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Abstract
We present a novel coarser-to-finer approach for deep

graphical image inpainting that utilizes GraphFill, a graph
neural network-based deep learning framework, and a
lightweight generative baseline network. We construct a
pyramidal graph for the input-masked image by reducing
it into superpixels, each representing a node in the graph.
The proposed pyramidal approach facilitates the transfer
of global context from coarser to finer pyramid levels, en-
abling GraphFill to estimate plausible information for un-
known node values in the graph. The estimated informa-
tion is used to fill in the masked region, which a Refine Net-
work then refines. Furthermore, we propose a resolution-
robust pyramidal graph construction method, allowing for
efficient inpainting of high-resolution images with relatively
fewer computations. Our proposed GAN-based network is
trained in adversarial settings on Places365 and CelebA-
HQ datasets and demonstrates competitive performance
compared to existing methods while using fewer learning
parameters. We conduct thorough ablation studies to eval-
uate the effectiveness of each component in the Graph-
Fill Network for improved performance. Our proposed
lightweight model for image inpainting is efficient in real-
world scenarios, as it can be easily deployed on mobile de-
vices with limited resources.

1. Introduction
Image inpainting entails generating realistic content to

fill in missing areas within an image. These missing re-
gions may have been deliberately masked to remove un-
wanted objects from the image. During the early stages
of research, various classical approaches were proposed
to address the problem of image inpainting. In [2][3][4],
the authors have presented patch-based and exemplar-based
region-filling with suitable textures synthesized from the
surrounding pixel information. Advancements in paral-
lel computational capabilities have significantly increased
the development of deep learning-based solutions for vari-
ous computer vision problems, including image inpainting.

*A part of the research presented in this article was conducted during
an internship at Samsung R&D Institute Bangalore, India.

Neural architectures of deep learning frameworks used for
image inpainting can be broadly categorized into Genera-
tive Adversarial Networks (GAN) [7], Autoregressive Mod-
eling [14], and Denoising Diffusion Probabilistic Models
(DDPM) [10]. The image inpainting problem is ill-posed
and lacks a unique solution, which motivates one to explore
multiple solutions.

Due to the spatially shared convolutional filters, sim-
ple convolution-based deep generative models for image in-
painting have inherent limitations. These filters treat all in-
put pixels or features as equally valid, making the models
unsuitable for accurately filling in the missing image infor-
mation. Partial convolutions, as proposed in [17], address
the limitation of simple convolution-based deep generative
models for image inpainting by using masked and normal-
ized convolutions that are conditioned only on valid pixels,
followed by a rule-based mask updation step. Building on
this approach, [46] proposed gated convolutions using a dy-
namic feature gating mechanism for each channel and spa-
tial location. The work presented in [46] integrates contex-
tual attention [45]. Large masked regions can still challenge
these approaches, resulting in poor inpainting results. To
alleviate this challenge, it is essential to have a large, effec-
tive receptive field to comprehend the global context of the
image for generating high-quality inpainting of the missing
regions. In contrast, [32] proposed the usage of Fast Fourier
Convolutions to increase the receptive field and improve the
aggregation of the global context in the image.

We propose GraphFill, an image inpainting method that
employs a Graph Neural Network (GNN) on a graphical
representation of the masked image to learn coarser inpaint-
ing of the unknown region, which is then refined using a
Refine Network. Our approach robustly captures global in-
formation in the image by learning coarser inpainting on
a pyramidal graphical representation of the input image.
Additionally, our graphical approach significantly reduces
computational overhead for high-resolution image inpaint-
ing. Moreover, our model is very lightweight and has sub-
stantially fewer learnable parameters than the current state-
of-the-art methods, making it ideal for mobile device de-
ployment. While many studies [46][45][21] have explored
the coarser to finer approach, our method is the first to em-
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ploy graph neural networks for the task of image inpainting,
to the best of our knowledge.

Our major contributions are two-fold: (1) We introduce
a novel pyramidal graph construction scheme to represent
images as graphs for learning. Additionally, we extend this
method and propose an efficient approach for processing
high-resolution images for inpainting. (2) We demonstrate
the effectiveness of graph neural networks for image in-
painting, which has not been explored before, and show that
our GraphFill Network effectively captures global informa-
tion to improve robustness in filling missing regions.

2. Related Work
Our proposed work draws inspiration from Graph Con-

volutional Networks (GCNs) [15], which are convolutional
as the filter parameters are usually shared across all loca-
tions in the graph. GCNs are particularly effective when
dealing with data represented as graphs or network struc-
tures. They have been extensively used in a variety of prob-
lems related to graphical formats such as point-cloud or
mesh analysis [26][6][28], social network analysis [33], and
recommendation tasks [9]. Graph-based analysis of images
has gained attention in various computer vision tasks such
as image segmentation, detection, and recognition. Sev-
eral studies, such as [35][38][43], have shown that these
approaches can achieve competitive or even better results
compared to Convolutional Neural Networks (CNNs).

The proposed work introduces a novel end-to-end train-
able deep-learning method for image inpainting to learn
coarse inpainting of the masked region in the image by uti-
lizing its pyramidal graphical representation. Subsequently,
a shallow Pix2Pix Refine Network is employed to improve
the coarse inpainted region and generate the final inpainted
output. The following paragraphs provide an overview and
analysis of existing approaches in the field of image inpaint-
ing, with an emphasis on GAN-based methodologies.
GAN-based Approaches. Generative Adversarial Net-
works (GANs) [7][8] have gained popularity for their
effectiveness in generating realistic textures. Therefore,
generative networks have been extensively used for
image inpainting problems. Among generative meth-
ods for image inpainting, the general approach uses an
encoder-decoder architecture for the generator coupled
with an adversarial training strategy. This method was
first proposed by [23], and subsequent follow-up works
[36][46][50][21][18][48][19][44][51][50][41][54] have
achieved impressive results. GAN-based architectures
that rely solely on simple convolutional layers often face
challenges in generating semantically meaningful inpainted
regions due to their small receptive fields. Various methods
have been proposed in the literature to capture global and
high-level semantic context. [12] use Dilated Convolutions
to increase the receptive field of the network. [17] propose

Partial Convolutions, while [46] introduce Gated Convolu-
tions addressing limitations of [17] to guide convolutional
kernels according to the masked region. Furthermore,
[32] utilize Fourier Convolutions, which allow for a wide
receptive field and improved results. The method by
[42] leverages the relationship between the contextual
regions in the encoder and the hole region in the decoder to
enhance image inpainting outcomes. Subsequent works on
contextual attention by [31][49][45] have further improved
the method by incorporating global context for better
inpainting results. Additionally, [21][39][40] employ edge
maps, and [11][22] use segmentation maps for guidance in
generation.
Other Approaches. Several approaches based on Varia-
tional Autoencoders (VAEs) have been proposed to address
the lack of diversity in GAN-based image inpainting meth-
ods. [52][24][47] introduced large-scale VAEs with con-
ditional prior networks, a hierarchical sampling method,
and a bidirectional autoregressive transformer, respectively.
However, VAE-based methods may produce blurry images
and fail to preserve fine details, affecting the overall quality
of results. Some alternative methods for diverse image in-
painting include utilizing deep image priors and transform-
ers [27][34][16][5], and [29][30][20] use Denoising Diffu-
sion Probabilistic Models (DDPMs).

3. Approach

In this section, we outline our approach for image in-
painting, covering the problem statement, our architecture
(see Figure 1), and the training loss functions used.

3.1. Problem Statement

Suppose a portion of the image I ∈ R3×H×W is masked
using a binary mask M ∈ RH×W , resulting in a masked
image Im ∈ R3×H×W . The task of image inpainting is to
fill in the masked region of Im with plausible information
to obtain an inpainted image Î. We can represent I and M
using graphs G = (V, E ,F) and Gm = (V, E ,Fm), respec-
tively, where V represents the set of nodes corresponding to
pixels or superpixels, E ⊆ V2 is the set of edges connect-
ing neighbouring pixels or superpixels, F is the node-wise
feature matrix of G, and Fm is a binary vector containing
0, for every node v ∈ V that belongs to the masked region
and 1, otherwise. Now, we can represent the masked image
Im using a graph G′ = (V, E ,F ′), where F ′ = F ⊙ Fm,
⊙ denoting element-wise multiplication. Note that graphs
G,Gm, and G′ share same number of nodes V and edge con-
nectivity E . Our objective in coarser-to-finer image inpaint-
ing is to obtain the final inpainted image Î by refining the
coarse inpainted image, which is obtained from recovering
the original graph G from G′.
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Figure 1. The proposed coarser-to-finer approach for image inpainting: (a) Pyramidal Graph Construction method based on SLIC [1]. (b)
The overall architecture for image inpainting contains (c) GraphFill Network to learn a coarse representation and (d) CoarseNet Architecture
with Gated Graph Aggregators as a fundamental building block.

Figure 2. The image I (a) is subjected to pyramidal graph construction, (b) and (c) being mask M and masked image Im. Coarse images
(e-g) are generated using the superpixel map at the respective pyramid level. Superpixels corresponding to foreground and background
regions are indicated in (d) by red and yellow outlines, respectively.

3.2. Network Architecture and Loss Functions

We propose an end-to-end deep learning neural network
for coarser-to-finer image inpainting, consisting of three
main components: Pyramidal Graph Construction, Graph-
Fill Network, and Refine Network, as illustrated in Figure
1(b). We provide a detailed description of each component
and the loss functions used for training.
Pyramidal Graph Construction. To construct the pyrami-
dal graph for an image I and its binary mask M, we use the
Simple Linear Iterative Clustering (SLIC) technique pro-
posed by [1] to create superpixels at each level of the pyra-
mid. Assuming p is the number of pyramid levels, we define
N = {N i

f +N i
b}

p
i=1 that represents the total number of su-

perpixels in which the image I can be decomposed into, at
i-th pyramid level. Here, N i

f and N i
b represent the number

of superpixels for the foreground region where M(x, y) =
1 and the background region where M(x, y) = 0, respec-
tively. The superpixel map Si = {Sk

i }
ni

k=0 is defined as
the collection of all superpixels, where ni ∈ N denotes the
total number of superpixels and Sk

i ∈ Si represents the k-
th superpixel in the superpixel map at i-th pyramid level.
The complete set of all superpixel maps in the pyramid is
represented by S = {Si}pi=1. Note that the construction of
superpixel map Si involves clustering foreground and back-
ground regions into N i

f and N i
b superpixels, respectively.

We represent Si = {Si
f}∪{Si

b}, where Si
f and Si

b are super-
pixels corresponding to foreground and background region,
respectively, as illustrated in Figure 2(d).

We apply the Image-to-Graph (I2G) layer to both the
original image I and the masked image Im using the set
of superpixel maps S, resulting in the graphs G and G′,
respectively. At the i-th pyramid level, we represent the
sub-graph of G as Gi, and define the pyramidal graph G as
G = {Gi}pi=1 = (V, E ,F). The set V contains nodes repre-
sented by superpixels Sk

i ∈ Si ∀Si ∈ S and total number
of nodes is |V | =

∑
n, ∀n ∈ N. The node features are

represented by F ∈ R|V|×3. We can obtain graph G′ from
graph G by setting node feature Sk

i = 0, ∀Sk
i ∈ Si

b, in
addition to using the I2G-layer on Im. This can be for-
mulated mathematically as F ′ = F ⊙ Fm, as discussed
previously. At level i of the pyramid, we represent the sub-
graph of Gm = (V, E ,Fm) corresponding to mask M as
Gm

i = (Vi, Ei, F
m
i ).

After obtaining the sub-graph Gi for each pyramid level,
we apply the Graph-to-Image (G2I) layer to map each graph
Gi back to the image space. This results in a coarser repre-
sentation of the original image, as shown in Figure 2(d-g).
Figure 2(d) is obtained by projecting a sub-graph at a pyra-
mid level of G′, while Figures 2(e-g) are obtained by pro-
jecting sub-graphs at three pyramid levels from G. Train-
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Figure 3. The inpainting process of an image I (a) from Places365 dataset [53], with masked region outlined in red (b). Ground truth and
predicted coarser representations (Ci, Ĉi) are shown in (c,d), (e,f), and (g,h). Final coarse representation (i) is obtained by averaging pixel
values of all Ĉi, and the final inpainting result (j) is obtained after refinement by Refine Network.

Figure 4. Resolution-Robust Pyramidal Graph construction and inpainting using our proposed approach. We utilize images and segmenta-
tion masks from the DAVIS [25] dataset for illustrative purposes.

ing pairs for our network GraphFill consist of both graphs
G and G′, along with their coarser representations at each
pyramid level. An example of such a pair of coarser repre-
sentations is depicted in Figures 2(d) and 2(e). The archi-
tecture of GraphFill, along with the I2G layer and G2I layer,
is described below.
GraphFill Network. GraphFill performs gated graph ag-
gregations in the graph G′ constructed from the masked
image Im, to obtain a coarser inpainting of the miss-
ing regions. The sub-graph of G formed from the super-
pixel map Si containing the minimum number of superpix-
els (i.e., min(N)) will be referred to as the coarsest sub-
graph, and the one with the maximum number of super-
pixels (i.e., max(N)), will be referred to as the finest sub-
graph. GraphFill takes the coarsest sub-graph as input and
uses CoarseNet to estimate values of unknown superpixels.
It then iteratively updates the unknown superpixel values
in subsequent finer sub-graphs through a merger operation,
which is fed back to CoarseNet, as illustrated in Figure 1(c).
Following, we provide a detailed description of the building
blocks of GraphFill architecture.

Image-to-Graph (I2G) layer. The I2G layer maps an im-
age I to a graph representation, where each superpixel Sk

i ∈
Si corresponds to a node in the graph Gi = (Vi, Ei, Fi),
with Vi being the set of nodes, Ei being the set of edges and
Fi ∈ R|Si|×3 being the feature matrix for each node. The
node features are defined as the mean values of the pixels
in P k

i , which is the set of all pixels in the image I that su-
perpixel Sk

i contains. An edge emn
i is added between nodes

Sm
i and Sn

i if they are adjacent in the superpixel map.
Graph-to-Image (G2I) layer. The G2I layer projects the

nodes of sub-graph Gi onto image space using the super-
pixel map Si ∈ S to obtain a coarser image representation
Ci ∈ R3×H×W at the i-th pyramid level. Let P k

i denote
the set of all pixels in the image I contained in superpixel
Sk
i . Then, each pixel in P k

i is assigned the same value as
the corresponding node Sk

i , i.e., Ci(x) = Sk
i ∀x ∈ P k

i .
The coarser representations in Figure 2(c-f) are obtained by
projecting graphs back to image space using the G2I layer.

CoarseNet. CoarseNet consists of several gated aggrega-
tion blocks with skip connections that perform feature ag-
gregation in the graph G′

i iteratively, taking a high dimen-
sional feature vector Xi ∈ R|Si|×k extracted at a certain
depth from the input feature matrix F ′

i , and the adjacency
matrix Ai constructed from Ei. We use graph aggregation
from [15] and modify gated convolutions from [46] to form
a gated graph convolution block. The gated graph aggrega-

tion is defined as g(Xi, Ai) = σr(D̂i
− 1

2 ÂiD̂i
− 1

2XWf ) ⊙
σg(D̂i

− 1
2 ÂD̂i

− 1
2XiWg), where Wf and Wg are learnable

weight matrices, Âi = Ai + I (I being the identity ma-
trix), D̂i is the diagonal node degree matrix of Âi, and σr

and σg are ReLU and sigmoid activation functions, respec-
tively. The aggregation operation is shown in Figure 1(d),
where we use shared weights Wf and Wg across all itera-
tions for all sub-graphs Gi in G.

Merger Operation. At (i − 1)-th pyramid level, let
CoarseNet estimates sub-graph Ĝi−1 for input sub-graph
Gi−1. Applying the G2I-layer on output sub-graph Ĝi−1

with superpixel map Si−1 results in a coarse image denoted
by Ĉi−1. Subsequently, the I2G-layer transforms Ĉi−1 to a
finer sub-graph Ĝ↑

i−1 = (Vi, Ei, F̂
↑
i ) corresponding to the
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Figure 5. Visual comparison of results using the Full Pyramidal and RRP-Graph filling approach is shown in (b) and (d), respectively, with
(a) as the input image. The RRPG method achieves comparable inpainting with lower computational requirements.

Figure 6. Qualitative comparison of our Coarser-to-Finer approach with state-of-the-art methods on Places365[53]: AOTGAN [49],
DeepFillv2 [46], CRFill [50], GraphFill (Ours), LaMa [32], Pix2Pix [37], MAT[16], CoordFill [19], CoModGAN [51], and SHGAN [41].

Figure 7. Comparison of image inpainting methods on vary-
ing mask sizes. While DeepFillv2 [46] and CRFill [50] exhibit
difficulties in capturing the global context, our GraphFill method
demonstrates effective global context preservation.

i-th pyramid level, using the superpixel map Si. Gi and
Ĝ↑

i−1 have the same number of nodes Vi and edge connec-
tivity Ei since they are obtained from the same superpixel
map Si. To merge the feature matrix F ′

i of G′
i with the fea-

ture matrix F̂ ↑
i of Ĝ↑

i−1, we use a merger operation defined
as (Fi ⊙ Fm

i ) + (F̂ ↑
i ⊙ (1− Fm

i )).

Refine Network.* To refine the coarse output from the
GraphFill Network for inpainting, we employ a shal-
low version of the GAN-based network proposed by
[37]. We achieve the final inpainting outcome by refining
CoarseNet’s output Ĉp at the finest pyramid layer p com-
bined with the masked image Im using the Refine Network.
We perform the combination of these two inputs through a
masked update, which involves (Im⊙M)+(Ĉp⊙(1−M)),
represented as Coarse to Masked Union in Figure 1.
Loss Functions.* At each level i of the pyramid, the
CoarseNet estimates the sub-graph Ĝi from the input G′

i.
Then, we use the G2I-layer to project F̂i onto the image
space and obtain a coarse inpainting Ĉi for the masked im-
age Im. To get the corresponding ground truth Ci for this
estimated Ĉi, we apply the G2I-layer on the node features
Fi obtained from sub-graph Gi of image I. The training of
the GraphFill Network involves minimizing L2 and Percep-
tual losses between Ci and Ĉi at all levels i in the pyramid.
On the other hand, the Refine Network is trained using GAN
loss and feature matching loss inspired by [37].

*More details included in the supplementary material
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Model #Pars Model #Pars
GraphFill (Ours) 175K DeepFillv2[46] 4.2M
GraphFill-Pix (Ours) 175K + 4.4M CRFill[50] 4.2M
Pix2Pix (Shallow) 4.4M CoordFill[19] 34.4M
Pix2Pix[37] (Deep) 45.6M Big LaMa[32] 45M
FFCResNet (Shallow) 3.8M MAT[16] 62M
FFCResNet[32] (Deep) 27M CoModGAN[51] 109M
AOTGAN[49] 15.2M SHGAN[41] 159.6M

Table 1. Total Number of learnable parameters in GraphFill, Re-
fine Network baselines, and other existing methods.

Model
Metrics

FID ↓ LPIPS ↓ SSIM ↑
GraphFill-Pix (Iterative) with RRPG 1.509 0.0301 0.981
GraphFill-Pix (Iterative) without RRPG 1.505 0.0298 0.980
GraphFill-Pix (Non-Iterative) with RRPG 1.719 0.0308 0.976
GraphFill-Pix (Non-Iterative) without RRPG 1.704 0.0307 0.979

Table 2. Comparison of the proposed GraphFill inpainting models
with and without the Resolution-robust Pyramidal Graph (RRPG).
Symbol ↑ denotes larger values are better. This ablation study is
validated with random masks on a reduced validation split of 5000
images from the Places365[53] dataset.

3.3. Resolution-Robust Pyramidal Graph

To address the inpainting of high-resolution images, we
propose a resolution-robust pyramidal graph construction
approach for inpainting using GraphFill, as illustrated in
Figure 4. Since undesired objects occupy a smaller region
of the overall image size, we use an adaptive cropping ap-
proach that crops the input image around the masked area
(see Figure 4(c)). Our pyramidal graph construction fol-
lows a similar procedure as described in section 3.2. How-
ever, we use images with an increased crop and a larger
value of n ∈ N at higher levels of the pyramid, generating
finer superpixels as the level of the pyramid increases. The
lowest pyramid level contains the coarsest sub-graph gen-
erated from the full-resolution image, and the highest level
contains the finest sub-graph generated from the maximum
possible cropping of the input image. We constrain the max-
imum cropping around the masked region to ensure the im-
age size is not reduced below a certain threshold. In our
experiments, we set Hc = 224 and Wc = 224. The crop-
ping parameters are saved at each pyramid level to enable
proper merger operations in CoarseNet and stitching to ob-
tain the final inpainted image. The Coarse to Masked Union
Operation is performed on the original image cropped to
the maximum possible extent, and the coarse output Ĉp pre-
dicted at the p-th level of the pyramid graph, p representing
the total number of levels in the pyramid and contains the
finest sub-graph.

To refine the sub-graphs at higher pyramid levels in the
resolution-robust pyramidal graph, the Merger Operation
relies on the cropping information saved at each level. The
predicted coarse image Ĉi−1 is obtained by applying the G2I
layer on Ĝi−1 with the superpixel map Si−1. This coarse

image is then cropped using the cropping parameters at the
i-th level of the pyramid, resulting in Ĉ⊡

i−1. The I2G-layer
then transforms Ĉ⊡

i−1 instead of Ĉi−1 to obtain a finer sub-
graph Ĝ↑

i−1 corresponding to the i-th pyramid level, using
the superpixel map Si. The Merger Operation refines the
graph and facilitates the transfer of global context from the
(i − 1)-th pyramid level to the i-th pyramid level. Figure
4(d-g) shows predicted coarse output Ĉ⊡

i−1 at i-th level of
pyramid. Figure 4(h) shows the averaged output of all Ĉ⊡

i ’s
stitched with corresponding cropping parameters. Figure
4(i) shows the final refined output from Refine Network.

4. Results and Discussions

Datasets. Our proposed network is trained and evaluated
on the Places365 [53] and CelebA-HQ [13] datasets, which
have 1.8 million and 30k images, respectively, in the train-
ing split and 10k and 5k images, respectively, in the vali-
dation split. To evaluate our model and compare it to other
state-of-the-art models, we adopt a similar approach to [32].
Specifically, we use pre-generated narrow (NM), medium
(MM), and wide masks (WM) for each image in the valida-
tion split to ensure a fair comparison of metrics.
Results. The GraphFill Network is trained using a pyrami-
dal graphical image representation with three levels p =
3. For a 256 × 256 resolution, the number of nodes in
the foreground regions is Nf = (100, 500, 1500), and in
the background regions, the number of nodes is Nb =
(50, 100, 200). For a 512 × 512 resolution, the number of
graph nodes in the background regions slightly increases to
Nb = (50, 200, 400). Due to the enforcement of region
connectivity during superpixel determination using SLIC
[1], the resulting graph has a total of N ≤ (150, 600, 1700)
nodes for 256 × 256 resolution, and N ≤ (150, 700, 1900)
for 512× 512 resolution. The proposed coarser-to-finer ap-
proach for inpainting a masked image is demonstrated in
Figure 3. Figures 6 and 8 provide a qualitative comparison
of our image inpainting method with existing approaches
on both the CelebA-HQ and Places365 datasets. The first
2 rows in Figure 6, and first 3 rows in Figure 8 present re-
sults at 256× 256, while the remaining rows display results
at 512 × 512. The yellow outlined images in are generated
at a higher resolution of 512 × 512 by upscaling the corre-
sponding image and mask due to the lack of inference sup-
port for 256×256 resolution images. Figure 7 demonstrates
the robustness of GraphFill inpainting as we progressively
enlarge the masked region area in comparison with existing
methods. Our experiments demonstrate that the GraphFill
Network effectively fills the masked region with coarser de-
tails, enabling the Refine Network to generate visually plau-
sible inpainting results. As presented in Table 1 and Table
3, quantitative analysis demonstrates that our proposed net-
work achieves competitive results even with a substantially
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Figure 8. Qualitative comparison of our Coarser-to-Finer approach with state-of-the-art methods on CelebA-HQ[13] dataset: AOTGAN
[49], DeepFillv2 [46], GraphFill (Ours), LaMa [32], Pix2Pix [37], MAT[16], CoordFill [19], CoModGAN [51], and SHGAN [41]
.

Model
Places365 (512x512) CelebA-HQ (512x512)

Narrow Masks Medium Masks Wide Masks Narrow Masks Medium Masks Wide Masks
FID ↓ LPIPS ↓ SSIM ↑ FID ↓ LPIPS ↓ SSIM ↑ FID ↓ LPIPS ↓ SSIM ↑ FID ↓ LPIPS ↓ SSIM ↑ FID ↓ LPIPS ↓ SSIM ↑ FID ↓ LPIPS ↓ SSIM ↑

GraphFill-Pix
(Ours) 3.428 0.107 0.909 5.392 0.129 0.876 8.957 0.152 0.863 2.462 0.111 0.929 7.727 0.13 0.899 11.119 0.146 0.881

DeepFill-v2[46] 3.569 0.106 0.906 6.363 0.13 0.870 9.698 0.157 0.837 6.094 0.145 0.919 9.125 0.152 0.894 14.218 0.163 0.871
CRFill[50] 3.461 0.102 0.91 5.458 0.127 0.874 8.821 0.155 0.843
AOTGAN[49] 4.472 0.127 0.882 6.012 0.128 0.866 9.932 0.159 0.831 4.313 0.116 0.897 6.812 0.127 0.892 11.947 0.158 0.852
CoordFill[19] 3.922 0.117 0.906 5.806 0.124 0.885 7.828 0.144 0.866 3.522 0.128 0.925 3.394 0.113 0.914 3.475 0.115 0.906
CoModGAN[51] 3.302 0.113 0.898 4.67 0.127 0.869 5.7 0.148 0.843 2.02 0.124 0.917 2.44 0.127 0.893 2.676 0.131 0.881
LaMa[32] 2.486 0.091 0.915 4.056 0.112 0.887 5.587 0.136 0.866 2.113 0.106 0.929 3.095 0.12 0.905 3.673 0.129 0.894
MAT[16] 2.814 0.096 0.903 4.432 0.121 0.869 5.688 0.145 0.841 1.409 0.092 0.926 1.88 0.106 0.901 1.964 0.113 0.889
SH-GAN[41] 3.157 0.108 0.906 4.591 0.126 0.868 5.622 0.148 0.843 1.895 0.114 0.919 2.349 0.121 0.895 2.551 0.125 0.882

Model Places365 (256x256) CelebA-HQ (256x256)
GraphFill-Pix
(Ours) 4.782 0.102 0.919 5.061 0.101 0.899 7.217 0.143 0.857 2.802 0.088 0.918 3.372 0.093 0.905 6.775 0.125 0.875

DeepFill-v2[46] 4.996 0.104 0.901 4.931 0.104 0.891 7.778 0.145 0.843 6.522 0.126 0.901 4.15 0.103 0.901 5.853 0.12 0.872
CRFill[50] 5.348 0.104 0.904 5.286 0.104 0.894 8.34 0.145 0.845
AOTGAN[49] 4.853 0.117 0.892 5.502 0.116 0.890 8.932 0.167 0.832 2.504 0.091 0.921 3.495 0.118 0.904 6.337 0.138 0.865
CoordFill[19] 3.873 0.089 0.915 4.14 0.092 0.905 6.675 0.131 0.863 3.272 0.086 0.926 2.68 0.081 0.92 3.29 0.098 0.897
LaMa[32] 3.455 0.086 0.912 3.349 0.088 0.903 4.817 0.125 0.861 2.496 0.081 0.923 2.093 0.077 0.917 2.403 0.092 0.895
MAT[16] 1.989 0.078 0.921 1.869 0.08 0.91 2.347 0.098 0.884
SH-GAN[41] 3.712 0.100 0.917 3.789 0.101 0.883 5.344 0.140 0.841 3.036 0.091 0.910 2.768 0.089 0.903 3.706 0.107 0.874

Table 3. Quantitative comparison of our proposed method with state-of-the-art Image Inpainting methods using Frechet inception distance
(FID) metrics, Learned perceptual image patch similarity (LPIPS), and Structural Similarity (SSIM) metrics. Symbol ↓ denotes lower
values are better, and ↑ denotes larger values are better. Symbol ‘ ’ is filled if the corresponding trained model is not publicly available
or the model does not support the evaluation of the respective resolution. Note that, as illustrated in Table 1, our proposed model has
substantially fewer parameters and performs competitively compared to other existing methods.

lower number of learnable parameters than heavy-weight
existing methods and deep baseline networks. We train the
GraphFill Network for an initial 5 epochs, aiming to grasp a
coarser representation. Subsequently, we combine the Re-
fine Network and proceed with an end-to-end training ap-
proach. On the Places365 Dataset [53], our training spans
10 epochs, while for the CelebA-HQ Dataset [13], we train
for 25 epochs. All experiments are conducted on a machine

with a 20-core CPU and an NVIDIA Tesla V100 GPU. To
demonstrate the effectiveness of the proposed method for
mobile deployment, we convert the model to TFLite format
with INT8 quantization. The size of the resulting TFLite
model is 4.6MB. The model takes about 13 ms to load, and
the entire inference process, including data preprocessing
and model runtime, takes about 105 ms. The experiment is
evaluated on the SAMSUNG GALAXY S23 smartphone.
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Model
Places365 (512x512) CelebA-HQ (512x512)

Narrow Masks Medium Masks Wide Masks Narrow Masks Medium Masks Wide Masks
FID ↓ LPIPS ↓ SSIM ↑ FID ↓ LPIPS ↓ SSIM ↑ FID ↓ LPIPS ↓ SSIM ↑ FID ↓ LPIPS ↓ SSIM ↑ FID ↓ LPIPS ↓ SSIM ↑ FID ↓ LPIPS ↓ SSIM ↑

GraphFill-Pix
(Iterative) 3.81 0.111 0.908 7.792 0.133 0.876 9.067 0.158 0.86 2.462 0.111 0.929 7.727 0.13 0.899 11.119 0.146 0.881

GraphFill-Pix
(Non-Iterative) 4.285 0.113 0.907 8.833 0.137 0.876 10.47 0.16 0.841 3.207 0.115 0.922 9.019 0.135 0.892 15.356 0.15 0.876

GraphFill-FFC
(Iterative) 4.987 0.132 0.91 8.787 0.134 0.877 11.095 0.162 0.841 4.934 0.133 0.919 8.571 0.143 0.895 14.832 0.156 0.883

GraphFill-FFC
(Non-Iterative) 5.804 0.135 0.892 9.37 0.14 0.872 11.559 0.169 0.848 5.07 0.145 0.919 9.254 0.148 0.89 15.645 0.161 0.879

Pix2Pix
(Shallow) 5.068 0.114 0.909 9.194 0.139 0.875 13.652 0.17 0.849 4.075 0.136 0.911 9.395 0.144 0.897 18.52 0.169 0.882

Pix2Pix
(Deep) 3.288 0.108 0.91 5.816 0.127 0.881 8.927 0.152 0.857 3.602 0.123 0.927 7.328 0.137 0.904 11.763 0.153 0.887

FFCResNet
(Shallow) 5.977 0.142 0.881 9.151 0.145 0.862 11.807 0.178 0.86 5.287 0.14 0.918 9.919 0.146 0.896 17.379 0.162 0.88

FFCResNet
(Deep) 2.976 0.105 0.912 5.297 0.125 0.882 7.919 0.149 0.858 3.947 0.124 0.932 6.614 0.134 0.907 8.772 0.142 0.893

Table 4. Ablation studies on the effect of GraphFill integration on Shallow Baselines: Notable performance improvements and competitive
performance compared to deep counterparts.

Ablation Studies. We conducted several ablation studies
to evaluate the performance of GraphFill and its integra-
tion with two shallow variants of Refine Networks: Pix2Pix
[37], and FFCResNet proposed by [32]. We also tested it-
erative graph-filling (as discussed in section 3.2) and non-
iterative graph-filling schemes. In the non-iterative scheme,
we directly input the full-graph G′ to the GraphFill Net-
work with the adjacency matrix A calculated from the con-
nectivity information in E . The non-iterative graph-filling
scheme does not involve the merger operation at every suc-
cessive pyramid level. Instead, the output at every pyra-
mid level sub-graph is converted to coarser images using
the G2I layer and averaged for coarse to masked union op-
eration needed before Refine Network. We quantitatively
compare our coarse-to-finer inpainting variants in Table 4.
The GraphFill neural network is trained for 10 epochs to
learn the coarser representation. This pre-trained Graph-
Fill Network is combined with shallow Refine Networks,
and the entire model is trained end-to-end for refinement.
All variants listed in Table 4 are trained for 5 epochs on
the Places365 dataset [53] and 25 epochs on the CelebA-
HQ dataset [13]. As evident in Table 4, shallow networks
integrated with the GraphFill module generate competitive
inpainting results despite having lower learning parameters
than their deep counterparts. Also, the results indicate that
the variant with Iterative GraphFill integrated with shal-
low Pix2Pix architecture performs the best on average on
both the validation split of the Places365 and CelebA-HQ
datasets. We evaluate the performance of the RRPG by
creating a validation split where the masked region is con-
strained to a 256×256 square patch within a 512×512 res-
olution image. Table 2 compares the GraphFill inpainting
method with and without the Resolution-Robust Pyramidal
Graph (RRPG) approach. Visual comparison between the
two graph filling inpainting techniques is depicted in Figure

5. The RRPG is designed to reduce computational com-
plexity while maintaining inpainting performance, allowing
efficient processing of high-resolution images. Additional
qualitative results on the RRPG approach and Non-Iterative
GraphFill can be found in the suppl. material.

5. Conclusion

This work introduces a novel framework for image in-
painting based on deep graph learning and pyramidal graph
construction. Our approach outperforms existing methods
having a similar number of learnable parameters and ob-
tains competitive performance compared to existing heavy-
weight models. Our method effectively captures long-
range, non-local contextual information. Through exten-
sive ablation studies, we demonstrate that the integration
of GraphFill architecture significantly improves the perfor-
mance of shallow baselines. Our results indicate that the
merger operation in iterative graph-filling enables better
passage of global context from coarser to finer pyramid lev-
els compared to non-iterative graph-filling variants. We also
propose a Resolution-Robust Pyramidal Graph construc-
tion method for high-resolution image inpainting, which re-
duces computational complexity with minimal deterioration
in performance. Finally, due to the lightweight nature of
our model, it can be easily deployed on mobile devices with
computational limitations. Our approach provides a promis-
ing solution for image inpainting with practical implications
in real-world scenarios.
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