ‘unseen’ categories ex-
cluded. Additionally, experiments under the ‘multi-query’
setting are conducted using a set of five sketch queries to
query the target image.

4.2. Baselines

4.2.1 Detection-based baselines

In these baseline models, we adopt a methodology where
the target image undergoes object detection to predict
bounding boxes and their respective classes. Simultane-
ously, the query sketch is processed by a sketch classifier
to predict its class. The predicted sketch category is then
used to retrieve corresponding localizations from the ob-
ject detectors’ predictions. For comparison, we utilize three
popular object detection models: FasterRCNN [19], Reti-
nanet [10], and DETR [1]. For more details on training
these methods, refer to [21]. It is important to note that
these baseline methods presuppose the prior availability of
object categories during evaluation. Consequently, they are
only suitable for evaluation within a closed-world scenario,
where object categories are known in advance.

4.2.2 Localization-based baselines

In these baselines, the sketch queries are directly compared
with the representation of objects in the image to generate
the localization. We used the following baselines in our ex-
periments: Modified FasterRCNN: The region proposals
are first generated using FasterRCNN. Then, the represen-
tation of region proposals is scored with the query sketch
representation to obtain the localizations. For more details,
refer to [25]. Query-guided RPN: In these baselines, the
query information is incorporated in a region proposal net-
work (RPN) to generate the region proposals relevant to the
sketch query. To this end, we compared against two recent
techniques, namely, CoATex [6] and cross-modal attention
(CMA) [25]. Sketch-DETR [21]: uses a transformer-based
object detector and concatenates the sketch query tokens
with the image tokens at the input of the DETR encoder to
incorporate the query information. This method has shown
state-of-the-art results in sketch-based object localization.

4.3. Results and Discussion

4.3.1 Closed-world one-shot localization

Table 1, presents the results of sketch-based object local-
ization for the closed-world, one-shot setting. Our model
exhibits superior performance, outperforming the state-of-
the-art methods substantially. The Modified Faster RCNN,
which utilizes a query-independent region proposal net-
work, performs poorly in comparison. Though CoAT and
CMA, which employ query-dependent region proposal net-
works, show significant performance improvements, they
still fall short compared to the detection-based methods and
Sketch-DETR. The detection-based methods aim to bridge
the domain gap between images and sketches by separately
performing object detection and sketch recognition. They
later map the predicted category of the sketch to the detected
objects in the image. Yet, these methods are constrained
by the performance of the object detectors and sketch clas-
sifiers, and most importantly require prior knowledge of
the set of object categories. In contrast, Sketch-DETR uses
a DETR-based localization framework, but the alignment
between the sketch and image features is limited, resulting
in relatively weaker performance. n contrast, our proposed
sketch-guided vision transformer encoder facilitates query-
aligned image features. Moreover, by incorporating seman-
tic alignment at the decoder output, our model achieves
state-of-the-art localization performance, with an 8% im-
provement on the Sketchy dataset. This notable imporve-
ment highlights our approach’s efficacy, positioning it as a
compelling solution for sketch-based object localization.

4.3.2 Open-world one-shot localization

The results for this challenging setting are presented for
the MS-COCO val2017 dataset in Table 2. Sketch-DETR
isn’t included due to the absence of a public implementa-
tion. Our model shows superior performance, outperform-
ing the current state-of-the-art method by 4.7% in mAP and
achieving an impressive 12.2% improvement in AP@50 for
large objects. The Modified FasterRCNN, using a stan-
dard region proposal network for ‘unseen’ objects, performs
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Figure 3. Qualitative Results: A selection of sketch queries and target images with queried objects localized using our proposed model
are shown in the first and second rows, respectively. Our proposed model can localize occluded objects (such as bicycle in the second
column) as well as multiple object instances (such as glass and zebra in the third and fourth columns) successfully. [Best viewed in color]

Model mAP AP@50

Modified-ViDT 39.4 56.6
+ Sketch-guided Vis. Trans. 46.9 68.7
+ Obj. and Sketch Refinement 48.0 71.7

Table 4. Effect of various components on the performance of the
proposed model for the closed-world, one-shot setting.. The re-
sults are reported for COCO val2017 images and queries from
QuickDraw! dataset.

poorly. In contrast, CMA enhances performance with a
query-dependent region proposal network. Our model out-
performs both methods by adopting a more effective image
and sketch alignment strategy, allowing generalized query-
conditioned feature learning, even for unseen objects.

4.3.3 Multi-query localization

In this section, we investigate the impact of our attention-
based query fusion strategy, detailed in Section 3.2, on
multi-query object localization. The results, detailed in Ta-
ble 3, utilize target images from the MS-COCO dataset and
queries from both the QuickDraw! and Sketchy datasets.
This experiment employs five diverse sketches as queries
for the target image. Our proposed fusion strategy effec-
tively integrates complementary information from different
query sketches, leading to notable improvements in local-
ization performance. Additionally, we present the multi-
query localization results in the open-set scenario within
Table 3. Notably, our query fusion strategy proves its effec-
tiveness in elevating the performance of unseen categories.

4.3.4 Ablation

We examine the distinct contributions of each component
to our model’s performance, with corresponding results out-
lined in Table 4. In Vanilla-ViDT, sketch features are scored

with [DET] tokens of ViDT for localization. The most sub-
stantial performance improvement is attributed to the query-
aligned image features obtained at the output of the sketch-
guided vision transformer encoder. This emphasizes the
critical role of the feature alignment strategy, allowing the
model to effectively leverage the query sketch’s information
for enhanced object localization accuracy. Additionally, the
object refinement, implemented at the output of the decoder,
further enhances the localization performance. This step in-
troduces fine-grained semantic-level alignment, facilitating
more precise localization results.
Qualitative Results: We perform a detailed qualitative
analysis of our approach. A selection of results is shown
in Figure 3. We observe that our method is successful in
localizing occluded as well as multiple instances of objects.
Further, we also did an error analysis of our approach and
found that the major causes for failure are twofold: (i) ambi-
guity in sketch drawing, and (ii) highly overlapping objects.
A detailed analysis is shown in the supplementary material.

5. Conclusion

In this work, we extensively studied the problem of
sketch-guided object localization in natural images and
proposed a novel transformer-based end-to-end trainable
model. The proposed model uses the novel sketch-guided
vision transformer encoder to learn sketch-conditioned im-
age features. Further, object-level feature refinement at the
decoder is performed to effectively align the natural im-
age and the query sketch features. The effectiveness of the
proposed model has been established by the state-of-the-
art performance on publicly available benchmarks. Despite
notable improvements in localization, sketch-based object
localization still requires more research before deployment,
we believe our work will inspire towards this purpose.
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