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Figure 1. Our framework allows us to perform 3D scene reconstruction and precise localization of over 100 real-world traffic cameras
distributed globally across multiple countries, with the potential to scale to any camera with sufficient street-level imagery. (Left): High-
lighting the reconstruction and localization of traffic cameras at specific chosen locations. (Right): Demonstrating 7 cameras positioned
within an urban intersection, accurately localized with respect to the reconstructed 3D scene. Please zoom in for better visualization.

Abstract

Despite the widespread deployment of outdoor cameras,
their potential for automated analysis remains largely un-
tapped due, in part, to calibration challenges. The absence
of precise camera calibration data, including intrinsic and
extrinsic parameters, hinders accurate real-world distance
measurements from captured videos. To address this, we
present a scalable framework that utilizes street-level im-
agery to reconstruct a metric 3D model, facilitating pre-
cise calibration of in-the-wild traffic cameras. Notably, our
framework achieves 3D scene reconstruction and accurate
localization of over 100 global traffic cameras and is scal-
able to any camera with sufficient street-level imagery. For
evaluation, we introduce a dataset of 20 fully calibrated
traffic cameras, demonstrating our method’s significant en-
hancements over existing automatic calibration techniques.
Furthermore, we highlight our approach’s utility in traffic
analysis by extracting insights via 3D vehicle reconstruc-
tion and speed measurement, thereby opening up the poten-
tial of using outdoor cameras for automated analysis. Code
and dataset will be available on the project website.

1. Introduction

With the recent advances in vision techniques, traffic
cameras have gained numerous applications, including ve-
hicle speed measurement [19,51], automated traffic analyt-
ics [40,44], and accident/anomalies detection [7,19,48], just
to name a few. To enable such applications, camera calibra-
tion is a crucial requirement. Camera calibration includes
estimating both intrinsic parameters (focal length and dis-
tortion coefficients) and extrinsic parameters (orientation
and position of the camera) in metric real-world coordi-
nates. In addition, for many downstream applications, the
metric geometry of the scene, including the ground plane is
often necessary. However, such calibration information is
not readily available in most cases.

Despite extensive literature on traffic camera calibration,
existing approaches suffer from various limitations. Tra-
ditional methods, such as those relying on checkerboard-
based calibration [53, 56], are not practically scalable since
physical access to the scene is required. Other tech-
niques require manual inputs, like identifying landmarks
with known dimensions like road markings which can be
time-consuming and subject to human error [10, 54]. Cer-
tain approaches rely on estimating or assuming specific pri-
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ors, such as vanishing points [15, 28, 50], average vehicle
size [12], or camera height [54], and can introduce inaccu-
racies with limited generalizability to novel scenarios.

To address these challenges, we introduce a novel frame-
work for automatically acquiring accurate metric 3D scene
reconstruction and calibration of stationary traffic cam-
eras at real-world street intersections. To achieve this, we
leverage the vast amount of high-quality, geo-referenced,
and calibrated images available in Google Street View
(GSV) [21]. By utilizing GSV, we construct a metric-scale
3D scene reconstruction near the desired traffic camera lo-
cation. Given that GSV offers panorama images, we im-
prove our 3D reconstruction by enforcing known relative
poses among perspective images sampled from the same
panorama. Next, we employ state-of-the-art (SOTA) cam-
era localization techniques, leveraging recent advances in
learned feature matching, such as SuperPoint [13] and Su-
perGlue [45], to establish robust 2D-3D correspondences.
This enables us to infer the traffic camera’s intrinsic and ex-
trinsic parameters accurately. It is worth noting that while
our emphasis in this paper is on the utilization of GSV, our
framework is adaptable to any source of street-level im-
agery, including Bing’s Streetside [8], Mapillary Maps [38],
user-captured data from smartphones (with GPS informa-
tion), and other similar sources. This aspect highlights the
scalability and versatility of our method, further extending
its potential to achieve planet-wide camera calibration.

We demonstrate 3D scene reconstruction and accurate
localization at over 100 traffic cameras across multiple
countries and continents, with the potential to generalize to
any novel camera where sufficient nearby street-level im-
agery is available. For quantitative validation, we propose
a new dataset containing 20 fully calibrated traffic cameras
at diverse urban scenes under varying capture conditions.
Through extensive quantitative and qualitative experiments,
we demonstrate the significant improvements of our method
over existing SOTA methods in both intrinsic and extrinsic
calibration. Leveraging accurate calibration, we illustrate
its capabilities in the domains of 3D reconstruction and ve-
locity measurement for moving vehicles, thus facilitating
the extraction of valuable insights from the data.

To summarize, our main contributions are:

* We develop a scalable framework utilizing street-level
imagery to create precise 3D models for accurate
global calibration of traffic cameras, with success-
ful localization of over 100 cameras and potential for
broader application.

* We introduce a novel dataset featuring 20 fully cali-
brated traffic cameras, capturing diverse urban scenes
under varying conditions, serving as a valuable bench-
mark for future research.

* We demonstrate the framework’s efficacy in traffic

analysis through automated extraction of insights via
3D vehicle reconstruction and speed measurement.

2. Related Work

Camera calibration involves two key aspects: 1) intrin-
sics calibration, which takes into account perspective pro-
jection (focal length, principal points, etc.) and potentially
corrects for radial and tangential distortion, and 2) extrin-
sics calibration, which refers to camera rotation and trans-
lation, usually defined with respect to the ground plane.
Note that for practical real-world applications like speed
measurement, the extrinsic parameters must be expressed
in metric units, often referred to as the metric scene scale.
Generic Camera Calibration: Within the domain of cam-
era calibration, several methods have been established. Two
widely employed gold-standard techniques, presented by
Zhang et al. [560] and Tsai et al. [53], utilize planar cali-
bration targets to estimate intrinsic and extrinsic camera pa-
rameters. Although those methods achieve sub-pixel cali-
bration accuracy, they prove infeasible for traffic cameras
positioned in challenging and potentially inaccessible lo-
cations, thereby limiting their scalability and practicality.
Additionally, despite the capability of learning-based meth-
ods [9,34] to recover focal length and distortion parameters
from a single image, they usually do not generalize well to
out-of-distribution data such as traffic cameras.

Traffic Camera Calibration: In the context of traffic
scene analysis, a review of available methods has been pre-
sented by Sochor et al. [51]. Some approaches [10,22,24]
rely on detecting vanishing points at road marking inter-
sections, utilizing vehicle motion to calibrate the cam-
era [12,15,16,46], or involving manual measurements of
dimensions on the road plane [14,29,35-37,41,49]. Vari-
ous techniques have also been proposed for estimating the
scene scale. For example, [15] employed a 3D bounding
box around vehicles and their average dimensions to com-
pute the scale, and [50] suggested using the alignment of a
3D model and a bounding box for scale inference. How-
ever, it is important to note that these methods are not with-
out limitations, particularly in terms of scalability and ac-
curacy. Manual techniques demand labor-intensive mea-
surements of landmarks and dimensions. Meanwhile, au-
tomatic approaches relying on vehicle 3D model or vanish-
ing points [4, 6, 16,28, 50] still manifest notable errors and
sensitivity to the quality of estimated geometric cues, es-
pecially when certain assumptions are compromised, e.g.,
non-straight vehicle motion, pronounced camera distortion,
different viewpoints, or lack of knowledge of the exact
make/model of vehicles, etc. On the other hand, our method
does not make any assumptions about scene geometry or
vehicle motion and instead takes advantage of the extensive
collection of geo-registered panoramic street-level imagery,
offering a novel, practical, and scalable solution for accu-
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Figure 2. Top: Using street-level panoramas and GPS data from GSV, we reconstruct the scene in 3D for a metric-scale representation.
With a query image from a traffic camera, we perform camera localization to determine intrinsic parameters and camera pose w.r.t. the 3D
scene. Bottom: More details on 3D Scene Reconstruction (left) and Camera Localization (right).

rate camera calibration.

Traffic Camera Applications: A comprehensive survey on
Monocular Visual Traffic Surveillance has been conducted
by Zhang et al. [55]. While applications like vehicle count-
ing rely on 2D data, tasks demanding 3D insights such as
speed estimation and distance measurement rely on precise
camera calibration. In the context of speed measurement,
recent methods [4,28,43] excel within specific scenarios but
face limitations in generalizing to unfamiliar data. Our ap-
proach provides a simple yet effective solution, automating
the acquisition of camera intrinsics, extrinsics, and metric
scene geometry. This fosters the integration of 3D tech-
niques into automated traffic analysis.

3. Method

Our first objective is to construct a metric 3D reconstruc-
tion of the scene surrounding a chosen traffic camera’s loca-
tion, typically an intersection (Section 3.1). Following this,
our goal is to localize the traffic camera within the recon-
structed environment, thereby extracting both the intrinsic
and extrinsic parameters of the camera (Section 3.2). The
overall framework of our approach is depicted in Figure 2.

3.1. 3D Scene Reconstruction

To perform the reconstruction, we leverage Google
Street View (GSV) [21] to build the scene’s geometry

around a specific GPS location. GSV is a street-level im-
agery database and a rich source of millions of panorama
images with wide coverage all over the world (more than 10
million miles across 100 countries [20]). Every panorama
image is geo-tagged with accurate GPS coordinates, captur-
ing 360° horizontal and 180° vertical field-of-view (FoV)
with high resolution (see top left of Figure 2). An overview
of our 3D Scene Reconstruction pipeline is illustrated in
bottom left of Figure 2.

In particular, we first sample N panoramas (equirectan-
gular frames) & = {&;[i = 1...N} around the desired
camera’s location inside a radius of 40 meters. Since most
components of a typical structure-from-motion (SfM) pi-
pline [47] are primarily optimized for perspective images,
we extract ideal, pinhole camera-style perspective projec-
tions from equirectangular images before performing 3D
reconstruction. Specifically, from each equirectangular im-
age &;, we extract T' perspective images Z = {Z,,|i =
1...N,7 = 1...T} that are uniformly sampled along
the yaw direction with specified size and FoV, covering
360° horizontal FoV. Denoting IT (-) as the projection func-
tion from equirectangular to perspective image, we can de-
fine each perspective image Z;; as:

.
I, = H(&,pitch:o, yaw=—2J fov=FOV> (1)
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Without Panoramic Constraint

With Panoramic Constraint

Figure 3. Enforcing known relative poses between perspective images from the same panorama leads to more accurate 3D reconstruction,
especially in sparse-view scenarios. The recovered viewpoints in red (left) belonging to the same panorama do not coincide. Please zoom

in for better visualization.

In practice, with image size of (1920 x 1080), we found
the set of hyperparameters {T=12, FOvV=90°} to produce
high-quality perspective images with sufficient overlap and
minimal perspective distortions. Subsequently, we adapt
COLMAP [47] to estimate camera pose (R; ;,t; ;) for each
frame Z;;.

Preprocessing. As dynamic objects often cause errors
in the reconstruction, we apply a semantic segmentation
method [ 1] to segment out potential dynamic objects such
as vehicles and people and suppress feature extraction in
these areas. For each perspective image (extracted from
panorama image), the intrinsic camera matrix K;; is known.
Therefore, we fixed the shared camera intrinsics for all the
frames during reconstruction.

Feature extraction and matching. We adopt Super-
Point [ 13] and SuperGlue [45] to establish correspondences
among feature points across images. Instead of using ex-
haustive matching where each image is matched against ev-
ery other image, we employ an adapted version of vocabu-
lary tree matching, wherein each image is matched against
its nearest visual neighbors through a vocabulary tree. To
build the vocabulary tree, we first compute the descriptor
centroids using KMeans++ [2], then KDTree [17] is used
to build the vocabulary tree using VLAD [!] descriptors.
The vocabulary tree serves as a visual database enabling re-
trieval of database images that closely resemble the query
image in terms of visual appearance.

Enforcing panoramic constraints for bundle adjust-
ment. In the conventional SfM workflow, unordered input
image collections lead to the independent treatment of each
image. However, in our scenario where perspective im-
ages stem from panorama sampling, we can leverage the
known transformations or relative poses between frames
that are sampled from the same panorama. To capitalize
on this, we augment the typical Bundle Adjustment [52]

(BA) by incorporating the known relative poses between
frames within the same panorama. In our context, two
perspective images from a common panorama are linked
by a pure rotation around the z-axis (i.e., along the yaw
direction, refer to Eq. 1). In particular, for a perspective
image Z;; characterized by its extrinsic camera parameters
(Ri,j,t;,7), we introduce an additional optimization objec-
tive Lpano = Lirans + Lrot, where:

N T
»Ctrans = ZZ ||ti,j - ti,j*1||27

i=1 j=2

N T . or , )
Lo = XS IRL iy - 1 ()

i=1 j=2

st. Re€SO(3), tcR?

where R.(f) denotes the rotation matrix around the z-
axis by an angle of 6. As in COLMAP [47], Levenberg-
Marquardt [23, 52] is used for optimization. As shown
in Figure 3, this constraint helps correct erroneous camera
poses during 3D reconstruction, particularly when working
with a limited number of images.

Metric scale calibration and ground plane fitting. Us-
ing GPS coordinates of GSV panoramas, we geo-register
the up-to-scale StM reconstruction via a 3D similarity
transformation optimized between the SfM coordinates and
Earth-Centered-Earth-Fixed (ECEF) Cartesian coordinates.
This results in a metric scale 3D scene reconstruction. Sub-
sequently, the road plane is estimated by fitting a plane to
the set of 3D points whose 2D pixel locations lie on the
road/lane markings obtained from an off-the-shelf seman-
tic segmentation method [ 1].
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3.2. Camera Localization

Camera localization step aims to determine the intrinsic
and extrinsic parameters of the traffic camera with respect
to the 3D scene. As depicted in Figure 2, we adopt a visual
localization pipeline that involves localizing the query im-
age (from the traffic camera) within the 3D reconstruction
constructed using GSV images in the previous step.

For every input query image, we retrieve the top-k sim-
ilar database images, where k is a predefined value, from
the vocabulary tree built in the 3D reconstruction step (Sec-
tion 3.1). We then match the query image with the k
retrieved database images to establish 2D-3D correspon-
dences. For this, we use the learned feature matching
method SuperGlue [45] with SuperPoint [13] feature de-
scriptors to match the query image with the database im-
ages. Since our query image is uncalibrated, we follow
a sampling-based approach [26, 47] where the pose/focal
length is estimated using RANSAC and a minimal pose
solver (e.g., [18,30]). Finally, we perform an extra bun-
dle adjustment step (with panoramic constraints as in Eq. 2)
to refine both intrinsic parameters and camera poses.

Database Images
(street-view)

Database Images
(street-view)

Query Image
(traffic camera)

Query Image
(traffic camera)

Figure 4. Traffic camera image matched with GSV images using
SuperPoint [13] and SuperGlue [45]. These methods provide reli-
able correspondences for accurate absolute pose estimation despite
viewpoint and illumination differences.

It is worth noting that the use of learned feature match-
ing is crucial in this step, as it has been shown to outper-
form hand-crafted feature descriptors and matching meth-
ods [45], particularly in cases where the viewpoint of the
traffic camera (often much higher above ground) differs sig-
nificantly from that of the Google Street View (GSV) im-
ages (captured from driving viewpoints). Utilizing Super-
Point [13] and SuperGlue [45] enables the generation of a
large number of accurate matches between the query image
and the comprehensive GSV database images (as shown in
Figure 4). This rich set of matches allows robust recovery of
both the intrinsic and extrinsic camera parameters. Recent
advances in local feature matching, such as LightGlue [32],
can potentially further improve efficiency.

4. Experimental Results

4.1. Calibrated Urban Traffic Cameras (CUTC)
Dataset

Figure 5. Example images of our Calibrated Urban Traffic Cam-
eras (CUTC) dataset, with diverse scenes and viewpoints.

There are several existing datasets designed for eval-
uating traffic monitoring algorithms, notably BrnoComp-
Speed [51] and Revaud et al. [43]. However, as mentioned
in [43], BrnoCompSpeed [51] has limited diversity as the
cameras mainly captures vehicles moving in straight lines
on highways or freeways. In contrast, Revaud et al. [43]
sought to address this limitation by introducing the CCTV
dataset (denoted as Revaud-CCTV dataset), which better
emulates real-life CCTV cameras’ content and conditions
such as low image resolution, non-straight roadways, and
imperfect camera lenses. Although both BrnoCompSpeed
and Revaud-CCTYV provide ground-truth vehicle speeds, the
lack of accurate camera calibration restricts its utility for
novel traffic analysis applications.

To bridge this gap, we present a new dataset called Cal-
ibrated Urban Traffic Cameras (CUTC). This dataset com-
prises 20 cameras distributed across 6 diverse locations
within public urban settings. An example of our CUTC
dataset is shown in Figure 5. Our team installed these cam-
eras which underwent full calibration using checkerboard-
based methods [56] (OpenCV calibration for ChArUco
board) before deployment. Similar to the setup in [51], our
dataset also incorporates manually measured markers (e.g.,
lane markings, crosswalks, etc.) on the road plane, with
known dimensions between them. These ground-truth mea-
surements serve as reference points for evaluating distance
measurements on the ground plane (see Section 4.2).

4.2. Evaluation Metrics

Intrinsic Parameters: Considering the intrinsics param-
eters computed by checkerboard-based methods [50] as
ground-truth, we report the mean error (in %) for focal
lengths (f, f,). principal points (ps,p,), and distortion
coefficients (k1, k2, p1,p2) over 20 cameras in our CUTC
dataset.

Ground Distance Measurements: Following [0, 28], us-
ing manually measured distances between pairs of points on
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the road plane (e.g., lane markings, crosswalks, etc.) along
with their pixel positions in the images, we then computed
the normalized error in distance measurement, defined as

;= ‘did%di', where di is the ¢-th ground-truth distance mea-

T :
surement and d; is the i-th measurement based on the ray-
plane intersection using the estimated intrinsic matrix and
ground-plane equation. This metric effectively gauges the

accuracy of both intrinsic and extrinsic parameters.
4.3. Baseline Methods

We compare our method to SOTA automatic camera cali-
bration approaches designed specifically for traffic cameras,
including OptInOpt [3], PlaneCalib [4], DeepVPCalib [28],
and Revaud et al. [43]. In particular, OptInOpt [3] and
PlaneCalib [4] rely on localizing 2D landmarks with exact
3D CAD models to infer the focal length of the camera and
vehicle poses, DeepVPCalib [28] relies on detecting pairs
of vanishing points for multiple vehicles in a scene to ob-
tain the focal length of the camera and the orientation of
the road plane, and Revaud et al. [43] learns to predict the
calibration (homography between image plane and ground
plane) by training solely from synthetic 3D car models.

4.4. Quantitative Results

Method ‘ S fy Pa Py k1 ko p1 P2
OptInOpt [3] 11.72  11.21 2.57*% 2.61* X X X X
PlaneCalib [4] 9.88 9.71  2.57*% 2.61* X X X X
DeepVPCalib [28] | 7.51 733 2.57% 2.61* X X X X
Ours ‘ 317 354 211 202 756 828 6.71 843

Table 1. Comparison between our approach and SOTA techniques
in terms of mean error (in %) of focal lengths (fz, fy), principal
points (ps, py), and distortion coefficients (k1, k2, p1,p2). (X:
unavailable, *: method assumes principal point at image center.)

Method ‘ Max Error (%) Median Error (%) RMSE (%)
OptInOpt [3] 15.78 10.80 12.87
PlaneCalib [4] 14.32 9.23 11.69
DeepVPCalib [28] 12.17 8.11 10.62
Revaud et al. [43] 14.87 10.91 12.54
Ours ‘ 6.75 3.22 4.68

Table 2. Comparison between our approach and SOTA automatic
calibration techniques in terms of max, median, and RMSE (in %)
between measured vs. estimated distances on ground plane.

Intrinsics Parameters: In Table 1, using checkerboard-
based calibration as ground-truth, we compare our approach
against SOTA automatic calibration techniques [3, 4, 28].
Our method significantly outperforms SOTA methods due
to the fact that the dense coverage of GSV images (with
known intrinsics parameters) and reliable correspondences
from learned feature matching allows us to register the traf-
fic camera into the 3D scene with high accuracy. Con-

Ground measurement errors w/ num. of panoranas

=0 No Panoramic Constraint

With Panoramic Constraint

— = —
joe] o o} =

Mean Error (%)

=

5 10 15 20 25 30 35 40
Number of panoramas used during 3D reconstruction
Figure 6. We show the mean errors on estimating ground distances
w.r.t. the number of panoramas being used during 3D reconstruc-
tion. By enforcing panoramic constraint during reconstruction, our
method improves the accuracy significantly over the baseline, es-
pecially in small number of views.

versely, methods like OptInOpt [3] and PlaneCalib [4], rely-
ing on precise 3D CAD models of vehicles, exhibit dimin-
ished generalization accuracy when faced with cameras in
diverse countries with unknown vehicle type. Additionally,
we observe that the focal length estimation from DeepVP-
Calib [28] is instable as it is highly sensitive to the accuracy
of detected vanishing points. Lastly, these methods assume
no distortion, an assumption that may not hold in practice.
Hence, an additional strength of our approach is its capabil-
ity to estimate distortion parameters (radial and tangential)
with a satisfactory accuracy level (within 10%).

Distance Measurements: Using manually measured dis-
tances on the ground plane, in Table 2, we report the max,
median, and root-mean-squared error (in %) over all of the
possible pairs of ground truth measurements in our CUTC
dataset. For methods that do not directly infer metric scene
scale such as DeepVPCalib [28], we scale the estimated dis-
tances with the ground-truth scale. As shown in Table 2,
our method outperforms existing SOTA methods by a large
margin, demonstrating the accuracy of our camera calibra-
tion as well as estimated scene geometry. In our exper-
iments, we observe limited generalizability from the pre-
trained model of Revaud et al. [43] that was trained exclu-
sively on synthetic 3D car models.

Enforcing the known relative pose between frames from
the same panorama improves the accuracy of recon-
struction: While it is well-known that using more im-
ages during 3D reconstruction leads to better camera cal-
ibration accuracy, our key observation is that by enforc-
ing the known relative pose between frames from the
same panorama during 3D reconstruction, we can signif-
icantly boost accuracy, especially when the number of
GSV panoramas being used for reconstruction is limited (as
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Figure 7. Additional examples demonstrate our method’s robustness in reconstructing scenes and localizing cameras spanning various

countries and continents (traffic camera visualized in red).

shown in Figure 6). This becomes crucial when dealing
with the limited availability of GSV images at a location, or
when computational efficiency is a priority.

4.5. Qualitative Results

Our camera localization method proves versatile across
diverse cameras in real-world settings. As depicted in Fig-
ure 7, we successfully achieve both accurate 3D scene re-
construction and precise camera localization across differ-
ent locations spanning multiple countries and continents.
Importantly, our framework’s adaptability extends beyond
Google Street View, making it highly versatile for differ-
ent street-level imagery sources [8,38], with the potential to
achieve camera calibration on a global scale.

5. Applications

With accurate camera calibration information, we show
its applications in 3D reconstruction and speed measure-
ments of moving vehicles, allowing us to gain unique in-
sights that can inform decision-making processes related to
traffic management and safety measures.

In Figure 8, we provide automatic vehicle speed es-
timates and activity heatmaps for two different cameras.
First, we use an off-the-shelf object detector [25] and
tracker [5] to compute the tracked detections of every ve-
hicle. Using vehicles’ active mean shape models and de-
tected 2D keypoints [27,42], following [31], we optimize

for the 6DoF vehicle pose and shape variations (defined by
PCA components of the mean shape model) for each vehi-
cle track by enforcing all the detected objects to lie on the
ground plane.

Activity Heatmap: Heatmaps visualize the level of vehicle
activity at each camera location. These heatmaps are gener-
ated by aggregating the centroid of the 3D tracks of all vehi-
cles over the entire data acquisition period, then normalized
by the maximum count, resulting in a value ranging from 0
(blue, no activity) to 1 (red, high activity).

Vehicle Speed: For each camera, we created virtual speed
traps (visualized as a on the road) that allows
estimates of speed a vehicle crossing over the region of in-
terest. Consequently, the reported speeds correspond to in-
stantaneous speed readings garnered from the virtual speed
trap. By leveraging the reconstructed 3D shape and pose of
vehicles, we calculate the velocity as the front of the ve-
hicle crosses the virtual speed trap on the ground plane.
As depicted in Figure 8, precise camera calibration facili-
tates the accurate measurement of vehicle speeds, enabling
us to automatically derive valuable insights from the data.
For instance, the system can identify prevalent traffic pat-
terns to enhance urban planning or detect anomalies such
as accidents or high-speed emergency vehicles on duty. Im-
portantly, the benefits of accurate metric 3D scene recon-
struction and camera calibration extend beyond speed esti-
mation as they are crucial for various applications, includ-
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Figure 8. Speed estimates and activity heatmaps depicted for two distinct virtual speed traps (indicated by green lines) across two different
cameras. Various scenarios are displayed, including slow traffic due to congestion and fast movement of emergency vehicles.

ing understanding human-vehicle interaction for accident
prediction and prevention [33], achieving multi-camera fu-
sion by aligning different cameras’ views to a common
frame [6,39], and so on.

6. Discussion

We have presented a scalable framework that leverages
street-level imagery for metric 3D model reconstruction,
enabling accurate calibration of real-world traffic cameras.
Our approach can be applied to any camera with sufficient
nearby street-level imagery, making it practical to be used
worldwide. We show the framework’s value in traffic analy-
sis through insights derived from 3D vehicle reconstruction
and speed measurement, providing valuable information for
improving transportation systems and urban infrastructure.
Potential Societal Impact: We do not perform any human
subject studies from these cameras. To preserve the privacy
of the object captured in the images, we blur the faces and
license plates in all the images to be released. This study is

designated as non-human subjects research by our Institu-
tional Review Board (IRB).

Limitations: Our method requires capturing at least some
portion of the scene’s “background” for feature matching.
Thus, scenes with severely limited contextual information,
e.g., situations where cameras are oriented to solely capture
freeway surfaces while looking straight down, can hinder
the performance of our approach.
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