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Abstract

Recent work in Neural Fields (NFs) learn 3D represen-
tations from class-specific single view image collections.
However, they are unable to reconstruct the input data pre-
serving high-frequency details. Further, these methods do
not disentangle appearance from geometry and hence are
not suitable for tasks such as texture transfer and editing.
In this work, we propose TEGLO (Textured EG3D-GLO)
for learning 3D representations from single view in-the-wild
image collections for a given class of objects. We accom-
plish this by training a conditional Neural Radiance Field
(NeRF) without any explicit 3D supervision. We equip our
method with editing capabilities by creating a dense corre-
spondence mapping to a 2D canonical space. We demon-
strate that such mapping enables texture transfer and tex-
ture editing without requiring meshes with shared topology.
Our key insight is that by mapping the input image pixels
onto the texture space we can achieve near perfect recon-
struction (≥ 74 dB PSNR at 10242 resolution). Our for-
mulation allows for high quality 3D consistent novel view
synthesis with high-frequency details even at megapixel im-
age resolutions. Project Page: teglo-nerf.github.io

1. Introduction
Reconstructing high-resolution and high-fidelity 3D con-

sistent representations from single-view in-the-wild image
collections is critical for applications in virtual reality, 3D
content creation and telepresence systems. Recent work in
Neural Radiance Fields (NeRFs) [6, 7, 17, 40] aim to ad-
dress this by leveraging the inductive bias across a dataset
of single-view images of class-specific objects for 3D con-
sistent rendering. However, they are unable to preserve high
frequency details while reconstructing the input data de-
spite the use of SIREN [45] or positional encoding [34],
in part due to the properties of MLPs they use [10]. For
arbitrary resolution 3D reconstruction from single-view im-
ages, these methods face several challenges. These include
image-space approximations that break multi-view consis-
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Target Image Reconstruction 3D Consistent Novel Views with Texture Edits

Figure 1. Teaser - Demonstrating TEGLO for high fidelity 3D re-
construction and multi-view consistent texture representation and
texture editing from single-view image collections of objects.

tency constraining the rendering resolution [6], requiring
Pivotal Tuning Inversion (PTI) [42] or fine-tuning for re-
construction [6, 17, 46] and the inability to preserve high-
frequency details [6,17,40,46]. To address this, we propose
TEGLO (Textured EG3D-GLO) that uses a tri-plane repre-
sentation [6] and Generative Latent Optimization (GLO) [4]
based training to enable efficient and high-fidelity 3D recon-
struction and novel view synthesis at arbitrary image reso-
lutions from single-view image collections of objects.

Recent works disentangle texture from geometry [10,59]
and enable challenging tasks such as texture editing and tex-
ture transfer. However, they depend on large-scale textured
mesh data for high-fidelity 3D reconstruction which is la-
borious, expensive and time intensive to capture. Further,
the use of a capture environment may cause a dataset-shift
leading to generalization issues in downstream tasks, and
the data use may require custom licensing. All of these fac-
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Figure 2. Overview - TEGLO enables 3D reconstruction and tex-
ture representation from single-view image collections of objects.

tors limit access from the broader research community. This
motivates the need for a method to learn textured 3D repre-
sentations from single-view in-the-wild images of objects.
However, the task of disentangling texture and 3D geome-
try from in-the-wild image collections is a formidable chal-
lenge due to the presence of wide variations in poses, par-
tial views, complex details in appearance, geometry, noise
etc. in the given image collection. Inspired by surface fields
[16], TEGLO leverages the 3D surface points of objects ex-
tracted from a NeRF to learn dense correspondences via a
canonical coordinate space to enable texture transfer, tex-
ture editing and high-fidelity single-view 3D reconstruction.

Our key insight is that by disentangling texture and ge-
ometry using the 3D surface points of objects to learn a
dense correspondence mapping via a 2D canonical coordi-
nate space, we can extract a texture for each object. Then,
by using the learned correspondences to map the pixels
from the input image of the object onto the texture, we en-
able preserving high-frequency details. As expected, copy-
ing the input image pixels onto the texture accurately, al-
lows near perfect reconstruction while preserving high fre-
quency details with multi-view consistent representations.
In this work, we present TEGLO, a tri-plane and GLO-
based conditional NeRF, and a method to learn dense cor-
respondences to enable challenging tasks such as texture
transfer, texture editing and high-fidelity 3D reconstruc-
tion even at large megapixel resolutions. We also show
that TEGLO enables single-view 3D reconstruction with no
constraints on resolution by simply inverting the image into
the latent table without any PTI [42] or fine-tuning. We
present an overview of TEGLO in Fig.(2): TEGLO takes
a single-view image and its approximate camera pose to

map the pixels onto a texture. Then, to render the object
from a different view, we extract the 3D surface points from
the trained NeRF and use the dense correspondences to ob-
tain the color for each pixel from the texture. Optionally,
TEGLO allows texture edits and texture transfer across ob-
jects. In summary, our contributions are:

1. A framework for effectively mapping the pixels from
an in-the-wild single-view image onto a texture to en-
able high-fidelity 3D consistent representations pre-
serving high-frequency details.

2. A method for extracting canonical textures from
single-view images enabling tasks such as texture edit-
ing and texture transfer for NeRFs.

3. Demonstrating effective mapping of single-view im-
age pixels to a canonical texture space while preserv-
ing 3D consistency and achieving near perfect recon-
struction (≥ 74 dB PSNR at 10242 resolution).

2. Related Work
3D-aware generative models. Learning 3D representa-

tions from multi-view images with camera poses have been
extensively studied since the explosion of Neural Radiance
Fields (NeRFs) [2, 17, 34, 47, 62, 63]. However, these meth-
ods require several views and learn a radiance field for a
single scene. RegNeRF [37] reduces the need from sev-
eral views to only a handful, however, the results have sev-
eral artifacts. Recently, several works learn 3D represen-
tations from single-view images [6, 7, 28, 40, 46, 64]. Fur-
ther, [24,48–50] enable multi-view consistent editing, how-
ever, they are limited by the rendering resolution. Recent
work propose single image 3D consistent novel view syn-
thesis [18, 29, 54, 60], however they are not yet suitable for
texture representation. While point cloud based diffusion
models [36, 61] enable learning 3D representations, they
have limited applicability in textured 3D generation and
high fidelity novel view synthesis. In this work, we show
that TEGLO learns textured 3D representations from class-
specific single-view image collections.

Texture representation. Template based methods [3,11,
20,39] deform a template mesh prior for 3D representations
and are hence restricted in the topology they can represent.
Texture Fields [38] enable predicting textured 3D models
given an image and a 3D shape, but are unable to represent
high-frequency details. While NeuTex [55] enables texture
representation, it does not allow multi-view consistent tex-
ture editing at the desired locations due to a contorted UV
mapping [59]. NeuMesh [59] learns mesh representations
to enable texture transfer and texture editing using textured
meshes. However, it performs mesh-guided texture trans-
fer and requires spatial-aware fine-tuning for mesh-guided
texture edits. While GET3D [15] learns textured 3D shapes
by leveraging tri-plane based geometry and texture gener-
ators, it requires 2D silhouette supervision and is limited
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Section 3.2. TEGLO Stage-2: Dense Correspondences

TEGLO Stage-1

Figure 3. Architecture - TEGLO Stage-1 (left) uses a tri-plane and GLO based conditional NeRF to learn a per-object table of latents to
reconstruct the single-view image collection. TEGLO Stage-2 (right) learns dense correspondences via a 2D canonical coordinate space.

to synthetic data. AUVNet [10] represents textures from
textured meshes by learning an aligned UV mapping and
demonstrates texture transfer. However, it depends on tex-
tured mesh data and requires multiple networks to enable
single-view 3D reconstruction. In contrast, TEGLO learns
textured 3D consistent representations from single-view im-
ages by inverting the image into the latent table.

Dense correspondences. Previous work in dense cor-
respondence learning involve supervised [13, 27] or unsu-
pervised [56, 58] learning methods. CoordGAN [35] learns
dense correspondences by extracting each image as warped
coordinate frames transformed from correspondence maps
which is effective for 2D images. However, CoordGAN
is unable to learn 3D correspondences. AUVNet [10] es-
tablishes dense correspondences across 3D meshes via a
canonical UV mapping and asserts that methods that do not
utilize color for dense correspondence learning [14,30] may
have sub-par performance in texture representation.

3. Proposed Method
Given a collection of single-view in-the-wild images of

objects and their approximate camera poses, TEGLO aims
to learn a textured 3D representation of the data. TEGLO
consists of two stages: 3D representation learning and dense
correspondence learning. TEGLO Stage-1 consists of a
conditional NeRF leveraging a Tri-Plane representation and
an auto-decoder training regime based on generative latent
optimization (GLO) [4] for 3D reconstruction of the image
collection. To train TEGLO Stage-2, we use TEGLO Stage-
1 to render a dataset of an object’s geometry from five views
using the optimized latent code. TEGLO Stage-2 uses the
3D surface points from the rendered dataset to learn dense
pixel-level correspondences via a 2D canonical coordinate
space. Then, the inference stage uses the learned dense cor-
respondences to map the image pixels from the single-view

input image onto a texture extracted from TEGLO-Stage 2.
As a result, TEGLO effectively preserves high frequency
details at an unprecedented level of accuracy even at large
megapixel resolutions. TEGLO disentangles texture and
geometry enabling texture transfer (Fig.(12)), texture edit-
ing (Fig.(9)) and single view 3D reconstruction without re-
quiring fine-tuning or PTI (Fig.(8)).

3.1. TEGLO Stage 1: 3D representation
Formulation. We denote the single-view image collec-

tion (I) with class specific objects as {o0, o1, ..., on} ∈ I.
To learn 3D representations, TEGLO uses a generative la-
tent optimization (GLO) based auto-decoder framework,
where the NeRF is conditioned on an image specific latent
vector {w0, w1, ..., wn} ∈ RD to effectively reconstruct the
image without requiring a discriminator.

Network architecture. The NeRF model N is repre-
sented by TEGLO Stage-1 in Fig.(3). The model N passes
the input conditioning latent wi to a set of CNN-based syn-
thesis layers [23] whose output feature maps are used to
construct a k-channel tri-plane. The sampled points on
each ray are used to extract the tri-plane features and ag-
gregate the k-channel features. Then the tri-plane decoder
MLP outputs the scalar density σ and color which are alpha-
composited by volume rendering to obtain the RGB image.
Volume rendering along camera ray r(t) = O + td is:

CNeRF(r, w) =

∫ bf

bn

T (t, w)σ(r(t), w)c(r(t), d, w)dt,

(1)

where T (t, w) = exp

(
−
∫ bf

bn

σ(r(s), w)

)
ds,

Here, the radiance values can be replaced with the depth
d(x) or pixel opacity to obtain the surface depth. During
inference, the surface depth map and 2D pixel coordinates
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Figure 4. Rendering the dataset for TEGLO Stage-2 - Render-
ing multiple views of images, surface normals, depth maps and 3D
surface points from CelebA-HQ, AFHQv2-Cats and ShapeNet-
Cars for learning dense correspondences in TEGLO Stage-2.

are used to obtain the 3D surface points via back-projection.
The surface normals can be computed as the first derivative
of the density σ with respect to the input as follows:

n̂(r, w) = −
∫ bf

bn

T (t, w) σ(r(t), w) ∇r(t)(σ(r(t), w))dt,

n(r, w) =
n̂(r, w)

|| n̂(r, w) ||2
, (2)

Thus from an inference step, an RGB image, surface depth
map, 3D surface points and the surface normals of the object
instance can be obtained. In Fig.(4), we show the sample
reconstruction results for N on the CelebA-HQ, AFHQv2
and ShapeNet-Cars datasets. In Fig.(5) we show qualitative
results for novel view synthesis with N trained on SRN-
Cars and evaluated on a held-out set of views. Since SRN-
Cars is a multi-view dataset, we compare the rendered novel
views with their corresponding ground-truth views.

Losses. N is trained by reconstructing the image and si-
multaneously optimizing a latent (wi). As noted in [40], this
allows the training loss to be enforced on individual pix-
els enabling training and inference at arbitrary image res-
olutions. For TEGLO Stage-1 (Fig.(3)), three losses are
minimized to train N : LRGB, is an L1 reconstruction loss
between the rendered image and the ground truth image
for oi. The LPerceptual loss is a LPIPS (Learned Perceptual
Image Patch Similarity) loss between rendered image and
the ground truth image. The LCamera is the camera predic-
tion L1 loss between the output of the camera encoder and
the ground-truth camera parameters for the camera pose to
learn 3D consistent representations of the object (oi ∈ I).

LN = LRGB + LPerceptual + LCamera, (3)

To train N , we use the single-view image dataset and the
approximate pose for each oi ∈ I (Sec.(4)). We train the
model for 500K steps using the Adam optimizer [25] on 8
NVIDIA V100 (16 GB) taking 36 hours to complete.
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Figure 5. Novel view synthesis - Results for ShapeNet-Cars data.

Design choices. As noted in Sec.(1), EG3D [6] shows
medium resolution (5122) capacity while using image-
space approximations in the super-resolution module which
negatively affects the geometric fidelity [46]. While Epi-
GRAF [46] uses a patch-based discriminator for pure 3D
generation, it is still prone to issues in scaling and train-
ing with multi-resolution data. Moreover, adversarial train-
ing using discriminators leads to training instability. Dif-
ferent from EG3D and EpiGRAF that use an adversarial
training paradigm,N uses a GLO-based auto-decoder train-
ing paradigm which jointly optimizes a latent representa-
tion and reconstructs the image enabling arbitrary resolu-
tion synthesis - even at large megapixel resolutions - with-
out the constraints of a discriminator. Hence,N enables 3D
representations with geometric fidelity while also benefiting
from an efficient tri-plane based representation.

EG3D [6] requires camera pose conditioning for the
generator and discriminator to establish multi-view consis-
tency. The limitation of a pose-conditioned generator is that
it does not completely disentangle the pose from appearance
which leads to artifacts such as degenerate solutions (2D
billboards), or expressions such as the eye or smile follow-
ing the camera. Since N optimizes a latent representation
of an object and reconstructs it, we observe that the gener-
ator does not require camera pose conditioning and simply
using a light-weight camera predictor network and training
with a camera prediction loss (LCamera) is sufficient to learn
3D consistent representations.

3.2. TEGLO Stage 2: Dense correspondences
Formulation. We render a multi-view dataset (D) us-

ing N trained on single-view image collections for the task
of texture representation. We denote each object ei ∈ D
comprising of five views: ei = {vf , vl, vr, vt, vb} where
v denotes the view, and the sub-scripts (j for all vj) de-
note frontal, left, right, top and bottom poses respectively
(refer Fig.(4)). In D, each view vj ∈ ei includes the depth
map (d̂j), RGB image (r̂j), surface normals (ŝj), 3D surface
points (p̂j), and the optimized latent, wi, which is identical
for views of ei as it is independent of camera pose (Fig.(4)).
For TEGLO Stage 2, we use {{r̂j , ŝj , p̂j} ∈ vj , wi} ∈ ei}.

Learning dense pixel-level correspondences across mul-
tiple views of an object is the task of locating the same 3D
coordinate point in a canonical coordinate space. Inspired
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by surface fields [16], we aim to learn dense correspon-
dences using the 3D surface points extracted from N by
back-projecting the depth (d̂j) and pixel coordinates. In-
spired by CoordGAN [35] and AUVNet [10], we propose a
dense correspondence learning network in TEGLO Stage-
2 trained in an unsupervised manner learning an aligned
canonical coordinate space to locate the same 3D surface
point across different views (vj) of the same object (ei).

Network architecture. TEGLO Stage-2 (Fig.(3)) con-
sists of a latent mapping network (L), a dense correspon-
dence network (M) and a basis network (C) - all of which
are MLP networks. The 3D surface points (p̂j) from vj ∈
ei) are mapped to a 2D canonical coordinate space condi-
tioned on a shape code mapped from the optimized latentwi

for ei. We use a Lipschitz regularization [31] for each MLP
layer in the dense correspondence network (M). The la-
tent mapping network (L) is a set of MLP layers that takes
the wi-latent for ei as input and predicts a shape-code for
conditioning M, and coefficients for the deformed basis.
Previous work [10, 52] show that if the input is allowed to
be represented as a weighted sum of basis images, i.e. to
obtain a deformed basis before decomposition, then the 2D
canonical coordinate space will be aligned. The basis net-
work (C) is similar to [10] and uses the predicted coeffi-
cients to decompose the deformed coordinate points. Thus,
M maps the 3D surface points to an aligned 2D canonical
coordinate space, enabling the network to learn dense cor-
respondences using pj ∈ S extracted from N . Next, the
basis network takes the 2D canonical coordinates as input
to predict the deformed basis B. Then, B is weighted with
the predicted coefficients to decompose the basis into the
3D surface points (pj), surface normals (sj) and color (rj).

Losses. TEGLO Stage-2 is trained using three L2 recon-
struction losses: the LRGB loss between the rendered RGB
image r̂j and the predicted RGB image rj ; the LNormals loss
between the rendered surface normals ŝj and the predicted
surface normals sj ; LCoord loss between the extracted 3D
surface points p̂j and the predicted 3D surface points pj .

LStage2 = LRGB + LNormals + LCoord, (4)

To train TEGLO Stage-2, we use the rendered dataset D
consisting of 1000 objects with five views per object and the
optimized latent for each identity. The networks are trained
using LStage2 loss for 1000 epochs using the Adam [25] op-
timizer to learn dense correspondences across ei ∈ D.

Design choices. We use the optimized w-latent from N
for learning the shape code and coefficients for TEGLO
Stage-2 because it represents the 3D geometry and ap-
pearance information for object (ei) independent of camera
pose. We observe that using a Lipschitz regularization for
every MLP layer inM suitably regularizes the network to
deform the input surface points ŝj . Interestingly, our experi-
ments show that simply reconstructing the 3D surface points
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fer and editing. Red arrows indicate the use of a K-d tree to store
the texture. Blue arrows indicate the use of input image pixels.

instead of the color, surface points and surface normals also
leads to learning reasonable dense pixel-level correspon-
dences. We show qualitative results for TEGLO Stage-2
trained using only LCoord loss in Fig.(7) as TEGLO-3DP.

3.3. Inference.
Extracting the texture. We use the learned dense corre-

spondences from TEGLO Stage-2 to extract a texture map
for each object oi ∈ I. We use the pose of the target image
oi to extract the 3D surface points fromN and use it to map
the image pixels to the 2D canonical coordinate space. We
denote this as texture tGT . Similarly, we useM to map the
respective RGB values from {vf , vl, vr, vt, vb} ∈ ei using
the corresponding 3D surface points (sj) from five views to
the 2D canonical space and denote it as tviews. Thus, textures
tGT and tviews store a mapping i.e. the canonical coordinate
point and the corresponding RGB values. The procedure is
represented in Fig.(6) and textures are depicted in Fig.(9)
and Fig.(10). In Fig.(6) tO represents the texture obtained
by combining tGT and tviews. We store this mapping in a
K-d tree which enables us to index into the textures using
accurate floating point indices to obtain the RGB values.
The K-d tree allows querying with canonical coordinates to
extract multiple neighbors making TEGLO robust to sparse
“holes” in the texture. Refer Fig.(S6) in the supplementary.

Novel view synthesis. For rendering novel views of oi,
we extract the 3D surface points for the pose from N and
obtain the canonical coordinates from M. For each 2D
canonical coordinate point ck, we query the K-d tree for
three natural neighbors and obtain indices for the neighbors
which are used to obtain the RGB values. Natural Neighbor
Interpolation (NNI) [44] enables fast and robust reconstruc-
tion of a surface based on a Dirichlet tesselation - unique for
every set of query points - to provide an unambiguous inter-
polation result. We simplify the natural neighbor interpola-
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(c) EG3D-Fit (PTI)(b) LoLNeRF(a) CelebA-HQ Target (f) TEGLO(e) TEGLO-3DP(d) TEGLO Stage 1

Figure 7. Qualitative results - Comparison with relevant 3D-aware generative baseline methods at 2562 resolution for CelebA-HQ.

tion (NNI) based only on the distances of the points ck in
the 2D canonical coordinate space to obtain the RGB values
from the stored texture. The robust and unambiguous in-
terpolation enables TEGLO to effectively map the ground-
truth image pixels from the input dataset I onto the geom-
etry for novel view synthesis. To extract the Surface Field
S, we render ei from five camera poses which may poten-
tially cause camera pose biases leading to sparse “holes” in
the texture. Our formulation uses the K-d tree and NNI to
interpolate and index into the textures with sparse “holes”
(Refer Fig.(S6)). There are three issues that may arise:

1. The canonical coordinate points may not be aligned to
the pixel centers and storing them in the discretized
texture space may lead to imprecision.

2. There may be multiple canonical coordinates mapped
to a discrete integral pixel wherein some coordinates
may need to be dropped for an unambiguous texture
indexing - leading to loss of information.

3. Some pixels may not be mapped to by any canonical
coordinates, creating a “hole” in discretized space.

K-d tree allows extracting multiple neighbors by querying
with canonical coordinate points and also enables indexing
the texture using floating point values. Hence, using a K-d
tree to store the texture helps address (1) and (2). Further,
using a K-d tree in conjunction with Natural Neighbor Inter-
polation (NNI) effectively addresses (3). We include more
details in the supplementary material.

Texture editing. Texture with edits are represented as
tEdit in Fig.(6). We create the edits on a blank image the
same size as tO and denote it as redit. The edit image redit
is considered to be in the canonical space and is directly
indexed into the K-d tree to be overlay on tO. Note that

Table 1. Reconstruction of train images - Quantitative compari-
son on training data reconstruction at 1282 resolution.

Method PSNR (↑) LPIPS (↓)
π-GAN [7] (CelebA) 23.5 0.226
LoLNeRF [40] (FFHQ) 29.0 0.199
LoLNeRF [40] (CelebA-HQ) 29.1 0.197
ABC [41] (CelebA-HQ) 26.3 -
TEGLO Stage 1 (FFHQ) 29.0 0.294
TEGLO Stage 1 (CelebA-HQ) 28.9 0.317
TEGLO (CelebA-HQ) 89.5 2.3e-7

we do not constrain the texture space and it may be visually
aligned to a canonical pose as in Fig.(9) and Fig.(10). The
texture with an edit (tEdit) is created by overlaying redit on
tO. Qualitative results are in Fig.(1) and Fig.(9).

4. Experiments and Results
Datasets. We train TEGLO with single-view image

datasets such as FFHQ [23], CelebA-HQ [21, 32] and
AFHQv2-Cats [12, 22]. To obtain the approximate cam-
era pose, we follow [40] by first using an off-the-shelf
face landmark predictor MediaPipe Face Mesh [1] to ex-
tract landmarks appearing at consistent locations. Then, we
use a shape-matching least-squares optimization to align the
landmarks with 3D canonical landmarks to obtain the ap-
proximate pose. We also use a multi-view image dataset -
ShapeNet-Cars [8, 9] with results in Fig.(1) and Table.(4).

3D reconstruction. We evaluate TEGLO on the task
of reconstructing the input image in the same pose and
compare with baseline methods. We report quantitative re-
sults for train data reconstruction in Table.(1) measuring the
PSNR (Peak Signal to Noise Ratio) and LPIPS (Learned
Perceptual Image Patch Similarity) metrics for CelebA-HQ
and FFHQ. We observe similar results for LoLNeRF and

3590



Ta
rg

et

Su
rf

ac
e 

No
rm

al
s

Sh
ad

in
g

Re
co

ns
tr

uc
tio

n

No
ve

l V
ie

w
s

Figure 8. Single view 3D reconstruction - 3D reconstruction of
test image from CelebA-HQ. Compare with Fig.(25) in [26]).

Table 2. Reconstruction of test images - Quantitative comparison
on test data reconstruction at various rendering resolutions.

Method Res. PSNR (↑) LPIPS (↓)
π-GAN [7] (CelebA) 2562 21.8 0.412
LoLNeRF [40] (FFHQ) 5122 25.3 0.491
LoLNeRF [40] (CelebA-HQ) 2562 26.2 0.363
TEGLO Stage 1 (FFHQ) 2562 27.3 0.334
TEGLO Stage 1 (CelebA-HQ) 2562 27.5 0.260
TEGLO (FFHQ) 2562 84.9 2.1e-6
TEGLO (CelebA-HQ) 2562 86.2 7.4e-7
TEGLO (CelebA-HQ) 5122 82.6 4.4e-6
TEGLO (CelebA-HQ) 10242 74.7 6.9e-5

Table 3. Comparing with GLO baselines - Quantitative results
for test set reconstruction in PSNR at 2562 resolution.

Dataset PSNR (↑)
LoLNeRF [40] TEGLO Stage-1 TEGLO

AFHQv2-Cats 24.94 29.26 87.38

TEGLO Stage-1 at 1282 resolution. However, as expected,
TEGLO attains 89.5 dB PSNR and 7.4e-7 for LPIPS. We
report quantitative results for test data reconstruction from
a held-out set at 2562 resolution for CelebA-HQ and FFHQ
data in Table.(2) and for AFHQv2-Cats data in Table.(3).

We depict qualitative results for CelebA-HQ in Fig.(7)
where the red arrows indicate missing details. For EG3D-
Fit, we invert the image into the EG3D [6] latent space and
perform Pivotal Tuning Inversion (PTI) [42] for the single-
view image. We observe missing details in the results from
LoLNeRF [40], EG3D-Fit [6] and TEGLO stage-1 in terms
of jewelry, skin wrinkles, eyeglass opacity, eyeglass frame,
hair strand etc. As expected, results from TEGLO and
TEGLO-3DP (where TEGLO Stage-2 is trained with only
surface point supervision) preserve high frequency details
missed by baselines methods, demonstrating near perfect
reconstruction. In Fig.(10), we show qualitative results with
the texture (tO) for complex appearance and geometry.

3D consistent novel view synthesis. To evaluate multi-
view consistent synthesis, we report quantitative results for
novel view reconstruction on the multi-view SRN-Cars data
in Table.(4). We observe that TEGLO attains near-perfect
reconstruction of test data with 67.5 dB PSNR whereas

Table 4. Novel view reconstruction - Quantitative results for
novel view reconstruction on the SRN-Cars dataset [8] at 2562

resolution to evaluate 3D consistent novel view synthesis. (LoL-
NeRF result is from the “Concatenation” baseline in ABC [41]).

Dataset PSNR (↑)
LoLNeRF ABC TEGLO Stage-1 TEGLO

SRN-Cars 25.80 29.10 30.48 67.52

Table 5. Comparing with 3D generative baselines - Test data
reconstruction with previous state-of-the-art methods.

Method PSNR↑ LPIPS↓ SSIM↑ ID↑ 3D
Consistency↑

EG3D-PTI 26.64 0.323 0.879 0.465 21.20
RealTime-RF [51] 22.29∗ 0.269 0.665 0.542 -

IDE-3D [48] 26.45 0.273 0.878 0.671 20.69
HFGI3D [57] 29.43 0.172 0.918 0.744 21.69

TEGLO 84.90 2.1e-6 0.999 0.883 33.47

baselines achieve 30.4 dB PSNR. We evaluate the identity
consistency across multiple synthesised views using the ID
score metric by computing the mean of the MagFace [33]
cosine similarity scores from a sampled camera pose. We
compare the ID score for TEGLO with other recent 3D
GANs and observe that TEGLO outperforms the baselines
with a score of 0.883. We also use the 3D consistency met-
ric from [17] to compare the multi-view consistent synthesis
of TEGLO with 3D GAN baselines. In brief, we synthesize
five novel views near an input camera pose and use IBR-
Net [53] to predict the input image and then compute the
reconstruction PSNR. We report the 3D consistency metric
in Table.(5) and observe that TEGLO outperforms the 3D
GAN methods. [57] notes that “quantitative evaluation of
3D consistency is still an open question” and since 3D con-
sistency in novel view synthesis is better viewed as videos,
we urge the reader to refer to the supplementary videos.

Single-view 3D reconstruction. It is the task of repre-
senting an in-the-wild or out-of-distribution image using a
trained network. Qualitative results for a held-out sample
from the CelebA-HQ dataset for pre-trained TEGLO is in
Fig.(8). Previous work such as AUVNet [10] require addi-
tional training of a ResNet-18 [19] for the image encoder
and IM-Net [11] for the shape decoder followed by ray
marching to obtain the mesh to represent the image while
methods such as EG3D [6] require PTI (Pivotal Tuning In-
version [42]) fine-tuning to represent the image. For single-
view textured 3D representation in TEGLO, we simply in-
vert the image into the latent with no fine-tuning. Further
details about obtaining the latent are in the supplementary.

Reconstructing single-view images at arbitrary resolu-
tions while preserving 3D consistency is highly desirable
for several applications. However, EG3D [6] is limited by
its camera conditioned generator to possess a “baked-in”
training resolution. TEGLO does not include any camera
conditioning, and as a result, it allows single-view 3D re-
construction and novel view synthesis at arbitrary resolu-
tions without any re-training for different resolutions.
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Figure 9. Texture editing - Qualitative results for texture edits.
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Figure 10. Results for complex texture and geometry - Qual-
itative results for texture representation and novel view synthesis
with complex image samples. Compare with Fig.(24) in [5].

Texture editing. In Sec.(3.3), we describe the proce-
dure to edit textures. Qualitative results with texture edit-
ing for CelebA-HQ is in Fig.(9) and for AFHQv2-Cats and
ShapeNet-Cars in Fig.(1). Our edits are class-specific and
target image agnostic because edits are performed in the
canonical space. Previous work, NeuMesh [59] requires
spatial-aware fine-tuning and mesh guided texture editing
for precise transfer. However, TEGLO simply maps a tex-
ture edit image of the same size as the texture into the K-d
tree with an overlay of the pixels (i.e. obtaining tEdit) - pre-
cisely transferring the edit without requiring any optimiza-
tion strategies. Further results are in the supplementary.

Texture transfer. As discussed in Sec.(3.3), the ex-
tracted textures are aligned in a canonical coordinate space
allowing texture transfer across geometries. We demon-
strate texture transfer in Fig.(12(a)). Here, row-1 represents
the target image from CelebA-HQ for the geometry learned
by TEGLO Stage-1, and column-1 represents the textures
(stored in a K-d tree) extracted after TEGLO Stage-2. We
observe realistic texture transfer despite arbitrary camera bi-
ases in rendering D which are mitigated by using the K-d
tree and NNI. To test if TEGLO is restricted to the range
of the five arbitrary views chosen for Stage-2, we show
large angle view results for Stage-2 trained with just a single
view instead of five in Fig.(11) to validate our hypothesis.
Fig.(12(b)), shows the keypoint correspondences mapped to
the canonical coordinate space across different face identi-

Target Reconstruction Novel View Synthesis

Figure 11. Result for TEGLO Stage-2 trained with 1 arbitrary view
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Figure 12. Texture transfer (a) Qualitative results for texture
transfer with CelebA-HQ. (Top row shows CelebA-HQ image tar-
gets). (b) Keypoint correspondences in the canonical space.

ties. Since the keypoints from different identities map to
the same location in the canonical space, the effectiveness
of the correspondences for texture transfer is demonstrated.

5. Discussion
While TEGLO enables near perfect 3D reconstruction

of objects from single-view image collections, it requires
multi-stage training. We hope that future work can simplify
the framework with an elegant end-to-end formulation. A
potential next step would be to use StyleGANv2 [23] to
generate high quality textures for texture transfer and edit-
ing. TEGLO could enable 3D full-body avatars from single
views with high frequency details extending methods such
as PIFu [43]. Future work could explore representing light
stage data across different camera angles in an illumination
invariant manner using 3D surface points. One limitation of
our method is that the texture does not include ground truth
pixels from the obstructed parts of the object. We hope fu-
ture work can address this limitation.

6. Conclusion
In this work, we present TEGLO for high-fidelity canon-

ical texture mapping from single-view images enabling tex-
tured 3D representations from class-specific single-view
image collections. TEGLO consists of a conditional NeRF
and a dense correspondence learning network that enable
texture editing and texture transfer. We show that by effec-
tively mapping the input image pixels onto the texture, we
can achieve near perfect reconstruction (≥ 74 dB PSNR at
10242 resolution). TEGLO also allows single-view 3D re-
construction by simply inverting the single-view image into
the latent table without requiring any PTI or fine-tuning.
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