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Abstract

Deep neural networks are susceptible to spurious features
strongly correlating with the target. This phenomenon leads
to sub-optimal performance during real-world deployment
where spurious correlations do not exist, leading to deploy-
ment challenges in safety-critical environments like health-
care. While spurious features can correlate with causal fea-
tures in myriad ways, we propose a solution for a common
manifestation in computer vision where the background cor-
responds to a spurious feature. In contrast to previous
works, we do not require apriori knowledge of different
groups in the data induced by the presence/absence of spu-
rious features and corresponding access to samples. We
propose a method, Causal Feature Alignment (CFA), to ig-
nore the spurious background features by utilizing segmen-
tations on a small subset of training data. To reduce the an-
notation burden, we reduce the pixel-wise annotation task
of segmentation to a review task of selecting the best mask
by utilizing the recently released foundation model and a
feature attribution method. We demonstrate our method on
a wide range of datasets, including the semi-synthetic Col-
oredMNIST, WaterBirds, and ImageNet Backgrounds Chal-
lenge, and obtain significant gains over state-of-the-art
methods.

1. Introduction
Deep neural networks trained based on the classical Em-
pirical Risk Minimization (ERM) have attained expert-level
performance across several tasks in recent years [2]. How-
ever, as applications of AI fuelled by deep learning con-
tinue to increase, recently, several works have pointed to
the vulnerability of deep neural networks to rely on spu-
rious features [17]. This leads to dramatic failures of AI
during deployment in the real world. An illustration of
this phenomenon was highlighted by [11] in the example
of pneumothorax classification using chest X-ray. The au-
thors discovered that the deep learning model utilized chest

Figure 1. [Best viewed in color] Examples of GradCAM saliency
map (with red corresponding to the model’s notion of salient fea-
tures) to demonstrate that a deep learning model trained using
ERM on the waterbirds dataset often relies on the background
(spurious, but easy to identify correlation) for making predictions.

tubes, a treatment artefact found in the image’s background,
to predict whether the images belong to the pneumothorax
class rather than the actual causal clinical features like a col-
lapsed lung, ruptured air blisters, etc. Similar examples of
vulnerabilities in dermatology [18] and biometrics [4] raise
the broader question of the dangers these algorithms could
pose on under-represented groups in training.

The seminal work [17] highlights the neural network’s
reliance on simpler spurious correlation, which attributes
the propensity of networks to focus on weakly correlating
but simpler to detect features in the presence of tougher but
causal features, even though learning the causal features of-

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

4666



ten leads the classifier to discriminate with better accuracy.
This dependence of a classifier on non-causal features man-
ifests as poor accuracy in the following couple of scenarios:
(i) out-of-domain (OOD) generalization when spurious fea-
tures vary across domains, and (ii) on samples from under-
represented groups even within the same domain (quanti-
fied by worst-group accuracy - formally defined in 2.1).
Typically, both of these scenarios are handled separately
since OOD generalization requires access to domain infor-
mation, whereas improving the worst-group accuracy re-
quires predefined knowledge of groups and group label an-
notation on a subset of the data (either during training or
validation). Additional latent information in the form of ei-
ther group labels or domain labels is necessary to achieve
competitive performance in these settings. Moreover, these
methods are highly susceptible to hyper-parameter tuning as
demonstrated in [3], where state-of-the-art worst-group per-
formance is achieved using conventional ERM with proper
hyper-parameter tuning.

We observe that the prior art for improving worst-group
accuracy (compared in Sec. 3) attempts the general prob-
lem when spurious features can manifest in multiple ways
and are therefore constrained to the choice of additional in-
put obtained. In vision problems, we note that backgrounds
frequently correspond to spurious features and hypothesize
that knowledge of the background for a subset of exam-
ples can help overcome this problem. To illustrate the phe-
nomenon, saliency maps on the popular Waterbirds dataset
(Fig. 1) show that ERM-trained models are highly biased
towards the background. Thus, an annotation like segmen-
tation or bounding box is a proxy to delineate the causal
feature in the image. Specifically, in this paper, we pro-
pose a method, Causal Feature Alignment (CFA), that does
not utilize any knowledge of group information (i.e., the
presence/absence of spurious information) or domain infor-
mation and instead relies on the segmentations of the fore-
ground on a small subset of the training data. The seg-
mented region of the image spatially identifies the causal
feature. We posit that a prediction made using merely this
causal feature while ignoring the spurious background fea-
ture will improve performance in both the OOD and worst-
group scenarios. This enforcement of utilizing only causal
features can be considered an ‘intervention’ step in causal
inference terminology [13].

Our method draws inspiration from a recent work [12]
that demonstrates representations learned using ERM-
trained deep learning models contain both causal and non-
causal features, but the subsequent classifier is highly biased
towards utilizing the spurious (non-causal) features for pre-
diction. However, when only causal features are present
in the representations, the classifier performs well across
all groups. We build on this idea to enforce representation
ns from original images to match representations of only

causal features.
Contributions:

• We first demonstrate our method’s ability to ignore
spurious features on the Colored-MNIST dataset.

• We subsequently show that CFA can be extended to
the much tougher Backgrounds Challenge [8], where
we reduce background reliance on the ERM-trained
model. This results in a 6% improvement in accuracy
(absolute metrics) over an ERM-trained model on a no-
torious variant of the Backgrounds challenge.

• We use the method without any modifications on the
benchmark Waterbirds dataset, where we improve the
worst group accuracy from 74% to 93%, setting a new
state-of-the-art result in the process.

• We propose an algorithm to generate the causal feature
(foreground mask) in an unsupervised fashion, with
only review by humans, thereby reducing human ef-
fort.

• We also construct a more challenging Waterbirds test
dataset to simulate a realistic scenario where not all
groups are known during training. Our method sus-
tains the impressive performance gain on this dataset,
while methods reliant on group information see dra-
matic performance degradation.

To the best of our knowledge, this is the first work that
identifies a need for utilizing spatial causal localization to
improve worst-group accuracy by reducing the reliance of
neural networks on spurious features and proposes a method
(CFA) for the same.

2. Causal Feature Alignment (CFA)

CFA is a two-stage algorithm, with the first stage a classical
ERM-trained algorithm that extracts both core and spurious
features. We employ a second training on the ERM model
to force the representation extracted from the original image
to mimic the representation of a foreground-only image.

2.1. Setup

We consider the classical supervised learning setup for clas-
sification with data-target pairs (x,y) ∈ D, where D is the
dataset containing N samples. We assume that these sam-
ples are derived from different groups g ∈ G, where groups
are defined by a combination of presence/absence of spuri-
ous feature s ∈ S and target label y (G ≡ Y × S). For
instance, in the Waterbirds dataset, four groups correspond
to different combinations of bird type (landbird v/s water-
bird) and background type (land v/s water). Typically, these
groups are not equally represented in the dataset due to a
naturally high correlation between attributes. This results in
inferior accuracy on under-represented groups in the train-
ing dataset quantified through worst-group accuracy, de-
fined as the minimum accuracy among all the groups evalu-
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Figure 2. [Best viewed in color] (a) ERM Training: The first step is conventional ERM training with the entire training data. (b) We
utilize a foundation model to generate images with only causal features that are reviewed by humans (c) CFA forces the network to output
representations invariant to the background and focus only on the task of interest. (d) Inference: The representations learned during CFA
are used for making predictions. Note that no additional supervision is used in the inference phase.

ated separately:

AccWG = min
g∈G

Acc(f((x),y)|x ∈ g) (1)

Typically, groups with fewer training examples have worse
group accuracy.

2.2. Method

Stage 1: ERM Training: A deep learning model can be
represented as a composition of a feature extractor ϕ and a
classification head c as f = ϕ ◦ c. Using the entire training
dataset (of N samples), we train the network f using the
classical ERM technique. We denote the model trained with
this setting as ferm = ϕerm ◦ cerm.

We explored two options for generating segmenting
masks: a) through manual annotation (bounding box inputs
to Segment Anything (SAM) [1], a foundational model) and
b) generate a set of masks and corresponding scores that the
human can select to reduce annotation burden.

To generate the set of masks, we utilize SAM in auto-
matic mode without any prompts. To provide a score for
each mask, we utilize xGradCAM [14] to a pixel-wise at-
tribution A for a given prediction. Dice Loss between the
xGradCAM output and each SAM-generated mask provides
a score that humans can utilize to select the optimal causal
mask(s). In the presence of spurious correlations, xGrad-
CAM often saliently attributes the spurious features, and in
these cases, the mask with the least score is often the causal
mask.
Stage 2: Causal Feature Alignment: We utilize the gener-
ated segmentations on the small subset of data D′ to force
the feature extractor to provide only causal features, even
on images with varied backgrounds. Note that the network

is not trained to predict the mask; the mask is used only to
derive foreground-only causal images. In this step, only the
feature extractor ϕ is trained while the classifier is frozen
cerm (Algorithm 1). We deliberately keep the classifier
fixed, as (a) causal features are known to perform well with
the trained ERM classifier and (b) the classifier is trained
on a large dataset. Since this causal representation learning
stage aims to enforce representations of original images to
causal features, we proceed with the above choice of fixed
ERM classifier. This stage is trained with a combination of
the following objectives:

• Alignment Loss: Cosine Loss between features of
original images and foreground-only images Lcos

• Classification Loss: Cross Entropy Loss between pre-
dictions of the original image and target LCE

While the alignment loss aims to align the representa-
tions of the original images with the embeddings of causal
features, the classification loss ensures that the discrimina-
tive ability of the features from the original images is not
compromised.

We modify the feature extractor representations using the
following loss function:

L(ϕ(x), ϕerm(xc),y) =

Alignment Loss︷ ︸︸ ︷
Lcos(ϕerm(xc), ϕ(x))

+ λ LCE(cerm(ϕerm(x)),y)︸ ︷︷ ︸
Classification Loss

(2)

where ϕ∗ = argminϕ L(·). The cosine embedding loss
Lcos is defined as Lcos(a,b) = 1 − a · b/||a|| · ||b||
while the cross-entropy loss is LCE(p(x), y) =

4668



Algorithm 1: CFA Training
Training Data: Dataset D of images and labels
{(xi, yi)}Ni=1

Stage 1: ERM Training
while not converged do

x,y ∼ D ; // Sample datapoint
Update weights w of ferm ≡ ϕerm ◦ cerm with:
∇wLCE(ferm(x),y) ; // Backprop.

end
Causal Feature Generation D′ (a subset of D) for

which we will obtain segmentation maps
for (x,y) ∼ D′ do

A = xGradCAM(x), {ŝ}L = fsam(x)
{U}L = LDice(A, ŝi) ; // Compute
scores for each mask output by
SAM
k = argmini∈L Ui m = ŝk ;
// Algorithmic suggestion for
causal mask
/* Human can select a mask ŝi

different from algorithmic
suggestion, where i ̸= k */

end
ϕ← ϕerm ; // Initialize
Stage 2: Causal Feature Alignment
while not converged do

(x,y,m) ∼ D′ ; // Sample datapoint
xc ← x ∩m ; // Casual Features
Update weights wϕ of ϕ with:
∇wϕ

L(ϕ(x), ϕerm(xc),y) ; // Backprop.
end
Return: fwgo ≡ ϕ ◦ cerm ; // Final model

−
∑

y∈Y 1y=y(log(p(x)). λ is used for changing the
weight of classification loss.

Inference The resulting model, which we denote as
fwgo = ϕ∗ ◦ cerm, is the final model that is used for infer-
ence. We would like to highlight that the model automati-
cally ignores the spurious features, and no segmentation is
performed at the inference step.

3. Prior Art
Comparison with Deep Feature Reweighting (DFR)
[12]: While both our method and DFR are two-stage algo-
rithms, with the first stage being common ERM training. In
the second stage, DFR uses the group labels on a validation
dataset to obtain a group-balanced dataset and retrains only
the classification layer while keeping the feature extractor
fixed. However, we believe the requirement of a “small”
group balanced validation in DFR is misleading due to the
heavy sample complexity requirement of samples from mi-

nority groups. For instance, in the Waterbirds dataset, the
prevalence of samples from the minority group(s) is <10%.
In the validation set, 50% of samples belong to the minor-
ity group due to the requirement of equal group weighting.
The validation dataset size is 20% of training data, which
translates to the validation set possessing the same number
of minority group samples as the training dataset. Indeed,
we observe a significant performance degradation (92% to
75%) when the validation set size is reduced from 20% to
10%.

In practice, on top of having expertise in identifying
groups apriori, collecting sufficient data for feature re-
weighting from each minority group may pose more of a
challenge than simply annotating bounding boxes. More-
over, the data requirement increases exponentially with re-
spect to the number of attributes inducing groups. Let the
number of attributes be na and the number of classes nc.
If each attribute is restricted to be a categorical variable
with k values, the number of samples required would be
kna×nc×x, where x is a percentage of samples relative to
the training dataset required in validation. In contrast, the
sample complexity of our review task scales linearly con-
cerning the number of classes (nc × x).
Relationship to methods utilizing group information
While methods utilizing group information can also reduce
reliance on spurious features [6, 7, 9, 10, 16], we would like
to highlight a couple of drawbacks. These methods require
prior knowledge of groups and spurious attributes, which
we posit is highly specialized knowledge (like the chest
tube example in pneumothorax detection). Secondly, these
methods are optimized for improving worst-group accuracy
for groups (even if under-represented) in the training set.
They cannot guarantee performance across unseen groups,
an inevitable practical necessity. This failure mode is high-
lighted through a novel test dataset utilizing the popular
Waterbirds dataset. Overall, we believe these observations
make a compelling case to develop methods free of prede-
fined knowledge of induced groups.

4. Experiments

4.1. Datasets

Coloured MNIST dataset: We utilize a binarized version
of the semi-synthetic coloured MNIST proposed by [15]. In
this dataset, digits “1” and “5” are mapped to classes 0 and
1 respectively. The training dataset is composed of samples
with digit “1” correlated strongly with red with pixel inten-
sities in the range (R0 = [(115, 0, 0) − (256, 141, 0)] and
digit “5” with green (R1 = [(0, 115, 0) − (141, 256, 0)]).
The test set comprises samples where this spurious correla-
tion with background color is broken.
ImageNet Backgrounds Challenge: Next we validate our
method’s ability to ignore the spurious background feature
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on the challenging ImageNet-9 Backgrounds challenge [8].
This dataset consists of multiple subsets with varying back-
grounds to evaluate the impact of the background (typically
a non-causal feature) on the classifier’s predictions. The
dataset is a subset of the Imagenet dataset consisting of 9
coarse-grain classes. Further, to test the reliance of back-
ground on the model’s prediction, multiple dataset varia-
tions are created: (1) Original: the images from ImageNet
used without modification. (2) fg-only: Images with only
the foreground present and background zero. (3) Mixed-
rand: Images with backgrounds replaced by random back-
grounds from any class.
Waterbirds dataset: We then utilize the method on the Wa-
terbirds dataset [16] where the target feature is type of bird
(waterbird v/s landbird) but confounded by the background
(land v/s water). This results in 4 groups of images: wa-
terbirds on water background (G1), waterbirds on the land
background (G2), land birds on water background (G3) and
land birds on the land background (G4). (G1) and (G4)
correspond to majority group while (G2) and (G3) are mi-
nority groups. We obtain state-of-the-art results on worst-
group accuracy (accuracy on the minority groups), thereby
demonstrating the applicability of our approach on a bench-
mark dataset. The distribution of the samples in groups (G1,
G2, G3, G4) are 73%, 4%, 1% and 22% respectively.

4.2. Baselines

While there are a large number of methods that broadly
attempt to improve the worst-case scenario, we compare our
method to a few baseline algorithms:

• ERM represents conventional training without any
safeguards for minority groups.

• Group-DRO [16] is the state-of-the-art which uses
group information on the training dataset and up-
weights worst-group examples during training.

• Just Train Twice (JTT) [9] is a method that automati-
cally infers the minority group examples on train data
but requires group labels on the validation data to tune
hyper-parameters.

• SUBG utilizes ERM on a random subset of the data
where the groups are equally represented [19].

• Spread Spurious Attribute (SSA) [6] is a method that
utilizes the group labels on validation data with a semi-
supervised approach that propagates the group labels
to training data when group information is unavailable.

• Deep Feature Reweighting (DFR) [5] is a simple
method that utilizes features from an ERM-trained
model on a group-balanced validation set to retrain
merely the classifier.

4.3. Results

Colored MNIST Dataset: We obtain the baseline empirical
risk minimization (ERM) model with a four-layered CNN

model. The test accuracy of the ERM model on test data
when the spurious correlation in the form of background
is collapsed results in a meager 59.1% as opposed to 98%
if a test dataset was constructed while sustaining the spuri-
ous correlations exhibited in the training dataset. We utilize
our CFA algorithm to finetune the ERM algorithm utilizing
segmentation masks on a subset of training data (5%) and
obtain an impressive 98% outperforming previously known
state-of-the-art algorithm (ERM+FRR) on this dataset by a
large margin. While we acknowledge that ERM+FRR does
not require any other additional human effort beyond avail-
ability of labels, we believe the difference in performance
justifies the necessity of human review in causal feature
generation.

Following [15], we quantify the features correlating with
the causal feature - the shape of the digit and the spurious
feature - background color. A feature from the penultimate
layer of the neural network is termed a causal feature or
spurious feature if it correlates greater than 90% with the
shape and colour feature, respectively. As we observe in
Table 1, the ERM model has an exceedingly high correla-
tion with the spurious feature (background). At the same
time, the CFA algorithm minimizes the correlation to the
spurious background feature.

Number O/P Corr. Acc.
Algo. Color,Shape Color,Shape ID,OOD

ERM 26, 4 0.81, 0.61 99.9%, 59.1%
FRR [15] 26, 4 0.71, 0.65 99.6%, 64.9%
CFA 30, 0 0.19, 0.72 99.6%, 99.2%

Table 1. CFA Validation on Coloured MNIST: We first observe
that ERM demonstrates impressive performance on an in-domain
(ID) test set while suffering when exposed to an out-of-domain
(OOD) dataset where spurious correlations are absent. CFA learns
to focus on the causal feature shape while nearly completely ignor-
ing the background features through the correlation metrics com-
pared to ERM and ERM with FRR [15], thereby translating to
impressive OOD performance.

ImageNet Backgrounds Challenge: To obtain the baseline
ERM model, we finetune an Imagenet-pre-trained ResNet-
50 with the train split of Original. We observe that the
accuracy of the finetuned model is 97% on Original, 72%
on Mixed-rand and 85% on fg-only. We hypothesize that
the performance of fg-only represents the entitlement of
the classifier based only on the foreground features. For
finetuning the algorithm, the causal masks were generated
through a) bounding boxes input to SAM (CFA-BB) and
b) human review and selection of generated masks (CFA-
Min).

We test the Algorithm 1 on the Mixed-rand variation to
check for improvement in Background reliance. We note
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Dataset Original Model CFA-BB CFA-Min

Original 97.6% 97.4% 97.2%
fg-only 85.2% 85.4% 85.6%

mixed-rand 72.2% 78.4% 77.8%

Table 2. Our method successfully learns to ignore the background
in the Background Challenge by improving the mixed-rand subset.

that our intervention improves the accuracy to 78% from
72% without the knowledge of Mixed-rand data creation
for training. Additionally, we observed that the perfor-
mance difference between CFA-BB and CFA-Min was only
marginal. This experiment demonstrates the generality of
our method to ignore spurious features manifested as back-
ground.
State-of-the-art results on Worst-Group Accuracy on
Waterbirds Dataset: We trained a conventional ERM
model with the group-imbalanced training data by finetun-
ing an ImageNet-pre-trained Resnet-50. To finetune the
ERM model, we generated masks for causal features in 2
ways: a) obtaining segmentations through bounding box in-
put to SAM (CFA-BB), and b) human review and selec-
tion of generated masks (CFA-Min). We chose the subset
of the dataset for generating segmentation masks randomly
in equal measure from the two classes. We note that this
strategy results in very few samples from minority groups
being chosen. Secondly, in 96% of the cases presented for
human review in CFA-Min, our algorithm predicted the cor-
rect mask and required modifications only in the remaining
few cases.1. We observed that in spite of the reduced an-
notation effort, the performance does not degrade signifi-
cantly compared to annotation through bounding box input
to SAM. We finetuned the model for 80 epochs and ob-
served that the worst-group accuracy increases monotoni-
cally, thus obliterating the careful hyper-parameter tuning
requirement (Fig. 3). This starkly contrasts all state-of-the-
art methods based on group information where the valida-
tion dataset is heavily used for model selection [19].

To re-emphasize the points made in the above sections,
we do not utilize any information about groups – either
predefined knowledge of groups or sample-wise group la-
bels on a subset of train/validation data. Further, we per-
form no careful hyper-parameter finetuning on the valida-
tion dataset for model selection, as is the usual case in
group-based methods thus far. Hence, we provide a plug-
and-play method that can eliminate reliance on spurious
features for classification that is, in principle, with a causal
learning approach.
CFA Works on Novel Challenging Dataset: Additionally,
since our method utilizes segmentation - an explicit form

1The code will be updated in Github upon acceptance.
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Figure 3. The plot demonstrates a near monotonic increase in
worst-group accuracy during CFA on the waterbirds dataset, thus
eliminating the need for hyperparameter tuning using validation
dataset, as is the case for group-based methods.

Method Accuracy
Worst(%) Mean(%)

ERM 72.6/85.5±1.0 97.3
JTT [9] 86.7/85.6±0.2 93.3

Group-DRO [16] 91.4/87.1±3.4 93.5
SUBG [19] 89.1±1.1 -

SSA [6] 89.0±0.55 92.2±0.87

DFR [5] 92.9±0.2 94.2±0.4

CFA-BB (our method) 93.02±0.1 95.2±0.4

CFA-min (our method) 92.62±0.1 95.2±0.4

Table 3. We demonstrate that our method outperforms all other
methods on a dataset where the foreground is sufficient for classi-
fication. The two numbers in the worst group accuracy represent
numbers from different sources, highlighting the variability of the
methods ( [9], [19]) Further, we do not require any model selection
using a validation dataset. Mean accuracy corresponds to overall
test accuracy.

Figure 4. Example images from the new test set created with novel
backgrounds to test CFA’s ability to utilize only causal features.
In the above examples, mountains and dams are the backgrounds
used.
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Figure 5. Weak Labels For Supervising CFA

of causal supervision, our approach sustains performance
when inferred with newer types of background. Since group
knowledge is necessary for strategies that optimize worst-
group accuracy, they do not generalize when presented with
images with completely unseen backgrounds. To verify this
claim, we create a new testing set (examples in Fig. 4) with
novel backgrounds like mountains, dams etc. These back-
grounds need not necessarily correspond to water or land.
Group-based methods like DFR fail to sustain impressive
performance in this out-of-domain (OOD) dataset and ob-
tain a maximum accuracy of 84%, down from 92% with
known groups. On the contrary, our method provides simi-
lar accuracy of 93% even on the new challenging test set.
This experiment demonstrates that CFA improves worst-
group accuracy and can sustain performance even when in-
ferred on out-of-domain datasets. This impressive perfor-
mance can be attributed to the extraction of causal features,
which are shown to be robust to domain changes.

5. Discussion
We perform a series of ablation experiments to tease out the
different factors that contribute to the performance of our
algorithm and better understand the learning process.

5.1. Granularity of Causal Supervision

Effect of Specificity of Segmentation: We have experi-
mented with utilizing inaccurate segmentations in the form
of weak annotations on Colored MNIST dataset in the fol-
lowing two ways (See Fig. 5) without converting them
to dense annotations: a) cropping out the pixels not un-
der background for input, thereby effectively reducing the
number of spurious features and resizing the image and b)
Substituting the background pixels with 0 or mean value
to avoid utilizing these features for discrimination. How-
ever, these methods only improve the worst-group accuracy
from 59% for ERM models to 63%, which is not substan-
tial, necessitating the requirement to convert weak labels to
pixel-wise annotations.
Effect of Number of Segmented Samples: We varied the
number of segmented samples from 10% to 40% on the
Waterbirds and backgrounds challenge experiments. As re-
ported in Fig. 6, we observe that the performance increases
significantly when the number of segmented samples in-
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Figure 6. Performance (inter-quartile range) of CFA as a function
of the percentage of segmented samples in the training dataset.

creases from 10% to 20% but starts saturating thereafter,
demonstrating that a small number of causal localization
is enough to restrict the feature extractor from using back-
ground features.

Effect of Number of Segmented Samples in Worst-
Group: CFA does not utilize group information to deter-
mine the samples on which segmentation input is required
for the finetuning step. In all our experiments, the samples
for segmentation were chosen randomly. This implies that
the number of samples from minority groups used for seg-
mentation is extremely small. In the Waterbirds challenge,
less than 1% of data from the worst group were annotated
with segmentation. This shows that the success of CFA
does not rely on the type of samples on which segmenta-
tions were obtained. This flexibility can enable CFA to play
a big role in practical applications where it is hard to obtain
clear group information. In contrast, group-based methods
require identifying samples from each group, which implies
one has to continue annotating until a minimum number of
samples from all the groups are obtained, which in many
cases can be the entire dataset.

5.2. Quality of CFA Features

Saliency of CFA Features: We utilize the Grad-CAM [14]
method to visualize the salient regions in the image that the
classifier utilizes for prediction. For each image x, two
Grad-CAM images are computed, one from ϕerm(x) and
ϕCFA(x). A few random Grad-CAM examples are shown
in Fig. 8, and it can be noted that the saliency map using a
model trained using CFA is more causally relevant than the
ERM model.
Alignment of Features due to CFA: On the Waterbirds
dataset, we visualize the t-SNE plot of the features on the
test split (unseen) of the data to verify if the features on the

4672



Figure 7. [Best viewed in color] We plot 2D tSNE embeddings of
the original image with empty circles and corresponding causal
features with solid dots. Red and blue correspond to the two
classes - waterbirds and landbirds. The left and right images cor-
respond to representations from ERM and CFA, respectively. We
observe that (i) CFA aligns representations of original images with
causal counterparts and (ii) improves class discrimination.

original image have aligned with features from the input
with only causal features. As seen in Fig. 7, the CFA al-
gorithm increases the alignment between foreground-only
images and original images. We also note increased dis-
crimination after alignment. Also, the CFA algorithm uti-
lizes 20% of samples only with causal inputs, showing the
ability to extend causal feature extraction to all (test) sam-
ples.

6. Conclusion
In this paper, we introduced a method called Causal Feature
Alignment (CFA), a method to ignore the spurious back-
ground features by utilizing spatial localization of causal
features on a subset of training data instead of the group la-
bels used predominantly in the literature. Our experimental
analysis shows that CFA can successfully reduce reliance
on background by improving accuracy in the worst group
across various benchmark datasets.

This is a markedly different research direction compared
to the existing popular group-based methods. Further, this
has significant advantages in terms of ease of annotations
as, (i) it does not require domain expertise to identify groups
and instead relies on user input, and (ii) the number of sam-
ples impacts accuracy but not the type of samples. It is
also a relatively cognitively less intense task to delineate

Figure 8. [Best viewed in color] xGradCAM saliency map for im-
ages from the waterbirds test set with models trained using CFA
and ERM. The red color in the map corresponds to the model’s no-
tion of salient features. It can be clearly seen that models trained
with ERM often focus on the background (confounder) while pre-
dicting, whereas using CFA, the models learn to focus on the bird.

the foreground from the image instead of annotating sam-
ples for group labels.

We acknowledge that our method is limited to only prob-
lems where the spurious feature is spatially disjoint from the
causal feature. Other spurious features manifested in the
form of brightness, saturation, etc., cannot be easily over-
come using our method. Thus, it is important to develop
methods for other manifestations of spurious features that
utilize relatively lower cognitive input from humans.
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