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Abstract

Vision-language pre-trained models have exhibited sig-
nificant advancements in various multimodal and unimodal
tasks in recent years, including cross-modal recipe re-
trieval. However, a persistent challenge in multimodal
frameworks is the lack of alignment between the encoders
of different modalities. Although previous works addressed
image and recipe embedding alignment, the alignment of
individual recipe components has been overlooked. To
address this gap, we present Fine-grained Alignment for
Recipe eMbeddings (FARM), a cross-modal retrieval ap-
proach that aligns the encodings of recipe components, in-
cluding titles, ingredients, and instructions, within a shared
representation space alongside corresponding image em-
beddings. Moreover, we introduce a hyperbolic loss func-
tion to effectively capture the similarity information inher-
ent in recipe classes. FARM improves Recall@1 by 1.4%
for image-to-recipe and 1.0% for recipe-to-image retrieval.
Additionally, FARM achieves up to 6.1% and 15.1% per-
formance improvement in image-to-recipe retrieval tasks,
when just one and two components of the recipe are avail-
able, respectively. Comprehensive qualitative analysis of
retrieved images for various recipes showcases the seman-
tic capabilities of our trained models. Code is available at
https://github.com/PLAN-Lab/FARM.

1. Introduction
Recent advances in vision-language models have en-

abled state-of-the-art performance in several multi-modal
and unimodal downstream tasks, e.g., visual question an-
swering, visual entailment, visual reasoning, cross-modal
retrieval, etc. One such area of research is computational
cooking, where the vision-language models can learn from
procedural text recipes, associated images, and instruc-
tional videos. This enables various downstream subtasks,
e.g. recipe retrieval [1, 4, 6, 29, 30, 36], recipe generation
[5, 21], ingredient substitution [5, 13], and recipe recom-
mendation [16, 31]. A fundamental prerequisite for these
downstream subtasks is the development of an efficient and
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Figure 1. Previous works have focused on aligning the recipe and
image embeddings (blue lines). FARM further aligns the image
embeddings with the associated title, ingredient, and instruction
embeddings in a shared representation space (red lines). Addi-
tionally, we employ a hyperbolic loss function to better capture
the similarity among recipe categories.

robust cross-modal recipe encoding mechanism.

A common challenge faced by multimodal frameworks
is the lack of alignment between the encoders of differ-
ent modalities. While previous works have made efforts
to address the alignment issue between image and recipe
embeddings [8, 11, 12, 24, 29, 30], they have predomi-
nantly overlooked the alignment of fine-grained informa-
tion within the various recipe components, such as titles,
ingredients, and instructions. Neglecting these individual
components disregards their potential to convey useful in-
formation. For instance, a recipe’s title, such as “caesar
salad”, can provide substantial insight into how the asso-
ciated image would look like. Similarly, lists of ingredients
and instructions offer valuable cues for understanding the
image context. Moreover, some parts of the recipe may
be missing in many downstream tasks. For example, in
some applications, it may be useful to be able to retrieve
recipes given just the title. Consequently, it is important to
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learn robust representations that can handle missing com-
ponents effectively. Previous works have primarily relied
on semantic loss functions calculated solely based on class
labels [1, 24]. However, class labels also hold valuable sim-
ilarity attributes. For instance, a cheesecake is expected to
be more similar to a brownie than to a salad. Hyperbolic
loss functions can capture and incorporate such similarity
information, enhancing the overall alignment process.

In this work, we introduce Fine-grained Alignment
for Recipe eMbeddings (FARM), a cross-modal retrieval
framework that enhances the alignment between different
components of recipes (titles, ingredients, and instructions)
and image embeddings in a shared vector space. This
alignment is achieved through a projection layer that min-
imizes the distance between embeddings in a shared em-
bedding space. We introduce two loss functions, namely
the triplet loss and the hyperbolic embedding loss, to guide
the training process by contrasting embeddings and captur-
ing class similarity information. To evaluate the effective-
ness of our approach, we conduct experiments on image-to-
recipe and recipe-to-image retrieval tasks on the Recipe1M
dataset [23]. FARM yields substantial improvements in
Recall@1 performance for image-to-recipe and recipe-to-
image retrieval tasks. In addition to performance evalua-
tion, our ablation studies and qualitative analysis highlight
that FARM learns meaningful component-level embeddings
that capture valuable semantic information. Our contribu-
tion can be summarized as follows:

(1) We introduce FARM, a new cross-modal retrieval
framework that addresses the lack of fine-grained
alignment between recipe components (titles, ingredi-
ents, and instructions) and image embeddings. FARM
leads to robust representations that improve perfor-
mance even when parts of the recipe are missing.

(2) We propose the use of a hyperbolic embedding loss to
leverage class label information and capture varying
levels of similarity between recipes. Through ablation
studies, we demonstrate the benefits of incorporating
the hyperbolic loss in FARM for both image-to-recipe
and recipe-to-image retrieval tasks.

(3) We experimentally show that the alignment of individ-
ual recipe components enhances the semantic under-
standing of recipes, improves robustness in handling
missing information, and boosts the performance of
cross-modal tasks by capturing the nuanced relation-
ships between different components and images.

2. Related Work
2.1. Recipe Embeddings

Representation learning for recipes involves capturing
the textual and structural features of a recipe, which usually

consists of a title, ingredients, and step-by-step instructions.
Existing works employ a dual-encoder approach for the
recipe-image retrieval task, where the text and image are en-
coded by two different encoders. Most of the works in this
area primarily utilized only the ingredients and instructions
as inputs [1, 6, 15, 29, 30]. However, subsequent works
showed that incorporating the title as an additional input
improves retrieval performance [22]. Earlier works uti-
lized LSTM-based architectures to encode the recipes, then
passed them onto fully connected layers to map them to a
latent space [6, 23, 29, 30]. Other works have also proposed
employing Bi-LSTMs [1], hierarchical LSTMs [1], and
tree-LSTMs [17] to better capture the inter-dependency be-
tween ingredients and instructions. However, such encod-
ing frameworks fail to capture the relative importance of in-
gredients and instructions. Recent works have consequently
shifted focus to Transformer-based encoders [7, 22, 24].
Salvador et al. (2021) [22] proposed the first hierarchi-
cal Transformer for recipe embeddings, and observed that
the hierarchical structure improved performance when com-
pared to simple average pooling for both Transformer and
LSTM encoders. TFood [24] similarly proposed a hierar-
chical two-layer Transformer setup to capture the interac-
tions between the title, ingredients, and instructions. In our
approach, we also adopt a hierarchical Transformer setup to
compute recipe embeddings from component embeddings.
However, we enforce a finer-grained alignment between the
recipe and its component embeddings with the image em-
bedding. Our proposed method enables a more precise and
effective alignment between different modalities, leading to
improved cross-modal retrieval performance.

2.2. Cross-Modal Alignment

Cross-modal alignment plays a crucial role in integrating
and comparing different modalities of data, such as images
and text, facilitating various downstream tasks including
image captioning, visual question answering, and recipe-
image retrieval [8, 22, 24, 25]. Conventional approaches in-
volve aligning the representations of these modalities within
a joint embedding space. For instance, some works utilize
adversarial loss functions to improve modality alignment
by adversarially making it difficult for the discriminator to
differentiate between recipe embeddings and image embed-
dings [12, 29]. Recent work introduces a novel semantic
consistency loss that uses KL divergence to bring the out-
put semantic probabilities of image and recipe pairs closer,
thereby reducing the intra-class feature distance [30]. Sub-
sequent work proposes a model that learns a more accurate
image-recipe similarity by fusing both intra-modality and
cross-modality features from local and global aspects [11].
Moreover, recent work introduces a cross-modal implicit re-
lation reasoning module and a similarity distribution match-
ing method to enhance global image-text matching without
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Instructions

1. chop chicken
2. mix all ingredients

3. add dressing at last
...

Ingredients

1.300g chicken breast
2.500 lettuce

3.ranch dressing
...

Title
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Figure 2. Illustration of the proposed FARM framework. The three components of the recipe, i.e., title, ingredients, and instructions, are
passed through hierarchical transformer encoders and are later fused into a single cross-attended recipe embedding. The corresponding
image is passed through a pre-trained image encoder. The embeddings from these encoders are passed through a projection layer and then
aligned using two fine-grained alignment losses, a proposed hyperbolic embedding loss Lhe and an image-text contrastive loss Litc, that
align the component embeddings directly with the corresponding image embedding.

additional prior supervision [8]. VLPCook [25] employs
a similar cross-modal alignment during finetuning but re-
quires additional data for pretraining. Our work is most
similar to H-T [22] and TFood [24]. T-Food [24] does not
consider the alignment of component embeddings, while
H-T [22] focuses on the intra-modal alignment among the
component embeddings themselves. In contrast, our work
aligns component embeddings directly with the image em-
beddings, effectively capturing the semantic relationships
between individual recipe components and the correspond-
ing visual information, thereby allowing for a more com-
prehensive understanding of the recipe content.

3. Proposed Method

3.1. Problem Formulation

Given a set of recipes R = {(r1, y1), . . . , (rn, yn)}
and an associated set of images I = {i1, . . . , in}, where
each recipe ri is accompanied by a class label yi ∈ Y ,
and Y denotes the set of class labels, the goal is to learn
a text encoder fθ(·) : R → Rd and an image encoder
gθ′(·) : I → Rd such that trec = fθ(r) and timg = gθ′(i)
for generic r ∈ R and i ∈ I are the associated recipe and
image embeddings. Essentially, fθ and gθ′ map data points
to a shared d-dimensional embedding space and can later
on be used in various computational cooking downstream
tasks. Each recipe in R consists of 3 textual components,
the title rttl, the ingredients ring , and the instructions rins.
Existing works minimize the distance of the learned em-
beddings for each r ∈ R and associated i ∈ I in a shared

vector space using various alignment strategies. In compar-
ison, we propose aligning the component embeddings, i.e.,
title tttl, ingredients ting , and instructions tins embeddings
with the image timg embeddings. The title, ingredients, and
instructions contain important semantic information about
the recipe, and we hypothesize that aligning them directly
with the image embedding can improve performance.

3.2. Fine-grained Alignment (FARM)

Our proposed method employs a dual-encoder frame-
work. The overall structure is illustrated in Figure 2.

Image Encoder: Inspired by the success of previous
vision-language models [3, 18], we use a Vision Trans-
former (CLIP ViT B/16 [18]) to encode the image input
to t1img . We then pass t1img to a linear projection layer to
obtain the image embedding timg , as shown in Eq (1).

timg =Wimg · t1img (1)

Recipe Encoder: Given textual data containing titles, in-
gredients, and instructions, we first learn separate embed-
dings for each of them, and then fuse them into a shared
embedding space. We first employ hierarchical Transform-
ers to encode the recipes [22]. As illustrated in Figure 2, the
title, the list of ingredients, and the list of instructions are
first processed by a Transformer T1. Since ingredients and
instructions are composed of multiple sentences, we employ
a hierarchical Transformer T2 to capture the intrinsic inter-
actions and dependencies between sentences in each corre-
sponding recipe component, and encode them into multi-
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ple sentence embeddings. Recipe components are also de-
pendent on each other, e.g., an instruction can only be per-
formed when the corresponding ingredients are available.
To this end, we incorporate an additional hierarchy level
with Transformer T3, which combines the component em-
beddings into a single recipe embedding. Specifically, T3

takes the output tokens of each component as a query Q and
the concatenation of the other two remaining components
as keys K and values V. The final tokens trec are obtained
by applying linear projection on the concatenated output of
T3, as shown in Eq (2).

t3ttl = T3(t
1
ttl, [t

2
ing; t

2
ins], [t

2
ing; t

2
ins])

t3ing = T3(t
2
ing, [t

1
ttl; t

2
ins], [t

1
ttl; t

2
ins])

t3ins = T3(t
2
ing, [t

1
ttl; t

2
ing], [t

1
ttl; t

2
ing])

trec = Wrec · [t3ttl; t3ing; t3ins]

(2)

3.3. Aligning Recipe Components

Early experiments show that using the cross-attended en-
coders (i.e., T3) is better than the individual encoders (i.e.,
T1 and T2). We also observe that aligning with timg yields
better performance compared to trec. In order to align the
component embeddings with timg , we apply linear projec-
tion to t3ttl, t

3
ing , t3ins as shown in Eq (3).

tttl = Wttl · t3ttl
ting = Wing · t3ing
tins = Wins · t3ins

(3)

To further align the component embeddings with the cor-
responding image embedding, we train with two loss func-
tions, i.e., triplet loss and hyperbolic embedding loss.

Image-Text Contrastive Loss: Triplet loss aligns sam-
ples in a shared representation space by minimizing the
distance between an anchor sample and a positive sample
while maximizing the distance between the anchor and a
negative sample. This has been shown to be an effective
method for cross-modal recipe retrieval tasks [22, 23, 29].
We utilize this triplet loss to align the image embeddings
timg with component embeddings tttl, ting , and tins in a
shared representation space. By using different component
embeddings (e.g., tttl) as anchors, this loss function encour-
ages dissimilar pairs to be distant from any similar pairs by a
certain margin value. For instance, the triplet loss between a
title and an image embedding is calculated as follows:

Lt

(
tattl, t

p
img, t

n
img

)
=
[
d(tattl, t

p
img) + α− d(tattl, t

n
img)

]
+
, (4)

where α is the margin, d(·, ·) is a distance function, and su-
perscripts a, p, n refer to the anchor, positive, and negative
samples, respectively. Here, tttl is the output the title en-
coder, t3ttl, and timg is the output of the projection layer

t1img corresponding to the image input. The margin α, pro-
posed in [24], dynamically adjusts the difficulty of the task.
Initially, assuming a difficult task, α is set to a small number
that is incremented at each iteration, until it reaches a max-
imum value. In addition, we also use an adaptive weighting
strategy for the triple loss, where we add a dynamic term δ
to overcome the vanishing update when most of the triplets
are inactive [1]. Then, the image-text contrastive loss can
be written using Eq (5).

Lc(Gttl,Gimg) =
1

δrec

∑
tttl∈Gttl

Lt

(
tattl, tpimg, tnimg

)
+

1

δimg

∑
timg∈Gimg

Lt

(
taimg, tpttl, tnttl

)
,

(5)

where the superscripts a, p, and n denote anchor, positive
and negative examples, respectively. The sets Gttl and Gimg

represent the sets of title and image embeddings, and δrec
and δimg correspond to the number of triplets that contribute
to the loss, with title and image embeddings as anchors.
Similarly, we calculate Lc(Ging,Gimg) and Lc(Gins,Gimg),
which are the alignment of Gimg with Ging and Gins, respec-
tively. We include an additional loss term Lc(Grec,Gimg) to
align the final recipe embeddings Grec with the image em-
beddings Gimg . The final fine-grained triplet alignment loss
is the average of the four alignment losses, i.e.,

Litc = Lc(Gttl,Gimg) + Lc(Ging,Gimg)

+ Lc(Gins,Gimg) + Lc(Grec,Gimg).
(6)

Hyperbolic Embedding Loss: We additionally apply hi-
erarchical clustering and hyperbolic metric learning [34].
By representing recipes in hyperbolic space, we can bet-
ter capture the varying degrees of similarity between them.
Hyperbolic spaces provide a natural way to represent hier-
archical structures due to their negative curvature. Recipes
often exhibit a hierarchical organization, where ingredients
and cooking steps are grouped into categories and subcat-
egories. In Euclidean space, representing this hierarchical
structure can be challenging because distances between in-
gredients or steps might not accurately reflect their actual
relationships. In contrast, in hyperbolic space, the negative
curvature allows for a more efficient representation of hi-
erarchies. Ingredients and cooking steps can be placed at
appropriate distances from each other, reflecting their sim-
ilarities and differences more accurately. This means that
recipes with similar ingredients and techniques will be po-
sitioned closer to each other, while those with distinct el-
ements, e.g., completely dissimilar ingredients, will be far-
ther apart. For instance, within the dessert category, a carrot
cake will be closer to a muffin than to an ice cream. Hy-
perbolic spaces enable capturing of such nuances in recipe
similarity. Furthermore, the infinite volume property of hy-
perbolic spaces allows for a larger number of recipes to be
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effectively represented and compared within a finite space
[19], which can be advantageous in recipe recommendation,
where the goal is to search for similar recipes based on pre-
specified criteria or to generate creative variations.

Specifically, for each recipe component, we first map the
embeddings to a hyperbolic manifold Dn

τ using Eq. (7). For
instance, for the title embeddings tttl, we compute hyper-
bolic representations as follows:

zttl = expτ (tttl) := tanh(
√
τ∥tttl∥)

tttl√
τ∥tttl∥

. (7)

We perform similar calculations for the instructions, in-
gredients, recipe, and image embeddings. Next, we calcu-
late the distance between two samples, for example, zttl and
zimg , using Eq. (8):

d (zttl, zimg) = cosh−1

1 +
2 ∥zttl − zimg∥2(

1− ∥zttl∥2
)(

1− ∥zimg∥2
)
 . (8)

To apply hierarchical clustering, we calculate the dis-
tance between the samples from two classes Ca, Cb ∈ Y:

dCa,Cb
=

1

nya
nyb

∑
zttl∈Ca,
zimg∈Cb

d (zttl, zimg) , (9)

where zttl, zimg are samples from classes Ca, Cb respec-
tively, and na, nb represent the number of samples in Ca, Cb

respectively. Then, we use a distance threshold γ to calcu-
late the similarity level between two classes Ca and Cb, i.e.,

sab =
dCa,Cb

γ
. (10)

Finally, we employ a log-ratio loss function that encour-
ages dissimilar embeddings to be pushed apart in propor-
tion to their level of similarity [34]. Given triplet sample{
zattl, z

p
img, z

n
img

}
∈ S, the log-ratio loss can be defined as

Lhyp(z
a
ttl, z

p
img, z

n
img)=

(
log

∥∥zattl − zpimg

∥∥∥∥zattl − znimg

∥∥ − log Ωsij−sik

)2

, (11)

where superscripts a, p and n denote anchor, positives and
negatives, respectively, and Ω is a hyperparameter that con-
trols the degree of similarity. The variables i, j, and k indi-
cate class indices to which the anchor, positive, and negative
samples belong, and the similarity between classes Ci and
Cj , denoted as sij , is calculated as shown in Equation (10).
Next, the hyperbolic embedding loss between two embed-
dings is computed using Eq. (12):

Lh(Gttl,Gimg)=
∑

zttl∈Gttl

Lhyp(z
a
ttl, z

p
img, z

n
img), (12)

where the sets Gttl and Gimg represent the sets of title and
image embeddings in the hyperbolic manifold. The final

hyperbolic embedding loss is the average of the four loss
functions, as shown in Eq. (13).

Lhe =Lh(Gttl,Gimg) + Lh(Ging,Gimg)

+Lh(Gins,Gimg) + Lh(Grec,Gimg)
(13)

3.4. Final Training Objective

Image-Text Matching (ITM) Loss: To facilitate the
alignment process between the dual encoders, we incorpo-
rate multimodal regularization using Transformer decoders
along with an Image-Text Matching loss (ITM) [2, 14].
ITM is a binary cross-entropy loss designed to classify the
most suitable image-text pair. By optimizing this loss, we
encourage the encoders to effectively match and align cor-
responding images and texts. The loss can be written as

Litm = − 1

n

n∑
i=1

(
yi log ŷi + (1− yi) log(1− ŷi)

)
, (14)

where n is the total number of positive and negative pairs of
recipe and image embeddings, y denote the labels {0, 1} in-
dicating whether the image and text belong to the same pair,
and ŷ denotes the output of the Multimodal Regularization
(MMR) layer. To construct negative pairs, we sample the
closest negative image using cosine similarity.

Semantic Loss: We additionally employ a semantic
triplet loss [1] so that the embeddings focus on semanti-
cally interesting features. The semantic loss Lsem is simi-
lar to Litc, except for the selection of positive and negative
samples. Here, the positive samples are those that share the
same class with the anchor and the negative samples are the
samples with different classes.

Combined Final Loss: The final total loss function com-
bines all the aforementioned losses together, i.e.,

L=λitcLitc + λheLhe + λsemLsem + λitmLitm (15)

where λitc, λhe, λsem and λitm are the weights for the cor-
responding losses. Additionally, to further improve model
performance, we employ hard-negative sampling based on
the multinomial probability distribution [20, 26]. More
specifically, the negative samples for Litc and Lhe are se-
lected such that they are closest to the positive samples.

4. Experimental Results
4.1. Dataset

We make use of the Recipe1M [23] dataset in our experi-
ments. Recipe1M is a large-scale, structured corpus consist-
ing of over 1 million cooking recipes and 800k food items.
The dataset includes rich information about each recipe and
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Table 1. Experimental results on image-to-recipe and recipe-to-image retrieval with 1k and 10k pairs on the Recipe1M [23] dataset.
Best-performing method for each metric is highlighted in bold and the second-best is underlined.

Method
1k 10k

image-to-recipe recipe-to-image image-to-recipe recipe-to-image
medR ↓ R@1 ↑ R@5 ↑ R@10 ↑ medR ↓ R@1 ↑ R@5 ↑ R@10 ↑ medR ↓ R@1 ↑ R@5 ↑ R@10 ↑ medR ↓ R@1 ↑ R@5 ↑ R@10 ↑

Salvador et al. [23] 5.2 24.0 51.0 65.0 5.1 25.0 52.0 65.0 41.9 - - - 39.2 - - -
Adamine [1] 2.0 40.2 68.1 78.7 2.0 39.8 69.0 77.4 13.2 14.8 34.6 46.1 14.2 14.9 35.3 45.2
R2GAN [36] 2.0 39.1 71.0 81.7 2.0 40.6 72.6 83.3 13.9 13.5 33.5 44.9 12.6 14.2 35.0 46.8
MCEN [6] 2.0 48.2 75.8 83.6 1.9 48.4 76.1 83.7 7.2 20.3 43.3 54.4 6.6 21.4 44.3 55.2
ACME [29] 1.0 51.8 80.2 87.5 1.0 52.8 80.2 87.6 6.7 22.9 46.8 57.9 6.0 24.4 47.9 59.0
SN [35] 1.0 52.7 81.7 88.9 1.0 54.1 81.8 88.9 7.0 22.1 45.9 56.9 7.0 23.4 47.3 57.9
IMHF [10] 1.0 53.2 80.7 87.6 1.0 54.1 82.4 88.2 6.2 23.4 48.2 58.4 5.8 24.9 48.3 59..4
Wang et. al [28] 1.0 53.5 81.5 88.8 1.0 55.0 82.0 88.8 6.0 23.4 48.8 60.1 5.6 24.6 50.0 61.0
SCAN [30] 1.0 54.0 81.7 88.8 1.0 54.9 81.9 89.0 5.9 23.7 49.3 60.6 5.1 25.3 50.6 61.6
HF-ICMA [11] 1.0 55.1 86.7 92.4 1.0 56.8 87.5 93.0 5.0 24.0 51.6 65.4 4.2 25.6 54.8 67.3
MSJE [32] 1.0 56.5 84.7 90.9 1.0 56.2 84.9 91.1 5.0 25.6 52.1 63.8 5.0 26.2 52.5 64.1
SEJE [33] 1.0 58.1 85.8 92.2 1.0 58.5 86.2 92.3 4.2 26.9 54.0 65.6 4.0 27.2 54.4 66.1
M-SIA [12] 1.0 59.3 86.3 92.6 1.0 59.8 86.7 92.8 4.0 29.2 55.0 66.2 4.0 30.3 55.6 66.5
X-MRS [7] 1.0 64.0 88.3 92.6 1.0 63.9 87.6 92.6 3.0 32.9 60.6 71.2 3.0 33.0 60.4 70.7
H-T [22] 1.0 60.0 87.6 92.9 1.0 60.3 87.6 93.2 4.0 27.9 56.4 68.1 4.0 28.3 56.5 68.1
H-T (ViT) [22] 1.0 64.2 89.1 93.4 1.0 64.5 89.3 93.8 3.0 33.5 62.1 72.8 3.0 33.7 62.2 72.7
T-Food (ViT) [24] 1.0 68.2 87.9 91.3 1.0 68.3 87.8 91.5 2.0 40.0 67.0 75.9 2.0 41.0 67.3 75.9
T-Food [24] 1.0 72.3 90.7 93.4 1.0 72.6 90.6 93.4 2.0 43.4 70.7 79.7 2.0 44.6 71.2 79.7
FARM (Ours) 1.0 73.7 90.7 93.4 1.0 73.6 90.8 93.5 2.0 44.9 71.8 80.0 2.0 44.3 71.5 80.0

its accompanying image. In addition to the title, ingredi-
ents, and instructions, the recipe data includes the source
URL and partitions (train, test, or validation), with 238, 999,
51, 119, and 51, 303 pairs for training, validation and test-
ing, respectively. For each 224 × 224 image, the dataset
contains the image path, the class name (e.g., blue cheese,
buttermilk biscuits, chocolate, cheesecake etc.), and a class
ID. A unique identifier allows for easy cross-referencing be-
tween images and their corresponding recipes.

4.2. Cross-Modal Retrieval

We evaluate FARM using the Recipe1M dataset [23] for
image-to-recipe and recipe-to-image retrieval tasks in both
1k and 10k settings. In image-to-recipe retrieval, the task
is to retrieve the correct recipe given an image, while in
recipe-to-image retrieval, the goal is to retrieve the image
given a recipe. We compare FARM against several state-
of-the-art baselines. Following previous works, we report
medR, which represents the median index of the retrieved
samples. We also provide retrieval accuracy metrics R@1,
R@5, and R@10, which indicate the number of correct re-
trieved items when considering only the top K samples.

In Table 1, we observe that FARM outperforms all base-
lines on the image-to-recipe retrieval task. More specifi-
cally, FARM outperforms the best baseline, TFood [24],
by 1.4 and 1.5 percentage points on R@1 on the 1k and
10k sets, respectively. In the recipe-to-image retrieval task,
FARM outperforms T-Food [24] by 1.0 percentage points
on the 1k setup, but T-Food outperforms FARM by 0.3 per-
centage points on the 10k setup. This may indicate that the
visual cues provided by the images alone are sufficient to
establish meaningful associations, without the need for ex-
plicit alignment of recipe components. On the other hand,
in image-to-recipe retrieval, FARM benefits from the rich
textual cues and achieves better performance in aligning im-
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Figure 3. FARM scalability analysis.

ages with textual recipes. Notably, FARM demonstrates su-
perior performance on the R@5 and R@10 metrics on both
1k and 10k settings in the recipe-to-image retrieval task.

To further illustrate scalability, we present a comparative
analysis in Figure 3, where FARM’s performance is com-
pared against T-Food on settings larger than 10k. We ob-
serve that FARM consistently outperforms T-Food in both
image-to-recipe and recipe-to-image tasks.

4.3. Ablation Studies

Loss Components: We present an ablation study compar-
ing the contribution of various FARM loss components. Ta-
ble 2 results reveal that the Lsem component significantly
boosts performance in the 1k setting, while improvements
in 10k are notable but smaller. This observation empha-
sizes our model’s robustness and ability to extract seman-
tic information from limited data. Additionally, Lsem is
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Table 2. Ablation study on Lsem and Lhe loss components, on image-to-recipe and recipe-to-image retrieval with 1k and 10k pairs.

Method Lsem Lhe

1k 10k
image-to-recipe recipe-to-image image-to-recipe recipe-to-image

medR ↓ R@1 ↑ R@5 ↑ R@10 ↑ medR ↓ R@1 ↑ R@5 ↑ R@10 ↑ medR ↓ R@1 ↑ R@5 ↑ R@10 ↑ medR ↓ R@1 ↑ R@5 ↑ R@10 ↑

FARM
✗ ✗ 1.0 71.8 89.6 92.7 1.0 70.9 89.3 92.5 2.0 43.9 71.1 79.7 2.0 43.7 71.0 79.6
✓ ✗ 1.0 72.5 90.2 93.0 1.0 72.8 90.7 93.2 2.0 44.2 71.0 79.4 2.0 43.9 71.0 79.5
✓ ✓ 1.0 73.7 90.7 93.4 1.0 73.6 90.8 93.5 2.0 44.9 71.8 80.0 2.0 44.3 71.5 80.0

Table 3. Experimental results on the image-to-recipe and recipe-to-image retrieval on the 1k and 10k settings, when part of the recipe is
missing. The best-performing method is highlighted in bold.

Experiment Method
1k 10k

image-to-recipe recipe-to-image image-to-recipe recipe-to-image
medR ↓ R@1 ↑ R@5 ↑ R@10 ↑ medR ↓ R@1 ↑ R@5 ↑ R@10 ↑ medR ↓ R@1 ↑ R@5 ↑ R@10 ↑ medR ↓ R@1 ↑ R@5 ↑ R@10 ↑

Title
T-Food 84.5 3.4 10.3 15.8 12.0 16.2 36.6 48.0 810.9 0.8 2.5 4.1 114.4 4.5 12.7 18.6
FARM (✗ Lhe) 75.8 3.9 11.9 18.11 9.9 18.0 40.8 51.0 769.6 0.9 2.9 4.5 88.5 4.9 14.3 20.9
FARM 39.8 6.8 18.5 26.6 10.4 18.2 40.2 50.4 390.9 1.4 4.7 7.4 96.0 4.8 13.7 20.2

Ingredients
T-Food 3.6 32.1 57.9 68.5 2.0 44.7 71.5 80.3 28.0 11.4 27.3 36.1 10.2 19.7 40.6 50.6
FARM (✗ Lhe) 3.0 35.4 62.3 72.2 2.0 47.2 73.1 80.7 19.8 13.2 30.9 40.6 8.0 21.2 43.5 53.7
FARM 3.0 35.4 64.3 75.3 2.0 46.9 74.0 81.9 18.4 13.6 31.4 41.2 8.2 21.1 43.3 53.6

Instructions
T-Food 40.5 6.5 19.3 27.3 8.0 19.5 42.8 54.6 373.1 1.3 4.5 7.5 74.0 5.5 15.2 21.7
FARM (✗ Lhe) 37.9 8.7 22.7 31.2 6.3 22.9 48.0 59.3 356.5 2.1 6.7 10.4 49.6 7.4 19.6 27.5
FARM 16.5 12.6 31.0 41.2 6.2 22.7 47.4 57.5 168.3 2.8 8.9 13.7 59.0 6.8 18.0 25.5

✗ Title
T-Food 1.0 64.4 86.9 91.4 1.0 65.3 87.92 91.8 3.0 35.2 62.3 71.9 3.0 36.0 63.4 73.2
FARM (✗ Lhe) 1.0 67.4 86.8 90.4 1.0 67.7 87.3 91.3 2.0 38.3 65.3 74.6 2.0 38.4 65.9 75.2
FARM 1.0 67.9 87.6 91.5 1.0 68.3 88.5 91.8 2.2 38.4 65.1 74.4 2.0 38.7 65.9 75.1

✗ Ingredients
T-Food 6.0 21.2 48.2 61.2 2.4 37.7 67.4 76.6 48.2 5.5 16.1 24.4 15.8 14.0 32.7 43.4
FARM (✗ Lhe) 4.8 26.5 52.5 63.6 2.0 43.1 71.0 79.6 38.6 9.0 22.3 30.7 10.8 17.7 38.9 49.6
FARM 2.8 36.2 64.7 74.7 2.0 42.5 70.3 78.8 18.4 12.1 29.9 49.4 12.2 16.4 36.6 47.3

✗ Instructions
T-Food 1.0 56.1 80.3 86.7 1.0 61.7 84.1 89.0 5.0 27.4 52.3 62.6 3.2 31.8 58.7 68.6
FARM (✗ Lhe) 1.0 60.5 83.3 88.2 1.0 64.1 85.2 89.7 3.8 31.7 57.7 67.6 3.0 34.0 61.1 71.1
FARM 1.0 59.7 83.4 88.6 1.0 63.0 85.3 89.7 4.0 31.1 56.6 66.7 3.0 33.6 60.4 70.3

more effective on recipe-to-image retrieval, achieving 1.9%
improvement (1k), compared to a modest 0.7% improve-
ment on the image-to-recipe task. The relatively smaller
impact of Lsem on image-to-recipe retrieval indicates that
the richness and informativeness of visual features can often
serve as dominant cues for retrieving textual recipe descrip-
tions. Enhancing semantic alignment improves the ability
to extract meaningful information from textual descriptions,
leading to more accurate retrieval.

We also observe that the hyperbolic embedding loss sig-
nificantly improves model performance on both image-to-
recipe and recipe-to-image retrieval, outperforming FARM
(w/o Lhe) across all metrics. In contrast to the observa-
tions for Lsem, the impact of the hyperbolic loss is more
pronounced in the image-to-recipe retrieval task compared
to the recipe-to-image retrieval task. This suggests that the
hyperbolic embedding loss effectively captures and lever-
ages the inherent hierarchical relationships and similarities
between recipes, making it easier to retrieve the most rele-
vant textual descriptions for a given food image.

Missing Information: To demonstrate the effectiveness
of our component-level alignment, we present experiments
when one or more recipe components are missing (Table
3). For example, in the Title setup, only the title informa-
tion is available, and ingredients and instructions are set to
empty strings. Similarly, in the Title+Ingredient setup, the
tile and ingredient are available, while the instructions are
not. We compare T-Food with two versions of our proposed
approach, with and without the hyperbolic loss, i.e., FARM

and FARM (w/o Lhe), respectively.
We observe that both versions of FARM outperform T-

Food across all settings, proving the effectiveness of the
proposed component-level alignment. In terms of R@1,
in image-to-recipe 1k retrieval, performance improvements
vary between [3.3%, 6.1%] when only one component of
the recipe is available, and between [3.5%, 15.1%] when
two components are available. Similarly, in the recipe-
to-image 1k retrieval, performance improvements vary be-
tween [2.0%, 3.2%] when one component is available, and
between [1.3%, 4.8%] when two components are available.

We also observe better performance on image-to-recipe
retrieval. Between the two variants of our approach, FARM
performs better than FARM (w/o Lhe) in the image-to-
recipe retrieval task in most cases, however, FARM (w/o
Lhe) sometimes performs better than FARM in the recipe-
to-image retrieval task. We further observe that, among the
different components of the recipe, the inclusion of the ti-
tle seems to have the least effect on performance gains. This
may point toward the need to design a better approach to en-
coding titles. On the other hand, ingredients seem to be the
most useful component, with FARM achieving 35.4 R@1 in
the only-ingredient setup, which is close to the combination
of title and instructions (36.2 R@1).

4.4. Qualitative Analysis

We conduct qualitative analysis to understand FARM’s
semantic capabilities. In Figure 4, we present a t-SNE [27]
comparison of the FARM and T-Food recipe embeddings.
We observe that FARM achieves better separation, which
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Figure 4. Recipe embeddings t-SNE visualization from 15 randomly sampled classes from the Recipe1M dataset.

Title Ingredients Instructions Ground Truth Top 5 Retrieved

Vanilla bean ice cream
2 cups heavy cream

3 cup granulated sugar
2 vanilla beans...

Prepare an ice water bath.
Combine cream half and half.

Whisk egg yolks...

Maple cream cheese
french toast casserole

10 cups bread cubes
4 tablespoons sugar

 8 large eggs...

Beat the softened cream cheese with
sugar.

 Add in milk half and half cream maple
syrup and vanilla...

Gramma 's banana bread
muffins

2 ripe bananas smashed
melted butter

 sugar...

Preheat the oven to 350f.
Mix butter into the mashed bananas.

Mix in the sugar egg and vanilla...

Fluffo chicken fanfare
2 boneless chicken breasts

asparagus
chopped onion...

Preheat oven to 350.
Brown the chicken.
Steam asparagus...

Almond spongecake with
chocolate frosting

All purpose flour
Baking powder

2 cup castor sugar...

Preheat oven to 180 grease a cake tin
and set aside.

 Beat eggs and castor sugar just until
combined...

Figure 5. FARM qualitative analysis on recipe-to-image retrieval. Each row presents the top-5 retrieved images, alongside their associated
textual components for each recipe.

leads to less overlap among the various classes. For ex-
ample, ‘stir fry’ has a lot of overlap with fried rice in the
recipe embeddings learned using T-Food. FARM reduces
this overlap significantly. In Figure 5, we demonstrate a few
retrieved samples in the image-to-recipe retrieval task. We
observe that FARM retrieves semantically similar images
for each of the recipes. We further observe that sometimes
the results are similar to the ground truth, although they do
not exactly look like the ground truth. For example, for ‘ba-
nana bread muffin’, FARM retrieves a different image of
the bread muffin instead of the ground truth, while the ac-
tual ground truth is also in the top-3 results. This explains
the lower R@1 compared to R@5.

5. Conclusion

In this work, we introduce FARM, a cross-modal fine-
grained alignment framework for recipe retrieval that aligns
individual recipe components (title, ingredients, and in-

structions) with image embeddings. FARM incorporates a
hyperbolic loss that captures the hierarchical structure and
relationships within the embedding space, leading to im-
proved retrieval performance. Experimental results demon-
strate improvements compared to the current state-of-the-
art methods in both image-to-recipe and recipe-to-image re-
trieval tasks. FARM enhances robustness in handling miss-
ing information and consistently surpasses baselines when
one or more recipe components are missing.
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