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Abstract
In this paper, we investigate the task of zero-shot human-

object interaction (HOI) detection, a novel paradigm for
identifying HOIs without the need for task-specific annota-
tions. To address this challenging task, we employ CLIP,
a large-scale pre-trained vision-language model (VLM),
for knowledge distillation on multiple levels. Specifically,
we design a multi-branch neural network that leverages
CLIP for learning HOI representations at various levels,
including global images, local union regions encompass-
ing human-object pairs, and individual instances of humans
or objects. To train our model, CLIP is utilized to gener-
ate HOI scores for both global images and local union re-
gions that serve as supervision signals. The extensive exper-
iments demonstrate the effectiveness of our novel multi-level
CLIP knowledge integration strategy. Notably, the model
achieves strong performance, which is even comparable
with some fully-supervised and weakly-supervised methods
on the public HICO-DET benchmark. Code is available at
https://github.com/bobwan1995/Zeroshot-HOI-with-CLIP.

1. Introduction
HOI detection aims to identify triplets of ⟨human, ob-

ject, interaction⟩ within the context of a given image, which
requires localization of human and object regions and recog-
nition of their interactive behavior, e.g., play-basketball. It
enables the intelligent system to understand and interpret hu-
man behavior in real-world scenarios, thus playing an instru-
mental role in anomalous behavior detection [34,40], motion
tracking [39, 52] and visual scene understanding [27, 41].

HOI detection has typically been investigated in a fully-
supervised learning paradigm [5, 10, 13, 54, 63], where
aligned HOI annotations (i.e. human-object locations and
interaction types) are provided during the training stage,
as illustrated in Fig. 1(a). Despite the high performance
due to such comprehensive annotations, it suffers from the
labor-intensive process of labeling HOI instances. This limi-
tation has led recent studies to transition towards a weakly-
supervised setup [1, 22, 25, 53, 64], where only image-level

(a) play-basketball (b) play-basketball (c) Null

Figure 1. Comparison on training annotations for different
setups: (a) Fully-supervised; (b) Weakly-supervised; (c) Zero-shot.

HOI categories (without corresponding bounding boxes) are
provided for model learning, as demonstrated in Fig. 1(b).
While this setup significantly reduces the labeling costs and
enhances robustness to label errors, it nonetheless necessi-
tates image-level annotations on HOI datasets. These are
still costly to obtain, often noisy and incomplete. More-
over, annotators may inadvertently introduce bias. Draw-
ing inspiration from the great success of zero-shot learning
[21, 26, 43, 60, 65, 66], we introduce the new challenging
problem of zero-shot HOI detection, where NO HOI annota-
tions are required for model learning, as shown in Fig.1(c).
Importantly, note how our setup diverges from previous zero-
shot HOI detection frameworks [2, 14, 36, 38, 45], which
predominantly focus on knowledge transfer from observed
HOI concepts to unseen categories (c.f. Sec. 2 for more
details). In contrast, this work takes it a step further by tack-
ling the extreme scenario where none of the HOI categories
have been annotated during training, although we assume
the category space is known.

Large-scale pre-trained VLM, such as CLIP [43], have
shown substantial promise in various domains of zero-shot
learning, including image classification [7, 21, 28, 37, 46, 57,
60], object detection [26,66], and instance segmentation [65].
However, extending these models to zero-shot HOI detection
poses a unique challenge, primarily due to the high-level re-
lational understanding required in this context. To the best
of our knowledge, this paper makes the first effort to propose
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Figure 2. Overview of our multi-level knowledge distillation.

and tackle this challenging task. A naive solution might be
directly employing CLIP on union regions (the joint areas
of human-object proposals detected by an external object
detector) to produce corresponding HOI scores. However,
this approach proves to be suboptimal in terms of both in-
ference speed and performance, as illustrated in Sec. 4.4.
Alternatively, we leverage the power of CLIP in two ways: i)
In terms of model design, we build a multi-branch network
that extracts CLIP-oriented features on multiple levels, thus
incorporating its robust generalization capabilities into HOI
representations. ii) For model learning, we use the CLIP
scores generated from global images and union regions as
supervisory signals to train our multi-branch network.

Prior works [36, 54, 56] have revealed that HOI relations
manifest across various levels, including global images, rela-
tional union regions, and individual human-object instances.
Inspired by this insight, our work employs a multi-branch
neural network to leverage the capabilities of CLIP for multi-
level HOI representation learning. As sketched in Fig. 2,
the network architecture comprises a global branch, a union
branch, and a human-object branch. The process begins
with computing an HOI embedding by using the CLIP text
encoder to encode HOI label prompts. This embedding is
shared across all branches. Concurrently, we detect human-
object proposals with an off-the-shelf object detector and
generate an image feature map with the CLIP visual encoder.
Each branch within our network adopts a similar design,
where the HOI features of global image, union regions, and
human-object pairs are extracted from the image feature
map, and then serve to compute scores corresponding to the
HOI embedding. Finally, we bring these branches together
using a late fusion strategy: rather than focusing on merging
semantic features, our approach concentrates on fusing the
multi-level HOI scores, offering a comprehensive view of
HOIs on different scales.

To generate supervision for model training, we leverage
CLIP to produce meaningful HOI scores for both global
images and local union regions. For global images, the entire
image is re-scaled and fed into the CLIP model to derive a
global HOI score that captures the entire context of the image.
Given that CLIP is pre-trained to understand a wide range

of image-text pairs, it can provide a holistic understanding
of visual relationships. Similarly, for union regions, we
extract regions of interest that include both the human and the
object. These regions, capturing more focused and localized
interactions, are separately fed into CLIP to generate local
and region-specific HOI scores. The local HOI scores can be
noisy due to the coexistence of multiple HOIs in the same
region or the presence of HOI irrelevant distractions, but
they complement the global supervision signal. We conduct
ablative studies on the supervision strategy in Tab. 4, which
demonstrate the application of global supervision on the
global & human-object branch, and local supervision on the
union branch, yields the most effective results.

By incorporating CLIP knowledge on multiple levels for
both model design and learning, our approach substantially
enhances the zero-shot detection capability in a variety of
HOI scenarios. In summary, our main contributions are
three-fold:

• We pioneer the challenging task of zero-shot HOI detec-
tion, a new learning setup where no HOI annotations are
used during training. This is a significant leap forward
in the field of HOI detection.

• We propose a multi-level knowledge distillation strategy
from CLIP for this task, where we seamlessly incor-
porate CLIP into the model design for detecting HOIs
on different scales, and capture both global and local
contexts to provide rich supervision for model training.

• Extensive experiments are conducted to verify the ef-
fectiveness of our CLIP integration strategies. Im-
pressively, our method achieves a strong performance
even on par with some fully-supervised and weakly-
supervised methods on HICO-DET benchmarks.

2. Related Works
HOI detection Fully-supervised HOI detection has been
the most common setup due to its superior performance.
Research in this area generally falls into two categories:
two-stage and one-stage frameworks. Two-stage meth-
ods [10, 11, 15, 29, 31, 49, 54, 63, 67, 68] adopt a hypothesize-
and-classify strategy, which first generates a set of human-
object proposals with the off-the-shelf object detector, and
then enumerates all possible HOI pairs to classify their in-
teractions. One-stage methods predict human & object loca-
tions and their interaction types simultaneously in an end-to-
end manner, which are currently dominated by transformer-
based architectures [4, 8, 24, 61, 62].

To decrease the reliance on HOI annotations, weakly-
supervised HOI detection is proposed to learn HOIs with
only image-level annotations. Due to the lack of location
annotations, current works in this domain adopts the two-
stage framework, and they focus on recognizing HOIs by
developing advanced network structures to encode context [1,
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25] and integrating external knowledge for representation
learning [50, 53]. In this work, we propose a novel zero-shot
setup without the need for any manual annotations in HOI
detection.
Zero-shot HOI detection As most HOI classes are dis-
tributed in a long-tail manner [14, 45, 53] due to the inherent
compositionality of HOIs [38], previous works on zero-shot
HOI detection [3, 14, 18–20, 32, 36, 38, 42, 45, 56] aim to
distill knowledge from observed HOI concept to unseen
classes. They can be categorized into three scenarios: un-
seen object, unseen action, and unseen combination. There
are mainly two streams of research for solving this prob-
lem. One stream [3, 14, 18, 20, 45] focuses on factorizing the
human and object features by performing disentangled rea-
soning on verbs and objects, which allows the composition
of novel HOI triplets for training and inference. Another
stream [32, 36, 38, 56] transfers knowledge from knowledge
graphs or pre-trained VLM to recognize unseen HOI con-
cepts. Despite the substantial success of these approaches
in knowledge transfer, they still rely heavily on the base
knowledge provided by the seen HOI categories. In contrast,
our setup does not require any HOI annotations for learning.

3. Method
3.1. Problem Setup

Formally, zero-shot HOI detection aims to learn an HOI
detector that takes an image I as input and generates a col-
lection of tuples O = {(bh,bo, rh,o, s

r
h,o)}. Each tuple

corresponds to a HOI instance, where bh,bo ∈ R4 indicate
human and object bounding boxes, rh,o ∈ {1, ..., N} repre-
sents the interaction type between bh and bo, and srh,o ∈ R
is the confidence score of the detected interaction.
3.2. Method Overview

To address the challenging zero-shot HOI detection task,
we leverage CLIP for multi-level knowledge integration. To
this end, we exploit the visual and textual encoders of CLIP
to construct a multi-branch network for HOI representation
learning, and use CLIP to generate global and local supervi-
sion for model training.

Model Design Due to the lack of HOI location annotations,
we adopt a typical two-stage formulation [1, 25, 64] for HOI
detection: in the first stage, we generate a group of human
proposals {(bh, sh)} and object proposals {(bo, co, so)}
with an off-the-shelf object detector [44], where sh, so ∈ R
are detection scores and co ∈ {1, ..., C} is the object class.
In the second stage, we pair up all human and object propos-
als and predict the interaction class for each combination.

In order to infuse the generalization capability of CLIP
into the HOI representation, we design a multi-branch deep
network by incorporating CLIP’s visual and textual encoders,
as sketched in Fig. 3. Specifically, the global branch per-
forms image-level HOI recognition, utilizing the HOI em-

bedding produced by CLIP textual encoder as a classifier.
In parallel, for each detected human-object pair (bh,bo),
a union branch extracts the contextual cues in their shared
region of interest, providing a comprehensive view of the
surrounding environment and potential interactions. On top
of that, a human-object branch focuses on fine-grained HOI
features and encodes the specific relational attributes of the
interactive pairs, which are used to predict their interaction
types. All the branches are integrated with a late fusion strat-
egy, where the HOI scores from different levels are combined
to obtain the final predictions.

Model Learning To train our model, we first employ CLIP
on global image and local union regions to compute the
corresponding HOI scores as supervision. Then we apply
global image supervision on the global branch and human-
object branch, and local union supervision on the union
branch. Our training procedure can be viewed as a multi-
level knowledge distillation approach from the pre-trained
CLIP model. The primary objective of this strategy is to
ensure that the HOI scores derived from distinct branches
align with the CLIP scores.

3.3. Model Design
3.3.1 CLIP Backbone
CLIP builds a powerful vision-language model by pretrain-
ing on large-scale image-text pairs. It consists of a visual
encoder FV (e.g., a ResNet [17] or Vision Transformer [9]),
a self-attention module FATT and a textual encoder FT (e.g.,
a Transformer [51]), to map the visual and textual inputs to
a shared latent space.

Specifically, for an input image I , the visual encoder
FV produces a feature map Γ ∈ RH·W ·D, where H,W,D
denote the height, width, and depth of Γ, respectively. Then
a self-attention module FATT is adopted to encode Γ to a
feature vector v ∈ RD: it takes a linear projection of the
average pooling on the spatial dimensions of Γ as query
Q ∈ RD, and a linear projection of the reshaped feature
columns as key and value K,V ∈ R(HW )·D :

Q = FQ(AvgPool(Γ)); K,V = FK(Γ),FV (Γ)

v = FMHA(Q,K, V ) (1)

where FQ,K,V are linear projection layers and FMHA is a
standard multi-head attention module [51], all incorporated
in FATT .

To leverage CLIP for HOI detection, we utilize CLIP tex-
tual encoder FT to generate HOI embedding WT ∈ RN ·D.
In a prompting strategy akin to CLIP, we adopt a common
template ‘a person is {verb}-ing {object}’ to convert HOI la-
bels into text prompts. For instance, ‘play basketball’ would
be converted to ‘a person is playing basketball’. These sen-
tences are then processed by FT to create the HOI embed-
ding WT , which is used to classify different levels of visual
features into corresponding HOI scores.
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Figure 3. A detailed introduction of our method: We design a multi-branch neural network that incorporates CLIP components to extract
multi-level information for HOI detection, which is supervised by the CLIP scores derived from global images and local union regions.

Modified Visual Encoder By default, a CLIP model with
a ResNet visual encoder downscales the feature map by
a factor of 32. Consequently, the spatial dimension of the
feature map is insufficient for detailed region-specific feature
extraction. To adapt this visual encoder for HOI detection
with a larger feature map, we tweak the original ResNet
structure. This is done by discarding the last average pooling
module and adding an upsampling layer, thereby reducing
the feature map size to only 8 times smaller than the image
resolution. To maintain compatibility with the CLIP’s self-
attention module for feature aggregation, we implement an
ROI-Align module [16] to resize the cropped feature map to
a 7 × 7 grid for global images, union regions, and human-
object proposals.

3.3.2 Global Branch
The global branch adapts the visual encoder and HOI embed-
ding to perform an image-wise HOI recognition task, thereby
capitalizing on the knowledge embedded within the CLIP
model. Firstly, we adopt an ROI-Align on the image feature
map followed by the self-attention module to compute a
global feature vector vg ∈ RD. Then the global HOI scores
sg ∈ RN are predicted by conducting the inner product
between the global vector vg and the HOI embedding WT :
sg = Softmax(WT × vg), where × is matrix multiplication.

3.3.3 Union Branch
The union region encapsulates the contextual relationship
between humans and objects, which is crucial in compre-
hending their context. To exploit these context cues, we

compute the union region bu ∈ R4 for each human pro-
posal bh and object proposal bo, and extract the corre-
sponding appearance feature vu ∈ RD via RoI-align over
the feature map Γ and self-attention aggregation. Similar
union scores su ∈ RN are computed with HOI embedding:
su = Softmax(WT × vu).

3.3.4 Human-object Branch

The human-object branch performs a fine-level classifica-
tion for interaction pairs. For each human proposal bh

and object proposal bo, we crop the feature maps from
Γ using RoI-Align, followed by a self-attention operation
to generate their appearance features vh, vo ∈ RD. We
also compute a spatial feature vsp by encoding the relative
positions of their bounding boxes (bh,bo)

1. The holistic
HOI representation vho ∈ RD is an embedding of the hu-
man and object appearance features and their spatial feature:
vho = Fho([vh; vo; vsp]), where [; ] is the concatenation op-
eration and Fho is a multi-layer perceptron (MLP). Finally,
we use the shared HOI embedding to predict the pairwise
interaction scores sho ∈ RN for each human-object combi-
nation: sho = WT × vho

3.4. Model Learning with CLIP Supervision

In this section, we first utilize CLIP to generate two types
of HOI supervision that are based on global images and
local union regions, and then design a multi-task loss on
various levels to train our multi-branch network. The overall

1For details c.f. Appendix

1808



loss function L consists of three terms: i) an image-wise
recognition loss Lg to detect global HOIs; ii) a union loss Lu

for identifying contextual regional HOIs; and iii) a pairwise
interaction classification loss Lho to guide the learning of
instance-specific HOIs. Formally, the overall loss is written
as: L = Lg + Lu + Lho.

CLIP Supervision Generation To obtain supervision for
model learning, we directly employ CLIP on the image and
union regions to generate the corresponding scores on the
training set. As shown in Fig. 3(b), we crop the image to
a square region at its center, with the side length equal to
its shortest edge. This region is subsequently resized to
224 × 224 pixels and fed into the pre-trained CLIP model
to generate the global supervision dg ∈ RN . Similarly, for
each union box bu, we crop the corresponding region in the
raw image and resize it to 224× 224 pixels, and then apply
CLIP to generate local union supervision du ∈ RN .

Image-wise loss Lg: Given the global image HOI scores
sg and CLIP supervision dg, Lg is a standard Kullback-
Leibler (KL) divergence defined as: Lg = DKL(sg||dg).
Notably, dg and sg are independent predictions from the
original CLIP and the global branch, respectively. The aim
of Lg is to align the up-scaled image feature map with the
original CLIP representation, which plays a crucial role in
extracting regional features for the union and human-object
branches.

Union loss Lu: Similarly, we take a KL divergence on
union HOI scores su and the local union supervision du to
formulate the union loss: Lu = 1

M

∑M
m=1 DKL(s

m
u ||dmu ).

Here M is the total number of human-object combinations
for a given image.

Human-object pairwise loss Lho: Inspired by [53, 55],
we adopt a Multiple Instance Learning (MIL) strategy to train
the human-object branch. In detail, we first string together
all the interaction scores to form a bag, denoted as Sho =
[s1ho; ...; s

M
ho] ∈ RM ·N , where smho stands for the score of the

m-th pair. Then we take maximization over all pairs to obtain
the image-wise interaction scores: ŝho = max

m
Sho. This

step essentially distills the most representative HOIs from the
pairwise predictions, providing a consolidated representation
of image-wise interaction scores that can be guided by the
global CLIP supervision dg. Formally, the human-object
loss Lho is a KL divergence defined on ŝho and dg: Lho =
DKL(ŝho, dg).

3.5. Inference

During the inference stage, we combine multiple scores to
obtain the final interaction score srh,o for each human-object
pair (bh,bo). It includes the global HOI scores sg, the

union score su, the normalized pairwise interaction scores
pho (rather than sho), and the object detection scores ⟨sh, so⟩
as follows:

srh,o = sg · su · pho · (sh · so)γ (2)

where γ is a hyper-parameter to balance the HOI scores
and the object detection scores.

It is noteworthy that we avoid using the original pairwise
interaction score sho as it fails to measure the contribution
of each pair when multiple pairs in an image share the same
interaction. Instead, we institute a competitive environment
among the pairs by applying a Softmax operation on Sho:
S̄ho = Softmax

m
(Sho). Following this, we derive the normal-

ized pairwise interaction scores pho = σ(ŝho) · s̄ho, where
s̄ho is a row from S̄ho and σ is Sigmoid function.

4. Experiments
4.1. Datasets and Metrics

We use the public HOI detection dataset HICO-DET to
benchmark our model. The dataset contains 37,633 training
images and 9,546 test images. It includes C = 80 common
objects (the same as MSCOCO [33]) and 117 unique action
categories, together forming N = 600 HOI categories.

We adopt the mean average precision (mAP) metric [6]
for evaluating HOI detection results. A human-object pair is
deemed positive when the predicted human and object boxes
have an IoU of at least 0.5 with their ground truth boxes, and
the HOI class is correctly classified.

4.2. Implementation Details

We use an off-the-shelf Faster R-CNN [44] pre-trained
on MSCOCO to generate up to 100 object candidates for
each image. It’s crucial to note that we only keep the detec-
tion results and do not re-use the feature maps. We rather
employ a CLIP with a ResNet-50 visual encoder, which is
pre-trained on the YFCC-15M dataset [48], with an image
resolution of 224 × 224. The CLIP model we used was
implemented by OpenCLIP 2, which achieved an mAP of
35.5 on zero-shot image-wise HOI recognition on the test set,
suggesting that it is capable of providing a comprehensive
holistic understanding of HOIs.

During training, we use a larger image resolution with a
minimum edge length of 384, while maintaining the original
aspect ratio of the input images in our multi-branch network.
We freeze the weights of the pre-trained visual encoder and
optimize the remaining modules by AdamW, with a learning
rate of 1e-4 and batch size of 16. The model is trained for
30K iterations on two NVIDIA V100 GPUs. After 15K
iterations, the learning rate is decayed by a factor of 10.
Following previous works [30, 63], we set feature dimension
D as 1024 and the detection score weight γ as 2.8.

2https://github.com/mlfoundations/open_clip
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Table 1. Results comparison of different methods on HICO-DET test set (a full table of results comparison c.f. Appendix). †means
re-implementation in [53]. Here FS, WS, and ZS indicate fully-supervised, weakly-supervised, and zero-shot HOI detection methods,
respectively. The notation (D) means the visual encoder or the detector is pre-trained on dataset D, D∈ {COCO, HICO-DET, YFCC-15M}.

S Methods Visual Encoder Detector HICO-DET (%)
Full Rare Non-Rare

F
S

InteractNet [12] RN50-FPN (COCO) FRCNN (COCO) 9.94 7.16 10.77
iCAN [11] RN50 (COCO) FRCNN (COCO) 14.84 10.45 16.15
TIN [30] RN50-FPN (COCO) FRCNN (COCO) 17.22 13.51 18.32
PMFNet [54] RN50-FPN (COCO) FRCNN (COCO) 17.46 15.56 18.00
HOTR [23] RN50+Transformer (COCO) DETR (HICO-DET) 25.10 17.34 27.42
QPIC [47] RN101+Transformer (COCO) DETR (COCO) 29.90 23.92 31.69
GEN-VLKT [32] RN50+Transformer (HICO-DET) DETR (HICO-DET) 33.75 29.25 35.10
HOICLIP [38] RN50+Transformer (HICO-DET) DETR (HICO-DET) 34.69 31.12 35.74

W
S

Explanation-HOI† [1] ResNeXt101 (COCO) FRCNN (COCO) 10.63 8.71 11.20
MX-HOI [25] RN101 (COCO) FRCNN (COCO) 16.14 12.06 17.50
PPR-FCN† [64] RN50 (YFCC-15M) FRCNN (COCO) 17.55 15.69 18.41
PGBL [53] RN50 (YFCC-15M) FRCNN (COCO) 22.89 22.41 23.03

ZS

baseline RN50 (YFCC-15M) FRCNN (COCO) 10.48 9.45 10.78
ours RN50 (YFCC-15M) FRCNN (COCO) 17.12 20.26 16.18

4.3. Quantitative Results

As shown in Tab. 1, with our multi-level knowledge in-
tegration strategy from CLIP, our approach achieves 17.12
mAP with ResNet-50, which is on par or even surpasses
some fully-supervised (FS) [11, 12, 30, 54] and weaky-
supervised (WS) [1, 25, 64] methods. For the FS and WS
methods, we observe the mAP on Non-rare classes (i.e.,
those with more than 10 HOI instance annotations in the
training set) is always higher than on Rare classes. This
skew is to be expected given that HICO-DET is inherently
an imbalanced dataset [14, 45]. Models tend to learn fre-
quently occurring patterns for which they have training su-
pervision. Despite certain HOIs being simpler to learn, their
performance may lag due to the relative lack of supervision,
compared to the more challenging yet annotated HOIs.

Remarkably, we obtain a higher mAP on Rare classes
compared to Non-Rare classes in our results. This conse-
quence stems from the integration of CLIP for HOI repre-
sentation learning and model supervision. Firstly, CLIP is
pre-trained on large-scale image-text pairs and has poten-
tially encountered every imaginable HOI scenario during its
pre-training phase. We build our model on top of CLIP com-
ponents, which allows us to exploit its strong generalization
capability for learning a better HOI representation. Secondly,
when comparing our results with PGBL [53], which also ex-
ploits CLIP for HOI representation learning and achieves the
best performance in a weakly-supervised setting (i.e., image-
level HOI annotations are available). We experience a small
drop on Rare classes (from 22.41 −→ 20.26), but a significant
drop on Non-Rare classes (from 23.03 −→ 16.18). This dis-
parity suggests that the learning of Non-Rare HOIs is more
reliant on strong annotations, whereas Rare HOIs can be

Table 2. Comparison of inference speed and performance be-
tween baseline, training-free (TF) approach, and our method. TF*
means dg is added to predict srho on top of TF.

Exp Speed (fps) mAP (%)
Full Rare Non-Rare

base 56.19 10.48 9.45 10.78
TF 6.52 11.19 13.98 10.37

TF* 6.47 12.24 15.75 11.19
ours 35.64 17.12 20.26 16.18

effectively learned by distilling the ‘dark knowledge’ from
CLIP scores. Consequently, we sidestep issues associated
with the long-tailed distribution.

4.4. Ablation Studies

In this section, we mainly assess the effectiveness of each
component with detailed ablation studies on HICO-DET
dataset. We first introduce our baseline, based on which we
will answer some interesting questions regarding the model
design and learning.

Baseline: Our baseline model is constructed on top of the
human-object branch, where the human-object representa-
tion vho is used to predict their normalized interaction scores
sho, which are supervised by Lg. During the inference pro-
cess, the final interaction scores in 2 are recomputed as
srh,o = pho · (sh · so)γ .

Why not a training-free (TF) approach? In a TF ap-
proach, we directly apply CLIP scores on union regions
du along with object detection scores ⟨sh, so⟩ for inference.
This reformulates Eq. 2 as: srh,o = du · (sh · so)γ .

While this straightforward approach only relies on a pre-
trained CLIP and avoids the need for model training, it has
two notable drawbacks compared to our method: (i) It is
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Table 3. Ablation study of multi-level incorporation on HICO-
DET dataset. The baseline is the human-object (h-o) branch, and
we add other branches on top of it. We denote ’early’ as the early
fusion of union features and ’late’ as the late fusion of union scores.

Exp Branch mAP (%)
h-o union global Full Rare Non-Rare

0 ✓ - - 10.48 9.45 10.78
1 ✓ ✓(late) - 14.49 16.33 13.95
2 ✓ - ✓ 15.84 17.91 15.21
3 ✓ ✓(early) ✓ 14.64 16.09 14.21
4 ✓ ✓(late) ✓ 17.12 20.26 16.18

Table 4. Ablation study of different supervision strategies on
HICO-DET dataset. g means supervision from dg and u means
supervision from union region CLIP scores du. g+u indicates using
both supervisions. In this table, the global branch is added for all
the experiments and supervised with dg .

Exp Branch mAP (%)
union h-o Full Rare Non-Rare

0 g g 15.05 16.76 14.55
1 u u 14.22 15.00 13.99
2 u g 17.12 20.26 16.18
3 u g+u 15.83 18.20 15.13
4 g+u g 16.96 19.54 16.18

time-consuming for inference. For each image, the approach
requires forwarding the CLIP model for the image and all
union regions, resulting in M + 1 forward passes. As in-
dicated in Tab. 2, given the detected bounding boxes, the
inference speed for the TF approach is only 6.52 frames per
second (fps) on a single Nvidia V100 GPU with a batch
size of 1, whereas our method achieves an fps of 35.64. (ii)
The performance is low, even enhanced by dg (i.e., TF*).
This issue arises because both dg and du correspond to large
regions, and as such, they fail to specify the interacted hu-
man and object pair. Consequently, the CLIP scores, when
directly used for inference, tend to be noisy. In contrast, our
method opts to distill knowledge from these scores at dif-
ferent levels, leading to a significant performance increase,
from an mAP of 12.24 to 17.12.

Does multi-level CLIP knowledge distillation strategy
work? As demonstrated in Tab. 3, the answer is defini-
tively yes. We added the union branch and the global branch
on top of our baseline model (Exp 0). The results indi-
cate that the union branch enhances the mAP from 10.48 to
14.49 (Exp 0 vs. 1), while the global branch raises the mAP
from 10.48 to 15.84 (Exp 0 vs. 2). When we combine both
branches, the mAP sees a more significant improvement,
from 10.48 to 17.12 (Exp 0 vs. 4). These results under-
score the effectiveness of the multi-level CLIP knowledge
distillation strategy.

How to incorporate contextual cues from the union re-
gion? In Tab. 3, we also explore two different designs

Table 5. Generalization to Unseen Categories. We randomly
select N ′ HOI categories for model learning.

N ′ mAP (%)
Full Rare Non-Rare

100 15.25 18.97 14.15
300 16.45 19.48 15.55
600 17.12 20.26 16.18

for integrating the contextual union branch, including an
early fusion strategy and a late fusion strategy. For the early
fusion strategy, we concatenate the union feature vu with
human-object appearance features ⟨vh, vo⟩ and their spatial
encoding vsp to compose vho. The experimental results (Exp
3 vs. 4) indicate that the early fusion strategy performs con-
siderably worse than a late fusion strategy (14.64 vs 17.12),
and even underperforms Exp 2 where the union branch is
not included.

We hypothesize that this is because the union feature,
encompassing a large region, may include other HOIs or
background distractions, making it noisy. These irrelevant
features may not offer valuable contextual information for
HOI representation learning, particularly in a zero-shot setup
where the training signals are also somewhat noisy. Con-
versely, with the late fusion strategy, the union branch aims to
learn context-aware union HOI scores. Although these union
scores cannot precisely describe the specific human-object
pair, they provide some contextual HOI cues that are com-
patible with the HOI predictions from the other branches.

What kind of supervision works best for different
branches? In Tab. 4, we compare different supervision
strategies for each branch. By default, we supervise the im-
age branch with global supervision dg. Then, we apply dg
on the union branch in the same manner as Lho in Exp 0.
This results in an mAP drop from 17.12 to 15.05, indicating
that the union features, being noisy and non-discriminative,
are not suitable for a MIL strategy. Besides, we apply local
supervision du on the human-object branch in Exp 1 and
observe the drop in mAP to 14.22. This is because of the
noisiness of du, as it does not always correspond accurately
to a specific human-object pair.

Experimental results reveal that the mismatch of the su-
pervision signals can result in a performance drop, and Com-
bining both types of supervision does not necessarily lead to
better results (as seen in Exp 3 and 4).

Can our method generalize to unseen categories? To
answer this question, we randomly select N ′ out of N =
600 HOI categories on HICO-DET during training. This
implies the class dimensions of predicted scores ⟨sg, su, sho⟩
and CLIP supervisions dg, du are set to N ′. For inference,
we evaluate across all 600 categories. As shown in Tab. 5,
even though the training is limited to just 100 categories,
we observed only a slight 1.87 mAP drop compared to the
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hold-bicycle ours: 32.6%  base: 47.9%

hold-laptop   ours: 2.9%  base: 0.8%

sit on-chair  ours: 0.7% base: 24.8%

wield-knife  ours: 3.3% base: 46.8%

talk on-cell phone ours: 2.2% base: 36.3%

lick spoon  ours: 1.8%  base: 21.7%

paint-fire hydrant ours: 0.0% base: 0.2%

direct car   ours: 0.2%  base: 0.9%

(a) (b) (c) (d)

Figure 4. Visualization of the HOI detection results. We compare our method with the baseline model based on the relative ranking of the
detection scores, which is presented in percentile format. The percentiles highlighted in green signify the model’s confident HOI predictions,
whereas those in red indicate negative HOI predictions that the model treats as background.

final model. This indicates that our approach effectively
captures common knowledge that can be shared across all
HOI categories.

4.5. Qualitative Results

Figure 4 offers a qualitative evaluation of our method.
Due to the way we incorporate multiple scores into our fi-
nal prediction srho in our methodology, it’s not practical to
directly compare the HOI scores with the baseline. Instead,
our visualization and comparison with the baseline model
are based on the relative ranking of the detection scores
rather than their absolute values. Concretely, for each HOI
prediction, we present its ranking amongst all predictions
belonging to the same category across the entire test set. The
ranking is exhibited in the form of a percentile (top p%),
wherein a lower percentile value (smaller p) signifies the
model’s strong confidence in the positive prediction (repre-
sented by green colored numbers).

As depicted in Fig.4(a), both our method and the base-
line successfully identify some Rare HOI classes. However,
when the objects are quite small, as shown in Fig.4(b), our
model tends to offer more confident predictions, attributing
this advantage to its ability to factor in contextual cues. For
example, in the top image, our model infers that a baby is
likely licking a spoon due to the context of sitting in a baby
chair with residual sauce visible. In a similar vein, Fig.4(c)
showcases situations where objects are heavily occluded.
Despite this challenge, our model manages to discern some
unapparent relationships by considering the overall environ-
ment. As an illustration, in the image at the bottom, a man

in an office, engaged in computer work on the table, is more
likely identified by our model as ’sitting on a chair’, which
would be a challenging task for the baseline method.

5. Limitations and Future Works
Although inspiring results have been achieved by our

method, the zero-shot HOI detection is far from satisfactory.
As an example of its limitations, the top image in Fig.4(d)
shows a typical failure case where our model incorrectly
associates a person with a computer that is considerably dis-
tant. This error can be attributed to the absence of adequate
supervision for pairwise associations. Furthermore, the bot-
tom image exhibits a scenario where our method struggles to
recognize relations when the object is completely obscured.

A potential area for further exploration based on this
work involves the detection of ambiguous HOI associations.
Previous research has investigated this issue within fully-
supervised or weakly-supervised settings [31, 35, 53]. How-
ever, transferring these learnings to a zero-shot setup re-
mains a largely unexplored area. Besides, this study em-
ploys a classic CLIP structure for zero-shot HOI detection.
Nonetheless, it is intriguing to explore various adaptations
of CLIP [58–60] for enhancing performance in this task.
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