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Abstract

Crowd counting is currently applied in many areas, such
as transportation hubs and streets. However, most of the
research still focuses on counting the number of people in
a single image, and there is little research on solving the
problem of calculating the number of non-repeated people
in a video segment. Currently, multiple object tracking is
mainly relied upon for video counting, but this method is not
suitable for situations where the crowd density is too high.
Therefore, we propose a Flow Mask Integration Deformable
Convolution network (FMDC) combined with Inter-Frame
Head Contrastive Learning (IFHC) to predict the situation
of people entering and exiting the screen in a density-based
manner. We verify that our proposed method is highly ef-
fective in densely populated situations and diverse scenes,
and the experimental results show that our proposed method
surpasses existing methods.

1. Introduction

Crowd counting is widely used in various applications,
including traffic monitoring [10], event management [33],
and security surveillance [23, 26, 3]. In the realm of count-
ing people in single images, multiple approaches and count-
ing techniques have been developed [29, 22, 28, 18, 13,
43, 21, 24]. For example, in loss designation, [29, 22,
28, 18] designed more general loss functions based on op-
timal transport algorithm to enhance optimization accu-
racy. Moreover, in terms of the domain gap problem, re-
searchers have addressed this issue by several techniques,
e.g., domain-general feature extraction [13], target domain
feature alignment [43], minimization of the uncertainty of
the target domain [24].

Although much of the research in this field has focused
on counting the number of people in a single image, there
has been limited exploration into calculating the number
of unique individuals in a video segment within a specific
area. By solving this problem, we can facilitate a variety

of applications of crowd counting beyond image-based sce-
narios. For instance, by calculating how many people pass
through a certain area during each period, we can use this
as a basis for deciding whether to open a new store rather
than estimating based on the immediate number of people
present. Other possible application scenarios include opti-
mizing traffic light duration, improving road planning, and
reducing congestion.

To calculate the crowd flow through a specific area, one
simple solution is to aggregate counts from individual im-
ages in the video by existing crowd counting models, e.g.,
[18, 30, 13, 41, 32]. However, it necessitates identifying
the count of repeated individuals from each frame’s to-
tal count. In fact, the counting of people in video seg-
ments presents unique challenges compared to single-image
counting. How to determine the accurate calculation of ad-
ditional people in each subsequent frame becomes a critical
aspect to consider. Previous studies have used the cross-line
method to estimate the count increment by specifically fo-
cusing on pedestrians crossing a designated line. However,
this approach has limitations as it fails to consider pedes-
trians who do not pass the line, resulting in an incomplete
count. Furthermore, the cross-line method requires manual
line configuration for different camera views, which is not
suitable for automated crowd counting.

Another approach to address this problem is to treat it
as a Multiple Object Tracking (MOT) task [39, 38, 2, 27],
which tracks and maintains the identities of individuals
across multiple frames. By leveraging object tracking algo-
rithms, such as Kalman filters or deep learning-based track-
ers, it becomes possible to estimate the number of non-
repeated individuals in a video segment. However, one
of the main issues is the accuracy and reliability of ob-
ject tracking algorithms, especially in dense and crowded
scenes. Tracking algorithms may struggle to maintain ac-
curate trajectories due to occlusions, interactions between
individuals, abrupt changes in motion, or variations in ap-
pearance. These issues can result in ID switches, leading to
a wrong flow calculation. Additionally, the computational
complexity of tracking algorithms can be a concern, partic-
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ularly in real-time applications where multiple individuals
need to be continuously tracked across frames.

As such, the latest relevant research, DRNet [15], utilizes
density maps to locate head features by identifying local
maximum points. These head features are then analyzed us-
ing the optimal transport algorithm to determine the inflow
and outflow numbers between different frames. However,
there are still some limitations to consider. Firstly, relying
solely on the density map may not always accurately extract
head features, leading to potential omission or repetition of
certain features. Additionally, as the number of features be-
ing compared increases, it becomes increasingly challeng-
ing to identify the outflow and inflow counts using the op-
timal transport algorithm based on similarity comparisons.
These limitations highlight areas for further improvement
and exploration in the field of individual counting.

To better address the challenges, we develop a novel ap-
proach, namely Density-Based Flow Mask Integration via
Deformable Convolution (FMDC). First, we employ col-
orization self-supervised learning with the expectation that
the model can initially integrate the information from two
consecutive frames, while also reducing the amount of la-
beled data required for training. Moreover, unlike meth-
ods identifying individuals by ambiguous head features, our
method involves the prediction of inflow and outflow masks,
which are then multiplied with the predicted density map to
predict crowd flow. As such, this approach can enhance the
precision of counting based on the predicted density map
directly. Additionally, it effectively addresses occlusion is-
sues that are common in other Multiple Object Tracking
(MOT) methods. Furthermore, to discern different indi-
viduals across frames, we utilize deformable convolution
for spatial alignment between two frames. Since there are
many positive and negative pairs in the video segment, we
improve the individual discrimination capability with our
proposed Inter-Frame Head Contrastive Learning (IFHC).
Finally, it is important to note that video crowd datasets
with tracking labels are scarce. Therefore, we created a
synthetic video crowd count dataset using CARLA [12], a
widely used real-world simulator in the field of autonomous
driving research. By leveraging CARLA, we collect a sig-
nificant amount of data to validate the superiority of our
approach over other methods.

Our core contributions can be summarized as follows:

• We propose the inflow and outflow mask task for
model learning, which can be applied to any density-
based crowd counting method. This task aims to en-
hance counting accuracy and robustness by consider-
ing individuals’ connection across two frames.

• We introduce the Inter-Frame Head Contrastive Learn-
ing (IFHC), which aids the model in distinguishing
and counting the inflow and outflow individuals. This

loss function has the potential for application in other
object-based methods as well.

• We conduct experiments on two diverse and congested
datasets to evaluate the performance of our proposed
method. The results demonstrate that our approach
outperforms strong baselines by at least 66.7% in terms
of Mean Absolute Error (MAE) and 57.3% in terms of
Weighted Relative Absolute Error (WRAE).

2. Related Work

2.1. Image-based Crowd Counting

Image-based crowd counting is the task of estimating the
number of people in a single image. In recent years, re-
searchers have made significant advancements in improv-
ing crowd counting techniques [21, 13, 43, 24, 30, 17, 32].
For instance, in addressing the domain gap problem, [21]
tackles the issue by rescaling the images to align the head
scale distribution across different datasets. [13] introduces
domain-specific and domain-general modules with recon-
struction and orthogonal loss to extract domain-general fea-
tures for density estimation. Another approach proposed
by [43] involves Point-derived Crowd Segmentation, which
utilizes adversarial learning to regularize crowd density es-
timation in the target domain. Meanwhile, [24] applies the
Shannon entropy formula to minimize the prediction uncer-
tainty in the target domain. These methods demonstrate on-
going efforts to mitigate the domain gap problem and im-
prove the performance of density estimation in challenging
scenarios.

In addition, there are many other works on different in-
sights of single-image crowd count. For example, [30] aims
to reduce the dependency on location-wise annotations, thus
introducing a dynamic counter predictor and a mixture of
counter heads to achieve local-agnostic counting. [32] ini-
tially generates two cropped images from the same original
image and applies the same image transformation to both.
The overlapping region of the cropped images is then ex-
tracted, and self-supervised learning is performed on the
density maps of these two overlapping regions. [17] de-
signs three attention concepts, i.e., Learnable Attention Re-
gion, Local Attention Regularization and Instance Attention
Loss, to enable the model to have varying levels of atten-
tion region and tolerant the spatial error of annotations. It is
worth noting that we only adopt a straightforward approach
by using VGG-16 as our backbone model, followed by sev-
eral convolution layers, and focused on extracting precise
temporal information. Therefore, combining our work with
other noteworthy crowd counting approaches may lead to
further improvement.
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2.2. Video-based Crowd Counting

Point-based video crowd counting employs tracking
methodologies such as those illustrated in [35], which
blends tracking, counting, and detection techniques for
drone crowd datasets. Further advances include feature
warping and attention mechanisms across multiple frames
[5]. Nonetheless, our approach seeks to expand the appli-
cation to more crowded and complex scenes beyond drone
datasets. Other strategies conceptualize the issue as a Mul-
tiple Object Tracking (MOT) task. FairMot [39], for exam-
ple, uses an anchor-free object detection method and Re-ID
through patch features. HeadHunter-T [27] prioritizes head
feature detection and tracking. Concurrent studies integrate
YOLOX [14] for object detection in MOT techniques like
ByteTrack [38], which classifies detection bounding boxes
into high and low-confidence associations. BoTSorT [2]
compensates for camera motion in Kalman filter prediction.
However, these tracking techniques can face challenges,
such as ID switches issues causing overcounting and requir-
ing processing every frame, leading to possible redundancy
and increased computational time.

Another kind of approach uses cross-line methods to ad-
dress the video crowd counting problem. Cross-line meth-
ods form another category of video crowd counting solu-
tions. These involve defining a line or boundary in the
scene, often a virtual line or physical barrier. Multiple lines
are utilized to count people entering or exiting in some ap-
proaches [4, 7, 8], but each line counts independently, lead-
ing to inefficiency. A more efficient method was proposed
by [11], who factored pedestrian velocity as line thick-
ness, accumulating cross-line slices in patches to estimate
counts. Other strategies include [20] estimating instanta-
neous counts on the Line of Interest (LOI) using integer
programming. [40] addressed temporal slicing issues by es-
timating crowd counts from image pairs, leveraging density
and velocity maps. [42] ensured local crowd density esti-
mation consistency by considering spatial relations. These
methods require manual line settings, limiting automation
and scalability. In contrast, our method bypasses predefined
lines or boundaries, using video direction to estimate crowd
counts. This offers more flexibility, adaptability, and better
crowd dynamics understanding, enhancing counting accu-
racy and efficiency.

3. Method

Fig. 1 illustrates the model architecture of FMDC.
Specifically, VGG16 [19] is used as the backbone for the
encoder. Subsequently, we employ three decoder branches
to process the extracted features from VGG16. These three
decoder branches are the color estimation branch, the den-
sity map branch, and the inflow/outflow mask branch. In
the following sections, we present the problem definition,

followed by each module of the proposed FMDC.

3.1. Problem Definition

Given a video segment V consisting of T frames, de-
noted by {I1, I2, I3, ...., IT}, where the t-th frame It ∈
RH×W×3 contains N(t) people. Each person typically ap-
pears in a subset of consecutive frames due to the high sens-
ing frequency of cameras. Here, our objective is to accu-
rately count the total number of people with different iden-
tities from the first frame to the T -th frame in the video.
Considering that video frames exhibit high redundancy, we
divide the problem into two subproblems: estimating N(1)
and N in

τ (t). Here, N in
τ (t) represents the number of people

newly entering at time t during previous τ frames, i.e., from
t − τ + 1 to t. Without loss of generality, we assume that
T = Kτ + 1. As such, the problem can be formulated as
follows:

K∑
k=1

N in
τ (k · τ + 1) +N(1). (1)

In other words, our model is designed to predict the den-
sity count of the first frame N(1), and subsequently predict
the inflow count, N in

τ (k · τ + 1), from a pair of images
I(k−1)τ+1 and Ikτ+1. This prediction of N in

τ (k · τ + 1)
continues throughout the entire video.

3.2. Self-Supervised Colorization Learning

Due to the limited availability of video crowd count
datasets, we adopt a colorization pretrained learning ap-
proach inspired by [6] to mitigate the data requirements.
Unlike the process in [6], which focuses on encoding and
decoding a single image, our approach involves counting
the inflow of people from a pair of images. Specifically, we
utilize a colorful previous frame and a grayscale frame as
input, expecting the model to leverage the information from
the colorful image to estimate the color for the next frame.

To efficiently enable the model to share color informa-
tion between frames, we consider the spatial location as the
primary distinguishing factor influenced by people’s move-
ment. Drawing inspiration from the successful utilization of
deformable convolution in various spatial alignment tasks
such as video super-resolution [9], restoration [34], and in-
painting [36], we incorporate deformable convolution lay-
ers into our model architecture. By applying deformable
convolution, we aim to align individuals’ positions between
frames, facilitating the transfer of colorful frame features
to the corresponding regions in the subsequent frame. This
approach effectively promotes the efficient sharing of color
information across frames. Let Ft ∈ RH/4×W/4×C denote
the feature map extracted by VGG16 at the t-th frame. The
whole colorization process on two frames is expressed in
three steps. First, we need to generate the offset map ∆p
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Figure 1: The training pipeline of the proposed method consists of two stages. In the first stage, we employ self-supervised
colorization learning to mitigate the limited availability of training data. In the second stage, we adapt the model to predict
the inflow/outflow mask and incorporate IFHC to assist the deformable convolution layers for spatial alignment. Then, the
final result Nin and Nout can be obtained by multiplying the flow mask M̃ and the density map D̃.

for the deformable convolution,

∆p = Gp(concat(Ft,Ft+τ )) (2)

where Gp and is a convolution mapping function. After
having the ∆p, we then apply ∆p for deformable convolu-
tion layer Gd to align the spatial feature.

F̃t = Gd(Ft,∆p) (3)

where F̃t is a spatial alignment feature computed by a de-
formable convolution operation. Afterwards, we concate-
nate the spatial alignment feature F̃t with Ft+τ and then
go through the colorization decoder Gc.

Z̃ = Gc(concat(F̃t,Ft+τ )) (4)

where Z̃ ∈ [0, 1]
H/4×W/4×Q represents a probability distri-

bution of possible colors, with Q indicating the quantization
level for image colors. Then, we minimize the cross entropy
loss between the predicted probability Z̃ and ground truth
color distribution Z transformed from colorful image frame
It+τ , i.e.,

L(Z̃, Z) = −
HW∑
p

Q∑
q

Z(p, q) log Z̃(p, q). (5)

3.3. Density Map Counting

After the colorization training, we adapt the model to
perform two tasks: predicting the density map and gener-
ating the inflow/outflow mask. The inflow/outflow counts
can be obtained by multiplying the density map and the in-
flow/outflow mask. Because of the scarcity of video crowd
count data and to prevent model overfitting, we incorporate
a Feature Pyramid Network (FPN) as an extension follow-
ing the VGG16 backbone. Additionally, we aim to com-
pare the performance of our inflow/outflow mask branch
with DRNet, which utilizes the optimal transport for in-
flow/outflow count. Therefore, we adopt the same model
architecture as DRNet for predicting density maps, allow-
ing us to evaluate the effectiveness of our inflow/outflow
mask branch in achieving superior performance compared
to the inflow/outflow count-based approach of DRNet.

D̃t, D̃t+τ = FPN(Ft), FPN(Ft+τ ). (6)

Afterward, we minimize the MSE loss for optimizing the
density map.

LD =

HW∑
p

(D̃t −Dt)
2(p) + (D̃t+τ −Dt+τ )

2(p). (7)
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3.4. Inflow/Outflow Mask Prediction

Similar to the colorization task, in the inflow/outflow
mask task, we aim to align the individuals present in both
the previous and current frames. This alignment process
facilitates establishing correspondence between individuals
across frames and enables accurate prediction of the in-
flow/outflow mask. To achieve this, we employ deformable
convolution to effectively align the corresponding individ-
uals in both frames, thereby enabling the model to dis-
cern and differentiate between different individuals across
frames. The complete prediction of the inflow/outflow mask
can be mathematically formulated as follows:

M̃in = Gm(concat(F̃t,Ft+τ )), (8)

M̃out = Gm(concat(F̃t+τ ,Ft)) (9)

where F̃t and F̃t+τ are computed from Eq. 2 and Eq. 3,
M̃in and M̃out ∈ [0, 1]H×W×1 which means the proba-
bility of the in/out event. When estimating the outflow
mask, we switch the input of concatenate operation, that
is, concat(Ft+τ ,Ft) and the input of deformable convo-
lution for spatial alignment is Ft+τ . After predicting the
density map and inflow/outflow mask, we can obtain the in-
flow/outflow count by multiplying the density map with the
inflow/outflow mask. ⊙ means the Hadamard product.

Nin(t+ τ) = sum(D̃t+τ ⊙ M̃in), (10)

Nout(t) = sum(D̃t ⊙ M̃out). (11)

Afterward, the mask loss is computed by the binary cross
entropy. The ground truth mask is generated by creating a
square region with a value of 1 based on the center position
of the person’s head. The size of the region is determined
by the variance of the person’s head.

Lin =

HW∑
p

Min(p) · M̃in(p) + (1−Min(p)) · M̃in(p),

(12)

Lout =

HW∑
p

Mout(p) · M̃out(p) + (1−Mout(p)) · M̃out(p).

(13)

3.5. Inter-Frame Head Contrastive Learning

It is recognized that training can be unstable, and the ex-
cessive overflow of offsets for deformable convolution can
significantly impact performance [34, 9]. We also find this
issue when using the deformable convolution purely with-
out any constraint. Here, we introduce IFHC for the video

frame task to assist the model’s spatial alignment ability.
First, we extract the mutual person’s head feature from ex-
tracted feature Ft, Ft+τ by the center of the bounding box.
Assuming there are n mutual people, these mutual head fea-
tures then form two set Ht = {f t

1, f
t
2, ..., f

t
n}, Ht+τ =

{f t+τ
1 , f t+τ

2 , ..., f t+τ
n } where f t

n denotes a head feature at
t-th frame. The rest of the head features form the other
set R = {f t

n+1, f
t
n+2, ..., f

t
N(t), f

t+τ
n+1, f

t+τ
n+2, ...f

t+τ
N(t+τ)}.

Thus, the positive pairs are chosen from set Ht and Ht+τ

and the negative samples are chosen from set R. Given the
memory-intensive nature of densely crowded scenes, uti-
lizing all negative samples from both frames may lead to
excessive memory consumption. To mitigate this, we se-
lect the 50 most dissimilar negative samples relative to the
desired head feature for comparison. The loss for IFHC is
formulated as follows:

Lcon =

n∑
i

− log
sim(Ht(i),Ht+τ (i))∑50

j=1 sim(Ht(i),Rrank(j))
(14)

where the Rrank is sorted head feature set based on simi-
larity computed with head feature Ht(i). The total training
loss is summarized as follows:

Ltotal = LD + Lin + Lout + αLcon (15)

where α is a hyperparameter controlling the impact of
IFHC.

4. Experiment
4.1. CARLA Crowd Dataset

CARLA is an open-source simulator for autonomous
driving research [12], offering a realistic virtual environ-
ment to test algorithms and systems. Given its capacity
for seamlessly generating intricate street scenes, particu-
larly those featuring pedestrians, we embark upon the task
of meticulously capturing a video crowd dataset within the
dynamic environment of CARLA. This comprehensive col-
lection encompasses a diverse array of scenes, incorporating
a multitude of weather conditions, varying times of day, and
heterogeneous crowd distributions, among other factors.

In summary, we collect a video crowd dataset from
CARLA. This dataset encompasses a total of five distinct
scenes, each meticulously designed with varied people flow
patterns, locations, weather conditions, and times of day.
Each scene offers two different perspectives, resulting in
the generation of 10 complete crowd videos within the
dataset. The maximum crowd flow observed in these videos
amounts to 349 individuals, while the minimum crowd flow
reaches 82. The image resolution is 1920×1080. In com-
parison to existing synthetic crowd datasets such as GCC
[31], TUB CrowdFlow [25], and CVCS [37], our proposed
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Table 1: Comparisons of approaches on HT21 dataset. Underlines mean the ground truth for each scene.

Method
val set Predicted counting results for each fives scene Metrics on test set

CroHD01 CroHD11 CroHD12 CroHD13 CroHD14 CroHD15 MAE↓ MSE↓ WRAE↓%85 133 737 734 1040 321
LOI 65.5 72.4 493.1 275.3 409.2 189.8 305.0 371.1 46.0

PHDTT 138 380 4530 5528 1531 1648 2130.4 2808.3 401.6
HeadHunter-T 145 198 636 219 458 324 253.2 351.7 32.7

FairMOT 214 144 1164 1018 632 472 256.2 300.8 44.1
ByteTrack 102 160 761 1467 897 460 213.2 340.2 30.8
BoT-Sort 108 174 775 2002 1000 509 315.0 574.1 46.2
DRNet 113.0 138.4 1017.5 623.9 659.8 348.5 160.7 217.3 25.1
Ours 96.7 138.9 664.3 818.0 1005.8 394.9 54.2 61.7 10.7

Table 2: Comparisons of approaches on CARLA dataset. Underlines mean the ground truth for each scene.

Method
Predicted counting results for each fives scene Metrics on test set

CARLA11 CARLA12 CARLA13 CARLA14 CARLA15 MAE↓ MSE↓ WRAE↓%232 204 278 82 349
ByteTrack 115 247 210 429 761 194.2 244.7 57.4
BoT-Sort 307 235 596 93 1230 260.0 417.0 59.7
DRNet 181.4 151.1 184.2 51.2 146.4 89.3 109.6 25.6
Ours 236.0 162.9 241.4 60.7 156.6 59.1 90.0 20.7

video synthetic crowd dataset stands out with its inclusion
of human IDs and head bounding box annotations. This
aspect makes it particularly well-suited for accurate people
flux estimation and even other tasks, e.g. Crowd Tracking,
Detection, Localization, Counting, etc. Additionally, our
dataset exhibits remarkable diversity, encompassing multi-
view perspectives, a wide range of scenes, a diverse number
of counts, and varying weather and time conditions.

4.2. Experiment Setup

Evaluation metrics. We use three evaluation metrics
to compare our method with baselines. The MAE and
MSE are commonly used by summing all the absolute
and square errors, respectively, and then taking the mean.
The Weighted Relative Absolute Error (WRAE) is in-
troduced because different video segments have different
video lengths. To ensure fairness, we normalize the results
by multiplying the error of each scene with the ratio of the
scene length to the entire dataset. WRAE is precisely rep-
resented as follows:

WRAE =

K∑
i=1

Ti∑K
j=1 Tj

|Ni − Ñi|
Ni

× 100% (16)

where Ni and Ñi respectively represent the annotated and
the estimated pedestrian number for the i-th test video. K is
the total number of videos. Ti is the total number of frames
for the i-th video.

Training details. The training details are similar to DRNet
[15]. The training intervals for the frame pairs are set to
45∼80 frame intervals (about 1.8s ∼ 3.2s) and they are ran-
domly sampled from the whole dataset. Additionally, we
use the same random seed as DRNet. For data augmenta-
tion, we use the random horizontal flipping, scaling (0.8×
∼ 1.25×), and cropping (768×1024) strategies. The learn-
ing rate is initialized to 5e − 5 for VGG16 parameters, and
1e − 4 for the other parameters, and they are updated by a
step decay strategy with a 0.95 rate and ADAM [16] algo-
rithm at each epoch. The model is built upon the Pytorch
framework and implemented on a TESLA V100 GPU (32G
memory) with batch size 2.

4.3. Quantitative Results

Comparison method. We compare our approach with
several baseline methods. The LOI method [40] utilizes
the density map as a reference but leverages the velocity
map to ascertain the number of individuals crossing a line.
Tracking-based methods such as HeadHunter-T [27], Fair-
MOT [39], and PHDTT [1] estimate pedestrian flow by
counting individual tracks. More recent approaches like
ByteTrack [38] and BoT-Sort [2] integrate the YOLOX
[14] detector with their proprietary association algorithms.
Among the baselines, DRNet [15] stands out as the most ro-
bust, and it is the primary method against which we bench-
mark our approach.
Results on two datasets. Table 1 and 2 show the pre-
dicted results on HT21 and our own CARLA datasets. In
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Figure 2: The counting, offset, inflow, and outflow results of our methods on the HT21 (left) and CARLA (right) dataset.

the HT21 dataset, we observe that our method performs bet-
ter than other methods in complex and densely populated
scenes, particularly in scenarios involving personnel enter-
ing and exiting, such as CroHD13 and CroHD14. While
other methods may perform well in certain scenes, they ex-
hibit very poor performance in others. For example, Bot-
Sort and ByteTrack achieve high MAE values of 1268 and
733, respectively, in CroHD13, indicating the occurrence of
duplicate judgments due to ID switches in tracking-based
approaches. On the other hand, DRNet achieves a high
MAE of 280 in CroHD12. In CroHD13 and CroHD14,
there are instances of underestimated predictions, which in-
dicates the limitations of solely using head features to dis-
tinguish different individuals in dense scenes. On the con-
trary, our approach is comparatively more robust and gen-
eralizable than other methods. Our WRAE is only 10.7 %,
which is significantly lower than that of other methods.

In the CARLA dataset, we notice that both ByteTrack
and Bot-Sort also encounter issues with ID switches in
CARLA15 scene. The feature comparison-based approach
utilized in DRNet makes it challenging to distinguish be-
tween similar head features without considering spatial re-
lationships. Consequently, DRNet tends to underestimate
the flow of individuals. In contrast, our proposed method
exhibits superior performance in densely populated scenes
such as CARLA11, 13, and 15. This is attributed to the spa-
tial alignment capability of our deformable convolution and
the enhanced discrimination achieved through our designed
IFHC. Furthermore, the integration of the flow mask task ef-
fectively aligns the density map, resulting in more reliable
counting of inflow and outflow numbers. These factors con-
tribute to the outstanding performance of our method across
all three evaluation metrics.

Table 3: Training with different configurations on HT21.

Configurations MAE MSE WRAEBasic Conv Deform Conv Lcons

√
117.7 162 17.3√ √
151 202.8 19.6√

169.2 245.7 21.3√ √
54.2 61.7 10.7

4.4. Ablation Study

Visualization results. Fig. 2 shows the visualization result
by our model on HT21 and CARLA dataset. From top to
bottom, in the first column, we have the frame It, the offset
map for F̃t+τ , the frame It+τ , and the offset map for F̃t.
Different colors in the offset map mean the different direc-
tions of the offset. In the second column, we have Dt, D̃t,
Dt+τ , D̃t+τ . In the third column, we have Mout, M̃out,
Min, M̃in. In the highlighted boxes, the red box indicates
the areas where individuals enter or exit the frame, and the
blue box represents areas with minimal movement of indi-
viduals. It can be observed that there are noticeable differ-
ences in the offset maps within the red box while the offset
maps within the blue box appear to be more similar. This
visualization result shows our deformable layer can distin-
guish the different people.
Training configuration. Furthermore, we verify that the
combination of deformable convolution and IFHC Lcon

yields the best results. As shown in Table 3, it can be ob-
served that the performance is worse when using only de-
formable convolution compared to basic convolution. How-
ever, with the addition of Lcon, there is a significant im-
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Figure 3: This is a simple illustration that demonstrates the impact of different α on the spatial distribution of head features.
The orange region represents the space occupied by head features, while the blue region represents the background space.
The circles of the same color represent the same individuals across different frames of the video.

Figure 4: Optimal training intervals frame rate.

provement in performance. Also, an interesting observation
is that the basic convolution cannot incorporate Lcon due to
its lack of spatial alignment capability. Without this abil-
ity, the basic convolution is unable to effectively distinguish
between different individuals across frames.
Optimal training intervals. We validate the optimal train-
ing interval on the HT21 dataset. Unlike DRNet focusing
on validating the optimal testing interval, we concentrate
on determining the best training interval and use it to de-
termine the testing interval during evaluation. The reason
for this approach is that in real-world applications, it is not
feasible to exhaustively test the model for the best testing in-
terval. Instead, directly applying the model with the trained
interval is a more practical approach. Fig. 4 shows the dif-
ferent results in different frame intervals. Afterward, we
fine-tuned the training interval to (40∼85) based on these
results and achieved the best performance.
Hyperparameter α. Fig. 5 shows the sensitivity test on the
hyperparameter α, demonstrating that the best performance
is achieved when α is set to 0.1. As shown in Fig. 3, a small
value of α may make the model unable to distinguish be-
tween different individuals, while a large value may cause
the error of density maps in predicting all the individuals’
heads. By selecting an appropriate α, all the individual head

Figure 5: Hyperparameter α for IFHC.

features remain within the region for head feature space
and have sufficient separation from each other, enabling the
model to differentiate between different individuals.

5. Conclusion

In summary, our proposed method outperforms other
tracking methods and DRNet. We achieve superior results
by leveraging deformable convolution for spatial alignment,
allowing us to establish accurate correspondences between
individuals across frames. Additionally, the incorporation
of IFHC further enhances the discriminative power of our
model. Furthermore, we validate our approach using the
CARLA simulator, which enables us to generate realistic
crowd data for video analysis. These key factors contribute
to the improved performance of our method in crowd anal-
ysis tasks.
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