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†Volvo Car Corporation, Sweden

Abstract

Traffic fatalities remain among the leading death causes
worldwide. To reduce this figure, car safety is listed as
one of the most important factors. To actively support hu-
man drivers, it is essential for advanced driving assistance
systems to be able to recognize the driver’s actions and
intentions. Prior studies have demonstrated various ap-
proaches to recognize driving actions and intentions based
on in-cabin and external video footage. Given the perfor-
mance of self-supervised video pre-trained (SSVP) Video
Masked Autoencoders (VMAEs) on multiple action recogni-
tion datasets, we evaluate the performance of SSVP VMAEs
on the Honda Research Institute Driving Dataset for driver
action recognition (DAR) and on the Brain4Cars dataset
for driver intention recognition (DIR). Besides the perfor-
mance, the application of an artificial intelligence system
in a safety-critical environment must be capable to express
when it is uncertain about the produced results. There-
fore, we also analyze uncertainty estimations produced by a
Bayes-by-Backprop last-layer (BBB-LL) and Monte-Carlo
(MC) dropout variants of an VMAE. Our experiments show
that an VMAE achieves a higher overall performance for
both offline DAR and end-to-end DIR compared to the state-
of-the-art. The analysis of the BBB-LL and MC dropout
models show higher uncertainty estimates for incorrectly
classified test instances compared to correctly predicted test
instances.

1. Introduction

Traffic fatalities continue to rank among the top 20 lead-
ing death causes worldwide [11]. One of the factors listed to
reduce injuries and fatalities in the future is car safety [48].
Advancements in onboard computing power, available data,
artificial intelligence (AI) and the increased number of sen-
sors mounted on vehicles have enabled the development of
Advanced Driver Assistance Systems (ADAS) that aim to
continuously minimize human errors and prevent accidents

from happening [1]. To support a driver of an ego-vehicle
to drive safely, it is critical for an ADAS to timely recognize
what that driver currently does, or aspires to do. However,
supporting a driver can be difficult due to irrational human
behavior [12] or unlikely and unseen complex road scenar-
ios [29]. Therefore, this paper focuses on evaluating driver
action and intention recognition model performance and un-
certainty estimations.

The main difference between driver action and intention
recognition is that the driving actions are observable, while
the intentions are not [45]. Intentions denote what the driver
aspires to do in the near future (e.g., perform an overtake or
turn). Driver intention recognition (DIR) can be used for
assessing whether it is safe to pursue the intention. To eval-
uate whether future driving maneuvers are safe, one has to
consider what the driver is currently doing. Previous ego-
vehicle driver action recognition (DAR) and DIR studies
use observations from vehicle dynamics sensors (e.g., ve-
locity or yaw-rate), a driver monitoring system (e.g., head
pose estimation, or gaze estimation), or driving-scene ob-
servations (e.g., road user detection, lane detection, or traf-
fic sign detection) as inputs to a deep neural network (DNN)
to recognize driving actions and to infer driving intentions
(e.g., [3, 16, 17, 21, 30, 34, 35, 46, 49]).

Since the rise of deep learning (DL) methods, hand-
crafted features have been mostly exchanged for neural net-
works that learn to represent the input data. For example,
Tong et al. (2022) [40] employ a self-supervised video
pre-training (SSVP) to learn latent video representations
by first learning to reconstruct the input data. After the
SSVP is completed, the model is fine-tuned for a down-
stream task. Although this approach achieved state-of-the-
art (SOTA) performance on the Kinetics-400 action recog-
nition benchmark, the decision process and learned repre-
sentations are incomprehensible for humans [36]. The lack
of interpretability and transparent decision making is an ex-
isting challenge for deploying AI systems in a safety-critical
environment [19]. For a future ADAS to be safely inte-
grated in a car on the road, it must be able to express when
it is unable to produce a reliable result.
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Uncertainties in machine learning (ML) models come
from multiple sources (e.g., measurement errors, absent or
contradictory data, the impact of regularization, or errors in
making inferences) [7]. Regular DNNs produce a single-
point estimate, but there are multiple methods that enable
a DNN to estimate a distribution instead (e.g., [4, 14, 28]).
These probabilistic DL methods commonly require multi-
ple inferences for a single instance, which is undesirable for
video based end-to-end DAR and DIR given that producing
a single-point estimate is already computationally intensive.

Previous DAR and DIR studies have used a Transformer
architecture (e.g., [27, 46]), but, to the best of our knowl-
edge, have not considered SSVP video masked autoen-
coders (VMAEs). Therefore, in this paper we focus on the
ability of SSVP video transformers to recognize driving ac-
tions and intentions. We demonstrate that SSVP VMAEs
achieve SOTA performance on both the DIR Brain4Cars
benchmark [21] and the DAR Honda Research Institute
Driving Dataset (HDD) [34]. To assess the ability of SSVP
VMAEs to express uncertainty about the produced predic-
tions, we analyze two probabilistic DL methods and com-
pare the uncertainty estimations for correct and incorrect
predictions. Furthermore, we evaluate the effect of mul-
tiple strategies to combine the in-cabin and external video
streams for the DIR Brain4Cars dataset, and review the per-
formance over time to assess ability of the VMAEs to timely
recognize driving actions and intentions.

2. Related work

2.1. Driver action and intention recognition

Various methods have been applied to recognize ego-
vehicle actions and intentions. For example, Tran et al.
(2015) [43] use a hidden Markov model to capture the un-
observable transition probabilities between states (driving
maneuvers in this case). However, the majority of recent
studies relies on DL approaches to implicitly extract infor-
mation about the actions and intentions from the sensor ob-
servations [45]. Ramanishka et al. (2018) [34] use a combi-
nation of a CNN to obtain a feature representation of every
video frame and an LSTM to recognize the driving actions
based on the sequential inputs, Wang et al. (2021) [46] pro-
posed a framework using CNN for frame level feature ex-
traction, and a Transformer encoder-decoder setup to cap-
ture interactions. Noguchi and Tanizawa (2023) [30] con-
struct spatial-temporal graphs based on object detection and
tracking and a semi-supervised contrastive learning frame-
work for training a graph convolutional network to recog-
nize driving actions.

Jain et al. (2016) [21] extracted the motion of the driver’s
head combined with external features about the current lane,
number of lanes and upcoming intersections. The in-cabin
and external information was fused and fed into an LSTM to

predict the driving intention. Gebert et al. (2019) [16] em-
ployed an end-to-end approach and used optical flow to en-
code the in-cabin videos followed by a 3D Resnet to extract
features from the estimated flow. Rong et al. (2020) [35] ex-
tracted the flow of external videos and used a ConvLSTM
encoder–decoder architecture to include future flow pre-
diction to enhance the intention recognition performance.
Ma et al. (2023) [27] introduced the Cross-View Episodic
Memory Transformer to efficiently learn unified memory
representations combined with a context-consistency loss to
improve the intention recognition performance.

2.2. Probabilistic deep learning

In this study, we use the Bayes by Backprop (BBB, [4])
and Monte-Carlo (MC) dropout [14] probabilistic DL meth-
ods based on their practical implementation (refer to Gaw-
likowski et al. (2021) [15], or Jospin et al. (2022) [22]
for a comprehensive overview of probabilistic DL meth-
ods). BBB replaces the weights of a DNN with variational
distributions to approximate the posterior. MC dropout ran-
domly drops weights for each inference, which results in a
different network constellation for every forward pass.

3. Methods
3.1. Problem formulation

Suppose that a driver currently performs (action recog-
nition) or forms an intention to perform a driving maneuver
(e.g., lane change or turn) Y ∈ {y1, . . . , yn}, a set of sensor
observations Xi,t = {x1,1, . . . , xm,k} is collected from m
modalities for k time steps, then the learning task for our
model is to recognize the driving maneuver Y based on the
observed sequences Xi,t.

3.2. Video Transformers

The Transformers architecture was originally introduced
for language translation [44], but has also been adapted to
other tasks, such as video recognition [37]. Essential com-
ponents of a Transformer are the input pre-processing and
the self-attention (SA) operation. The input pre-processing
of videos in the context of Transfomers requires convert-
ing raw video frames into a continuous and dense represen-
tation. The tokenization process covers how the input se-
quence is created, for example, a video frame can be divided
into a set of multiple regions (2D patch tokenization, [10])
or 3D patches (also referred to as cubes), which allow for
capturing motion features from the video [2]. To transform
the divided input patches of the videos into embeddings,
one can use a few fully-connected or convolutional layers.
Alternatively, an embedding network can be used to encode
and tokenize frames or clips as input tokens [37].

Intuitively, the SA operation computes for any token in
a sequence how much relevant information the other tokens
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Figure 1. Overview of the multi-video setup. Video representations are learned by two video masked auto encoders, after which attention
fusion (AF) is performed to create a joint embedding.

in that sequence contain. To compute the relevance for a
token in sequence, the SA operation requires positional in-
formation for each token. Positional embeddings contain
the temporal information of each token, and are added to
the patch, frame or clip embedding.

3.3. Video Masked Autoencoder

After the success of self-supervised learning in natural
language processing [9] and for images classification [18],
Tong et al. (2022) [40] showed that video masked auto en-
coders are capable of efficiently learning relevant represen-
tations when using SSVP. To overcome the temporal re-
dundancy aspect of videos (i.e., consecutive frames vary
slowly), a higher masking ratio is required compared to im-
age masking to make the reconstruction pre-training task
difficult enough. To avoid information leakage between suc-
ceeding masked frames, Tong et al. [40] introduced tube
masking to ensure that the same patches are masked for all
frames of a video.

3.4. Model Architecture

Dependent on the number of available video streams, we
use a setup where we fine-tune a Kinetics-400 pre-trained
VMAE for each of the available video streams (see Figure
1). The benefit of this setup is that it does not require ex-
tracting additional features, such as computing the optical
flow between succeeding frames as performed by Gebert et
al. [16] and Rong et al. [35]. When both the in-cabin and
external video streams are available, we fuse the learned
representation of the VMAEs with an attention fusion layer
before a fully connected layer is used to perform the recog-
nition task. Within the pre-trained VMAEs, only the atten-
tion layers are fine-tuned [41].

3.5. Representation fusion

A challenging aspect of learning a joint representation
for multiple sensor observations (modalities) is to learn a
shared representation that reflects the interaction across the
modalities [25]. Commonly, fusion strategies are catego-
rized as early, intermediate and late fusion [33]. Early fu-
sion refers to learning patterns from combined raw low-
level features. Intermediate fusion first learns a represen-
tation and combines the modalities at a later stage. For the
late fusion strategy, each modality is trained individually to
learn uni-modal representations from which the predictions
are made. The uni-modal predictions are then combined
into a single prediction. In our setup, we employ an in-
termediate attention fusion mechanism [20] to combine the
learned video representations.

3.6. Uncertainty quantification

Typically uncertainty is decomposed into aleatoric
(randomness of the observations) and epistemic (the lack
of knowledge or observations) [8]. The decomposition of
uncertainty can help to address what component requires
improvement. However, we only assess the difference
in total predictive uncertainty estimates for correct and
incorrect test instances. To quantify the uncertainty, we use
the predictive entropy (see Equation 1) [38]. Intuitively, for
an instance x the predictive entropy reaches it maximum
value when the predicted probabilities for all classes are
exactly the same [13]. The higher the predicted probability
is for one class, the lower the predictive entropy, and the
more certain the model is about the predictions.
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H[P (y|x)] = −
∑
y∈Y

P (y|x) logP (y|x) (1)

Where:

H[P (y|x)] = the entropy of the predictive distribution
P (y|x) = conditional probability distribution

over some discrete set of outcomes Y
Y = set of N stochastic predictions

4. Experiments
4.1. Datasets

For the experiments, we use two open-source driv-
ing datasets. The Honda research institute Driving
Dataset (HDD) [34] contains driving actions labels and the
Brain4Cars dataset [21] driving intention labels. The sec-
tions provide detailed descriptions of each dataset.

4.1.1 HDD

The HDD [34] dataset consists of 104 hours of naturalistic
driving data collected in 137 sessions from February to Oc-
tober in 2017 in the San Francisco Bay Area. The data con-
sists of external video data that was captured by a forward
facing camera at 30 frames per second (FPS) and vehicle
dynamics sensor data (e.g., throttle angle, brake pressure,
steering angle, yaw rate and speed). The following eleven
driving action labels are provided on a frame level: inter-
section passing, left turn, right turn, left lane change, right
lane change, left branch, right branch, crosswalk passing,
railroad passing, merge, and u-turn.

4.1.2 Brain4Cars

The Brain4Cars dataset [21] is an open-source DIR dataset
that consists of 124 left lane changes, 58 left turns, 123 right
lane changes, 55 right turns, and 234 driving straight ma-
neuvers with a five fold 80/20 train/test split. The in-vehicle
camera operated at 25 FPS, and the outside-facing camera at
30 FPS. Five driving maneuver intention labels are provided
for every video: go straight, left lane change, left turn, right
lane change, right turn.

4.2. Implementation details

For our experiments, we use an SSVP VMAE [40] with a
ViT-B/16 backbone [10]. Due to the relatively small size of
the datasets, and similar to previous DAR and DIR studies
(e.g., [16, 24, 35]), we use a Kinetics-400 fine-tuned pre-
trained model. We sample 16 frames from each video and
resize the frames to a 224 x 224 resolution. Videos with
less than 16 frames are extended with zero-padding at the
end. As a data augmentation strategy, we divide every video

into four segments from which we randomly sample four
consecutive frames, apply random cropping, and horizontal
flips. For in-cabin videos, we adopt the method from Rong
et al [35] to randomly crop the videos towards the driver’s
side of the footage. The horizontal flip augmentation also
results in flipping the label if necessary (e.g., for the lane
change, turn and branch maneuvers). We use an AdamW
[26] optimizer with a weight decay of 0.05, a linear learn-
ing rate scheduler, and 100 warm-up steps with a 5× 10−5

base learning rate. Since the datasets are relatively small,
we only fine-tuned the attention layers of the pre-trained
VMAEs for 200 epochs with a 25 epochs early stopping
mechanism. The models are implemented in PyTorch [31]
and BayesianTorch [23], trained on multiple servers with
NVIDIA T4 GPUs and use the Accelerate’s [39] gradient
accumulation module to achieve a batch size of 8.

For the HDD dataset, we perform DAR in an offline
setting, which means that an action label is predicted for
a short video instead of classifying every newly incoming
video frame separately. Therefore, we only compare the
DAR results to studies that also perform offline DAR based
on external video data. Similar to previous studies, we use
the average precision (AP) per driving action and the mean
AP (mAP) as an indication for the overall performance, and
use the same train/test split as provided by [34]. For the
Brain4Cars dataset, we employ a five fold cross-validation
and use accuracy and the F1 score in order to be consistent
with previous studies. The results from Jain et al. [21] are
excluded from the comparison, due to that the open-source
dataset consists of less data compared to what was used in
the original study.

To analyse if probabilistic variants of the VMAE based
models produce different uncertainty estimates for correct
and incorrect test instances, we use MC dropout and BBB.
To simplify the learning of the BBB model, we only replace
the last-layer (LL) weights with distributions [47]. We per-
form MC sampling (N=25) to produce a predictive distribu-
tion for each test instance. Subsequently, we compute the
predictive entropy (Eq. 1) to analyse if the estimated uncer-
tainty is higher for the incorrectly predicted test instances
compared to the correctly predicted test instances for both
datasets.

4.3. Comparisons with State-of-the-art

Table 1 presents an overview of previous offline DAR
results alongside the results of the fine-tuned single exte-
rior video stream SSVP VMAE for the eleven driving ac-
tions. Except for the recognition of U-turns, the VMAE
outperforms all previous methods and achieves a mAP of
85.6%. Similar to previous studies, the U-turn, railroad
passing and right lane branch driving maneuvers are most
difficult to correctly recognize. The poor performance for
these classes is most likely due to the low number of avail-
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Table 1. Performance comparison to previous state-of-the-art offline driving action recognition for the HDD dataset. Best performance is
highlighted in bold.

Model
Inter-
section
passing

L turn R turn L lane
change

R lane
change

L lane
branch

R lane
branch

Cross-
walk

passing

Rail-
road

passing
Merge U-turn Overall

mAP (↑)

C3D [42] 82.4 77.4 80.7 67.9 56.9 59.7 5.2 17.4 3.9 20.1 29.5 45.5
ID3 [5] 85.6 79.1 78.9 74.0 62.4 59.0 14.3 29.8 0.1 20.1 41.4 49.5

GCN [24] 85.5 77.9 79.1 76.0 62.0 64.0 19.8 29.6 1.0 27.7 39.9 51.1
SCL [30] 98.3 94.1 95.8 62.6 67.3 53.4 28.4 78.0 1.2 22.2 60.0 60.1
GCL [30] 98.4 93.9 95.5 64.2 69.0 55.8 34.5 73.4 24.4 42.4 30.0 62.0

VMAE 99.2 98.0 99.8 99.0 94.5 95.8 69.2 94.8 45.4 90.6 55.6 85.6

Table 2. Comparison of the fine-tuned VMAE models to previous
state-of-the-art approaches for the Brain4Cars dataset. Best per-
formance is highlighted in bold.

Data
Source Method Acc (↑) F1 (↑)

In-cabin

Gebert et al. [16] 83.00 ± 2.50 81.70 ± 2.60
Rong et al. [35] 77.40 ± 0.02 75.49 ± 0.02
Ma et al. [27] 84.47 ± 5.98 82.66 ± 5.40

VMAE 85.48 ± 3.06 80.22 ± 4.13

External

Gebert et al. [16] 53.20 ± 5.00 43.40 ± 9.00
Rong et al. [35] 60.87 ± 0.01 66.38 ± 0.03
Ma et al. [27] 64.75 ± 2.82 66.31 ± 2.19

VMAE 86.50 ± 1.75 86.57 ± 2.54

In-cabin &
External

Gebert et al. [16] 75.50 ± 2.40 73.20 ± 2.20
Rong et al. [35] 83.87 ± 0.01 84.30 ± 0.01
Ma et al. [27] 85.37 ± 2.95 87.09 ± 0.23

VMAE -
(Attention Fusion) 93.45 ± 2.13 92.74 ± 1.64

able training instances and the distinctiveness of the action.
To illustrate, for the left and right turn we have 1159 and
1124 video clips respectively. For the U-turn, railroad pass-
ing, right lane branch maneuvers, we have 66, 71, and 96
clips, respectively, in the training set.

Table 2 shows a comparison of the Brain4Cars perfor-
mance of multiple end-to-end video based DIR approaches.
The SSVP VMAE architecture that uses attention fusion to
combine both video streams achieves the highest accuracy
of 93.45%, and an F1 score of 92.74%. Both Gebert et
al. [16] and Rong et al [35] also fine-tuned a Kinetics-400
pre-trained model, whereas Ma et al. [27] used an Imagenet
pre-trained backbone. When only the external video data
is used to recognize the driving intentions, we observe that
the VideoMAE achieves an accuracy of 86.50%, whereas
the previous SOTA achieved an accuracy of 64.75%. When
recognizing the intentions of a driver solely based on the in-
cabin videos, we observe no clear performance difference
between the VMAE model and the results from Gebert et
al. [16] or Ma et al. [27].

Table 3. Results of the Monte-Carlo (MC) sampling (N=25) for the
MC dropout and Bayes-by-Backprop (BBB) – Last Layer proba-
bilistic deep learning models. Drop rate probabilities (p) range
from 0.05 – 0.25.

Method HDD Brain4Cars

mAP (↑) Acc (↑) F1 (↑)

Deterministic 85.6 93.45 ± 2.13 92.74 ± 1.64

BBB – Last Layer 83.4 91.71 ± 3.66 90.70 ± 3.34

MC
dropout

p=0.05 85.0 90.83 ± 3.55 90.67 ± 3.18
p=0.10 83.0 86.44 ± 3.87 87.78 ± 2.96
p=0.15 78.5 78.80 ± 6.94 80.36 ± 5.33
p=0.20 71.2 67.36 ± 9.69 69.11 ± 7.15
p=0.25 62.9 55.64 ± 12.43 56.42 ± 7.89

Table 4. Comparison of different fusion methods for the fine-tuned
VMAE models for the Brain4Cars dataset using both the in-cabin
and external video streams.

Data
Source Fusion Method Acc (↑) F1 (↑)

In-cabin &
External

Attention 93.45 ± 2.13 92.74 ± 1.64
Concatenation 92.87 ± 3.12 91.68 ± 1.91

Late - averaging 89.10 ± 2.43 89.07 ± 2.46

4.4. Uncertainty estimation analysis

Figure 2 and Table 3 present the test results for the
probabilistic DL methods. From a performance perspec-
tive, the BBB-LL and MC dropout with a drop rate of 0.05
are slightly worse than the deterministic approach for both
datasets. The performance of MC dropout models gradu-
ally decreases for higher dropout rates. Figure 2 shows the
average predicted entropy for correctly and incorrectly clas-
sified test instances for both datasets. The BBB-LL and MC
dropout produce lower uncertainty estimates for the cor-
rectly classified test instances compared to the incorrectly
classified instances (for DIR only with a drop rate of 0.05
and 0.10). For the MC dropout models with higher drop
rates, the average predictive entropy between the groups be-
comes more similar for the Brain4Cars results, but not for
the HDD test instances.
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Figure 2. The average predictive entropy for correctly and incorrectly classified test instances based on Monte-Carlo sampling (N=25) for
the Bayes-by-Backprop last layer (BBB-LL) model and Monte-Carlo dropout (MCD) with different drop rates.
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Figure 3. Performance comparison of driver intention recognition for different input time windows. Results are the average performance
over five folds and based on both the in-cabin and external video stream.
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Figure 4. Driver action recognition performance for different input
time windows.

4.5. Ablation study

Impact of fusion operations. Several strategies can be
used to combine the learned video representations to per-
form DIR. To understand the impact of the fusion opera-
tions, we compare a late fusion and a concatenation of the
intermediate video embeddings to the attention fusion ap-

proach. Table 4 shows a performance overview of the fu-
sion strategies on the Brain4Cars DIR performance. The
intermediate attention fusion yields the best average result
for the five fold evaluation.

Prediction performance over time. Both DAR and
DIR benefit from quick accurate recognition to allow more
time to evaluate and safely anticipate on intended driving
maneuvers based on the current traffic situation. Therefore,
we examine the performance of the VMAEs over time. Fig-
ures 3 and 4 show the performance when the video footage
is shortened. The original videos are shortened by steps of
20%, but in the case of a short video clip, we always make
sure there is at least one frame to predict on.

For the DIR evaluation over time in Figure 3, we also
include the results for different time periods from Rong et
al. [35]. While it is not a perfect comparison, we do ob-
serve that the F1 score when predicting four seconds (20%)
or three seconds (40%) ahead of the intention execution is
lower for the VMAEs attention fusion model. Similar to
Rong’s observations, we see the highest increase in DIR
performance after using more than 40% of the input se-
quence length.
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Figure 4 shows the benefits of the offline classification
setting that we used for recognizing the driving actions. The
online DAR setting, where an action recognition method in-
fers an action label for every new incoming video frame, is
much harder because it is difficult to learn temporal infor-
mation from a single or a few frames [49].

5. Discussion and conclusion
Employing AI in safety-critical environments including

human behavior requires a cautious strategy. In this paper,
we demonstrate state-of-the-art (SOTA) performance for
end-to-end driver action and intention recognition based on
raw-videos. We observe that without extracting additional
features, such as optical flow, self supervised video pre-
trained (SSVP) video masked autoencoders (VMAEs) out-
perform both offline driver action recognition (DAR) SOTA
approaches for all except one driving action, and existing
end-to-end driver intention recognition (DIR) methods for
single and multi-video data. A true comparison to Ma et al.
[27] for the Brain4Cars dataset is tricky, because they used
a backbone that was pre-trained on another dataset, used
a different loss function, and applied different data aug-
mentations. Similarly for the HDD dataset, Noguchi and
Tanizawa (2023) [30] used a graph-based framework, which
relies on first detecting and tracking road users, whereas
our setup learns from end-to-end raw video footage and em-
ploys different data augmentations.

The VMAE end-to-end video recognition setup employs
a cold cognition approach [6], which means that no ex-
plicit form of reasoning is included, instead it is assumed
to be learned implicitly [32]. The problem with an implicit
learned form of reasoning for a safety-critical AI applica-
tion that is used to estimate human behavior, is that it is dif-
ficult to verify the learned reasoning. Therefore, it would be
beneficial to extend the approach with a form of explicit rea-
soning that allows for inspecting how the model produces a
prediction.

All probabilistic variations of the VMAE perform
slightly worse compared to the deterministic approach, but
we do observe a difference in uncertainty estimations be-
tween correctly and incorrectly predicted test instances for
the Bayes-by-Backprop last layer (BBB-LL) and Monte-
Carlo (MC) dropout models (only the MC dropout mod-
els with a drop rate of 0.05 and 0.10 for DIR). However,
the probabilistic models require MC sampling, which inher-
ently increases computations and makes the real-time use
impractical.

Moreover, we analysed the effects of different informa-
tion fusion strategies and observed that an attention fusion
of the in-cabin and external video embeddings yielded the
highest overall DIR performance. Lastly, we showed the
performance effects on both DAR and DIR when using less
input data. For DAR this highlights the challenge of action

recognition in an online setting, whereas for DIR it showed
a similar trend compared previous work [35].
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