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Abstract

In monocular 3D human pose estimation, target motions
are generally stable and continuous, which indicates that
joint velocity can provide valuable information for better
estimation. Therefore, it is critical to learn the joint mo-
tion trajectory and spatio-temporal information from veloc-
ity. Previous works have shown that Transformers are effec-
tive in capturing the relationship between tokens. However,
in practice, only 2D position is available and 3D velocity
has not been explicitly used as a model input. To address
this challenge, we propose TMT (Two-step Mixed-Training
strategy), a transformer-based approach that effectively in-
corporates 3D velocity into the input vector during training,
allowing for better learning of relevant features in the shal-
low layers. Extensive experiments demonstrate that TMT
significantly improves the performance of state-of-the-art
models, such as MixSTE, MHFormer, and PoseFomer, on
two datasets: Human3.6M and MPI-INF-3DHP. TMT out-
performs the state-of-the-art approach by up to 13.8% on
the Human3.6M dataset.

1. Introduction

The primary objectives of human pose estimation are
to localize joints and provide a representation of the hu-
man body from pictures or videos. Current 3D human
pose estimation (3DHPE) methods can be classified into
two types. The first type predicts 3D estimations directly
from raw images [20, 21]. The second type, known as 2D-
to-3D lifting approaches [3, 16, 34], elevates the provided
2D estimation results to 3D positions. Generally, the sec-
ond method performs better than the first method due to the
two-stage inference process with state-of-the-art 2D pose
detectors [4,26]. In TMT, the focus is on these lifting meth-
ods. 3D human pose estimation has a wide range of ap-
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Figure 1. The overview of the TMT. Blue and red arrows show the
data flow of training steps 1 and 2 respectively. The joints’ velocity
vectors comes from the 3D target position difference. Inference
only uses step 1 with a zero vector.

plications, such as human-robot interaction [28] and action
recognition [36, 38].

However, the mapping from 2D to 3D is not unique,
which is different for subjects with different body shapes.
To alleviate depth ambiguity and occlusion, considering
the success of Transformer [31], Zheng et al. [40] model
the spatial correlations among all joints in a frame and the
temporal correlations among consecutive frames. It takes
a video as input and predicts the 3D pose estimation for
the central frame. Compared with PoseFormer [40] one-
time spatial and temporal encoding, MixSTE [37] is pro-
posed to utilize spatial and temporal blocks alternately to
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obtain better spatio-temporal feature encoding. Addition-
ally, MixSTE extends the output from the central frame
to the entire sequence of input video, significantly reduc-
ing computation as the sequence length increases. With a
seq2seq model, MixSTE achieves accurate and fast estima-
tion simultaneously.

In previous studies, the 3D velocity vector has played
various roles, primarily in loss functions and additional
smoothing models. In addition to innovating the 2D-to-3D
lifting model structures, SmoothNet [35] utilizes velocity
and acceleration to mitigate the jitters in 3DHPE by incor-
porating an additional stage into the lifting output. Smooth-
Net significantly enhances the temporal smoothness of ex-
isting pose estimators by effectively capturing the long-
term temporal relations of each joint, while disregarding the
noisy correlations among joints. In [1, 9], velocity vectors
are employed as a loss function during training to enforce
temporal smoothness constraints, ensuring temporal consis-
tency across sequences.

However, current methods have not considered training
neural networks to effectively capture 3D velocity features
in the shallow layers. This highlights the need to explic-
itly incorporate 3D velocity vectors as feature inputs into
the model. In practice, the velocity can be approximated by
calculating the position difference between adjacent frames.
From a statistical perspective, our experiments demonstrate
a positive correlation between the Mean Per Joint Position
Error (MPJPE) for each joint and the norm of its velocity
vector, as illustrated in Fig. 2. Both intuition and statistics
suggest that exploring the potential connections between
joint position and velocity is worthwhile. To address this,
transformer-based models, which have been proven to ef-
fectively capture relationships between tokens [37, 40], are
employed to capture these connections.

Further experiments have demonstrated that 3D velocity
vectors outperform 2D vectors as input features. Unlike 2D
velocity, which is ambiguous and corresponds to multiple
solutions, 3D velocity contains sufficient information to ac-
curately describe 3D motion. Additionally, the absence of
3D velocity during inference has motivated us to develop a
new training strategy that incorporates this valuable feature
as input. As shown in Tab. 7, it has been proven that solely
using 3D velocity as input during training, while exclud-
ing it during inference, can actually detriment the general-
ization of models. This leads to inconsistency between the
information in the training data and the inference data.

To address the aforementioned issues, we propose a so-
lution called TMT. TMT consists of two training steps and
its structure is depicted in Fig. 1. We conducted experi-
mental evaluations on two widely used human pose estima-
tion benchmarks, namely Human3.6M [10] and MPI-INF-
3DHP [19]. The results demonstrate that TMT achieves
state-of-the-art performance when using ground truth as the

2D input. Our contributions can be summarized as follows:

- TMT is the first approach to propose a training strategy
that directly incorporates the 3D velocity vector as in-
put, without requiring it during inference. By employ-
ing TMT, we effectively enhance the model accuracy
with minimal overhead.

- TMT introduces the synthesis of 2D keypoints with
varying qualities, enabling us to explore the impact of
input quality using synthesized data.

- Our approach achieves state-of-the-art performance on
both Human3.6M and MPI-INF-3DHP datasets, with
losses reduced to 18.6 mm and 48.3 mm respectively.

2. Related Work
2.1. 3D human pose estimation

3D human pose estimation can be divided into monocu-
lar and multi-view methods based on perspective data. Our
work focuses on and summarizes 3D monocular methods.
There are two main approaches used in monocular methods:
direct estimation (end-to-end manner) and 2D-to-3D lifting.
The direct estimation approach [22,27,29] estimates the 3D
pose coordinates directly from the raw input, without rely-
ing on 2D pose coordinates. However, due to the advance-
ments in reliable 2D keypoints detection methods [2, 4, 26],
the 2D-to-3D lifting approach [5, 15, 17, 39], which utilizes
the 2D pose coordinates to estimate the 3D pose coordi-
nates, has shown better performance. In our proposed strat-
egy, TMT, we also adopt the 2D-to-3D lifting method in the
estimation process.

Based on these 2D intermediate representation, lots of
works focus on the lifting process. For a single frame, Mar-
tinez et al. [18] utilize residual network to regress 3D hu-
man pose estimation from 2D keypoints. Furthermore, to
capture the correlations in temporal domain and improve
the accuracy, different network architectures [1, 7, 30] have
been proposed. These methods use 2D keypoints sequence
from videos to generate 3D human pose estimations. Long-
Short-Term-Memory (LSTM) provides another way to ex-
plore temporal correlations in the 2D keypoints sequence.
Hossain and Little [9] proposed a recurrent network that
uses LSTM to explore the correlation of the 2D sequence in
the temporal domain. Currently, some works propose to fo-
cus on the correlation in the spatial-temporal domains rather
than just the temporal domain. In the spatial-temporal do-
main, features such as bone length [6] and symmetry [13]
are considered to improve performance.

For 3D human pose estimation, the motion trajectory
plays a crucial role in learning the relationship between
joints. The learning of motion trajectory is divided into two
parts: the time domain and the space domain. The trans-
former can efficiently discover the relationship between
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(a) Total MPJPE (mm) and average velocity (mm) of each joint on the test set.

(b) The correlation of total MPJPE and average velocity.

Figure 2. The comparison of total MPJPE of each joint and average velocity.

each token through data-driven optimization. Currently, the
use of the transformer in 3D human pose estimation can
be categorized into two approaches: modeling joints si-
multaneously in time and space within a continuous frame,
and modeling joints within a continuous frame separately
in the time domain and the space domain. So far, the sec-
ond approach generally performs better. Therefore, we have
chosen three state-of-the-art models, namely MixSTE [37],
PoseFormer [40], and MHFormer [12], for evaluation.

PoseFormer [40] is the first to propose a highly competi-
tive convolution-free transformer network, in contrast to the
previous state-of-the-art models that rely on CNNs. In order
to effectively capture local joint correlations, PoseFormer
utilizes two separate transformers for spatial and temporal
information. The input to PoseFormer consists of a 2D se-
quence of joints, and the output is the 3D position of the
central frame.

MixSTE [37] builds upon the work of PoseFormer by
introducing seq2seq transformer architectures and making
further improvements. In order to capture both spatial
dependencies and temporal motion in an input sequence,

MixSTE incorporates a spatial transformer block (STB)
and a temporal transformer block (TTB), achieving promis-
ing results. Initially, the input is projected into a high-
dimensional feature space with dimension dm. To preserve
location information in both the spatial and temporal do-
mains, MixSTE utilizes a location embedding matrix. The
basic block of MixSTE employs the STB and TTB in an al-
ternating manner to learn spatial and temporal correlations.
Finally, a regression head is employed to concatenate the
output of the TTB and reduce the dimensionality from dm
to 3, generating the desired output format.

MHFormer [12] effectively models multi-hypothesis de-
pendencies and establishes strong relationships among hy-
pothetical features, enabling it to learn spatio-temporal rep-
resentations of multiple plausible pose hypotheses. The
task can be divided into three parts: (1) generating multiple
initial hypothesis representations; (2) facilitating communi-
cation and merging among the multiple self-hypotheses to
form a unified representation, which is subsequently parti-
tioned into multiple diverging hypotheses; (3) merging mul-
tiple hypotheses to obtain the final 3D pose.
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2.2. Usage of velocity in 3D human pose estimation

SmoothNet [35] utilizes velocity and acceleration infor-
mation to refine the output of the 3D estimator and enhance
temporal smoothness. The velocity and acceleration values
are obtained by calculating the differences between succes-
sive 3D position estimations. These values are then used
in an additional network to eliminate jitters in the output.
In contrast to SmoothNet, our approach employs the ve-
locity derived from the 3D ground truth to directly train
the estimator, without the need for an extra network. This
eliminates the requirement for additional parameters and re-
duces computational complexity. As shown in Table 4, our
method, TMT, achieves improved accuracy without signifi-
cant computation and storage overhead.

In the works [1, 9], a derivative loss is employed to en-
force temporal smoothness in the estimation of joints’ ve-
locity. The 21 joints are divided into three parts: palm root,
finger mid, and finger terminal. The derivative loss is then
utilized during the backpropagation process to improve the
temporal smoothness of the joint velocity estimation.

Based on the analysis and comparison mentioned earlier,
it has been observed that the MPJPE is positively correlated
with the velocity norm. However, existing methods do not
directly consider the velocity vector as an input. While it is
possible to derive the 3D velocity vector from ground truth
during training, it is not generally available for inference.
In order to address this limitation, we propose the TMT
method.

3. Approach
Our strategy involves two steps in the training process:

training steps 1 and 2. The difference between these two
steps lies in the input contents. In step 1, we merge the 2D
position estimation from detectors with the 3D zero vec-
tor to create a 5D vector, which serves as the input for the
Transformer-based 3D estimator. In step 2, we combine the
2D position estimation with the 3D velocity vector, derived
from the differentiation of the 3D ground truth, to obtain a
5D vector input.

3.1. Training and inference process

As shown in Fig. 1, the network takes 5D concatenation,
which containing 2D key point coordinates P2 ∈ RN×T×2

with N joints and T frames, as input. There are two train-
ing steps, Training step 1 and 2. First, 2D keypoint coor-
dinates are padded with zero vector Z3 ∈ RN×T×3 into
PZ3 ∈ RN×T×5. In the training step 2, 2D keypoint co-
ordinates P2 and 3D joints velocity vector V3 ∈ RN×T×3

are merged into PV 3 ∈ RN×T×5. PZ3 and PV 3 are the
inputs of TMT. 3D prediction sequence P3 ∈ RN×T×3 is
the output of Transformer models. The inference process is
the same as the training step 1, using the PZ3 as input. The

calculation formula of V3 is as follows:

V3(i,j) = [P3(i,j) − P3(i−1,j)]/∆T (1)

V3(i,j) represents the velocity vector of j-th joint in i-th
frame , where i ∈ [2, T ] and j ∈ [1, N ]. The length of the
V3(i,j) is T − 1. In order to ensure the consistency of the
length of the input sequence, V3(1,j) is set to 0. P3 denotes
the ground truth 3D positions.

∆T is set to one for simplicity. Since ∆T is assumed to
be the same over the entire video input sequence, it becomes
a redundant scaling factor and can actually be omitted. With
the additional 3D velocity information, TMT generates bet-
ter 3D prediction sequence. Under TMT, The model param-
eters are updated in step 1 and step 2 alternatively.

There are three reasons for this approach. The first one,
as the goal of TMT, is to add the 3D velocity vector into
the input as a new characteristic. The second is forcing
the model to fit the input data from two distribution with
different input structure. The connections for velocity are
dropped out when padding zero, preventing from overfit-
ting to velocity vector [25]. The third reason is to follow
the inference requirement. Because the 3D velocity vectors
are not available for input of lifting process in application,
unlike the training process with two steps, the inference pro-
cess has only step 1, that is, using 2D position estimation
and 3D zero vector as input. As justification, choosing zero
vector mimics the idea of zero padding, with the fact that the
average velocity is typically zero. Also, using zero vector
follows the regularization of dropout method, while regu-
larly alternative padding makes them different.

To handle the increased dimensionality, the input dimen-
sions are modified from 2D keypoints to 5D composed vec-
tors. This modification can be achieved by resetting the
model parameters of the first layer. By adjusting the input
dimensions, the model can effectively handle the increased
dimensionality of the composed vectors.

3.2. Synthesize 2D keypoints with various qualities

The quality of the 2D keypoints input has a significant
impact on the effectiveness of TMT. To investigate this im-
pact, we utilize CPN as the 2D detector and generate 2D
keypoints of varying quality by gradually adjusting the CPN
keypoints towards the 2D ground truth. This allows us to ex-
plore the influence of 2D keypoints input quality on TMT.
The calculation formula is as follows:

P2(i,j) = CPN(i,j) +m× (GT(i,j) − CPN(i,j)) (2)

m ∈ [0, 1] represents the proximity of the final 2D key-
points to the 2D GT. P2(i,j) ∈ R2 indicates the final 2D key-
points of j-th joint in i-th frame under m. CPN(i,j) ∈ R2

represents the original 2D keypoints of j-th joint in i-th
frame from CPN. GT(i,j) ∈ R2 represents 2D GT of j-th
joint in i-th frame.
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Protocol 1 (MPJPE, GT) Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.
Hossain & Little [9] 35.2 40.8 37.2 37.4 43.2 44.0 38.9 35.6 42.3 44.6 39.7 39.7 40.2 32.8 35.5 39.2
Liu et al. [16] (T=243) 34.5 37.1 33.6 34.2 32.9 37.1 39.6 35.8 40.7 41.4 33.0 33.8 33.0 26.6 26.9 34.7
Wang et al. [32] (T=96) 23.0 25.7 22.8 22.6 24.1 30.6 24.9 24.5 31.1 35.0 25.6 24.3 25.1 19.8 18.4 25.6
PoseFormer [40] (T = 81) 30.0 33.6 29.9 31.0 30.2 33.3 34.8 31.4 37.8 38.6 31.7 31.5 29.0 23.3 23.1 31.3
MHFormer [12] (T = 9) - - - - - - - - - - - - - - - 36.6
MHFormer [12] (T = 27) - - - - - - - - - - - - - - - 34.3
P-STMO [24] (T = 243) 28.5 30.1 28.6 27.9 29.8 33.2 31.3 27.8 36.0 37.4 29.7 29.5 28.1 21.0 21.0 29.3
MixSTE [37] (T=81) 25.6 27.8 24.5 25.7 24.9 29.9 28.6 27.4 29.9 29.0 26.1 25.0 25.2 18.7 19.9 25.9
MixSTE [37] (T=243) 21.6 22.0 20.4 21.0 20.8 24.3 24.7 21.9 26.9 24.9 21.2 21.5 20.8 14.7 15.7 21.6
TMT (T=9,MHFormer-based) 30.5 34.9 33.4 33.1 36.0 41.3 35.5 32.8 41.3 44.3 35.2 35.5 35.6 27.4 28.9 35.0
TMT (T=27,MHFormer-based) 31.6 35.3 33.8 32.3 33.9 36.8 35.3 32.5 39.9 41.2 32.9 33.6 32.6 25.6 26.8 33.6
TMT (T=81,MixSTE-based) 24.6 25.3 22.5 23.3 23.7 28.2 26.5 26.1 26.6 30.0 24.2 23.7 23.8 16.8 18.5 24.2
TMT (T=243,MixSTE-based) 18.7 18.2 18.7 18.1 18.8 21.5 19.8 18.3 23.8 23.4 18.8 17.0 17.7 12.7 13.9 18.6

Table 1. The comparison results on Human3.6M under Protocol 1 (no rigid alignment applied) using 2D ground truth as the input. The
highlighted numbers in bold are the best results of different motions.

Protocol 1 (MPJPE, 2D Detectors) Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.
Pavlakos et al. [21] 48.5 54.4 54.4 52.0 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2
Cai et al. [1](CPN, T=7) 44.6 47.4 45.6 48.8 50.8 59.0 47.2 43.9 57.9 61.9 49.7 46.6 51.3 37.1 39.4 48.8
Pavllo et al. [23] 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8
Yeh et al. [33] 44.8 46.1 43.3 46.4 49.0 55.2 44.6 44.0 58.3 62.7 47.1 43.9 48.6 32.7 33.3 46.7
Lin [14](T=50) 42.5 44.8 42.6 44.2 48.5 57.1 52.6 41.4 56.5 64.5 47.4 43.0 48.1 33.0 35.1 46.6
Liu et al. [16] (T=243) 41.8 44.8 41.1 44.9 47.4 54.1 43.4 42.2 56.2 63.6 45.3 43.5 45.3 31.3 32.2 45.1
Wang et al. [32] (CPN, T=96) 40.2 42.5 42.6 41.1 46.7 56.7 41.4 42.3 56.2 60.4 46.3 42.2 46.2 31.7 31.0 44.5
Chen et al. [3] (CPN, T=243) 41.4 43.5 40.1 42.9 46.6 51.9 41.7 42.3 53.9 60.2 45.4 41.7 46.0 31.5 32.7 44.1
PoseFormer [40] (T=9) 45.4 48.6 45.9 50.1 50.6 59.7 48.3 44.8 59.0 62.9 50.6 48.6 52.8 37.8 41.3 49.9
PoseFormer [40] (CPN, T=81) - - - - - - - - - - - - - - - 44.3
MHFormer [12] (CPN, T=9) - - - - - - - - - - - - - - - 47.8
MHFormer [12] (CPN, T=27) 42.2 45.0 42.6 43.9 48.6 56.2 43.1 41.3 57.6 64.2 46.8 43.3 46.9 33.0 35.1 45.9
MHFormer [12] (CPN, T=81) 41.1 45.2 41.2 43.1 45.6 52.7 42.2 42.5 54.4 61.3 45.1 42.8 46.9 31.4 33.1 44.5
MixSTE [37] (CPN,T=81) 39.8 43.0 38.6 40.1 43.4 50.6 40.6 41.4 52.2 56.7 43.8 40.8 43.9 29.4 30.3 42.4
MixSTE [37] (CPN,T=243) 37.6 40.9 37.3 39.7 42.3 49.9 40.1 39.8 51.7 55.0 42.1 39.8 41.0 27.9 27.9 40.9
TMT (CPN,T=9,PoseFormer-based) 45.4 48.6 45.9 50.1 50.6 59.7 48.3 44.8 59.0 62.9 50.6 48.6 52.8 37.8 41.3 49.8
TMT (CPN,T=9,MHFormer-based) 43.8 46.6 45.7 46.8 49.5 58.8 44.6 43.6 58.2 66.5 48.5 45.8 50.1 34.5 36.8 48.0
TMT (CPN,T=27,MHFormer-based) 42.0 44.7 42.5 43.7 48.2 55.7 42.9 41.0 57.2 64.0 46.6 43.0 46.6 32.9 34.7 45.7
TMT (CPN,T=81,MHFormer-based) 41.2 45.2 41.2 42.7 45.5 52.8 42.3 42.2 54.3 61.5 45.5 42.7 46.8 31.2 33.0 44.5
TMT (CPN,T=81,MixSTE-based) 39.5 43.1 38.7 39.8 43.1 50.3 40.3 41.8 51.8 56.8 43.4 50.8 44.0 29.1 30.0 42.2
TMT (CPN,T=243,MixSTE-based) 37.3 40.5 37.6 40.4 40.6 50.4 38.5 39.6 51.8 53.8 41.9 38.8 41.2 28.1 27.5 40.5

Protocol 2 (P-MPJPE, 2D Detectors) Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.
Hossain & Little [9] 35.7 39.3 44.6 43.0 47.2 54.0 38.3 37.5 51.6 61.3 46.5 41.4 47.3 34.2 39.4 44.1
Pavlakos et al. [21] 34.7 39.8 41.8 38.6 42.5 47.5 38.0 36.6 50.7 56.8 42.6 39.6 43.9 32.1 36.5 41.8
Cai et al. [1] (CPN,T=7) 35.7 37.8 36.9 40.7 39.6 45.2 37.4 34.5 46.9 50.1 40.5 36.1 41.0 29.6 32.3 39.0
Liu et al. [16] (T=243) 32.3 35.2 33.3 35.8 35.9 41.5 33.2 32.7 44.6 50.9 37.0 32.4 37.0 25.2 27.2 35.6
Wang et al. [32] (CPN,T=96) 31.8 34.3 35.4 33.5 35.4 41.7 31.1 31.6 44.4 49.0 36.4 32.2 35.0 24.9 23.0 34.5
PoseFormer [40] (T=81) 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5
Chen et al. [3] (CPN,T=243) 32.6 35.1 32.8 35.4 36.3 40.4 32.4 32.3 42.7 49.0 36.8 32.4 36.0 24.9 26.5 35.0
MixSTE [37] (CPN,T=243) 30.8 33.1 30.3 31.8 33.1 39.1 31.1 30.5 42.5 44.5 34.0 30.8 32.7 22.1 22.9 32.6
TMT (CPN,T=243,MixSTE-based) 30.6 32.8 30.1 31.8 33.2 38.9 31.4 30.3 41.8 43.7 33.9 30.5 33.0 21.8 22.2 32.4

MPJVE (2D Detectors) Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.
Pavllo et al. [23] 3.0 3.1 2.2 3.4 2.3 2.7 2.7 3.1 2.1 2.9 2.3 2.4 3.7 3.1 2.8 2.8
Chen et al. [3] (CPN, T=243) 2.7 2.8 2.0 3.1 2.0 2.4 2.4 2.8 1.8 2.4 2.0 2.1 3.4 2.7 2.4 2.5
PoseFormer [40] (T=81) 3.2 3.4 2.6 3.6 2.6 3.0 2.9 3.2 2.6 3.3 2.7 2.7 3.8 3.2 2.9 3.1
MixSTE [37] (CPN,T=243) 2.5 2.7 1.9 2.8 1.9 2.2 2.3 2.6 1.6 2.2 1.9 2.0 3.1 2.6 2.2 2.3
TMT (CPN,T=243,MixSTE-based) 2.4 2.6 1.7 2.8 1.9 2.2 2.0 2.5 1.5 2.1 1.8 1.7 3.0 2.3 2.1 2.2

Table 2. Quantitative comparison (MPJPE,P-MPJPE,MPJVE) under Protocol 1 (no rigid alignment applied) and Protocol 2 (rigid-
alignment) on Human3.6M using detected 2D pose estimation as the input. Top table:comparison under Protocol 1 (MPJPE); Middle
table:comparison under Protocol 2 (P-MPJPE); Bottom table: comparison of MPJVE. The highlighted numbers in bold are the best
results of different motions.

Tab. 8 showcases the influence of 2D keypoints quality.
As m approaches one, indicating higher quality 2D key-
points, the accuracy of the trained model grows. It is worth
noting that synthesized data is utilized due to the limited
availability of input data with varying qualities. Addition-
ally, for better comparison with previous works, which of-
ten use CPN and 2D ground truth, we follow this convention
in our experiments.

4. Experiments

4.1. Datasets and evaluation

We assess our model’s performance on two widely used
datasets: Human3.6M and MPI-INF-3DHP.

The Human3.6M dataset is considered the primary

dataset for indoor 3D human pose estimation. It comprises
recordings from four cameras that capture the movements
of 11 actors. The dataset includes 17 standard actions, such
as walking, talking, smoking, and waiting. For each action,
the coordinates of 17 joints on the actor’s body, known as
keypoints, are recorded. The dataset consists of a total of
3.6 million frames, divided into different sections. All ac-
tions are used for both training and testing. Five subjects
(S1, S5, S6, S7, S8) are used for training, while two sub-
jects (S9 and S11) are reserved for testing. The evaluation
is conducted using Protocol 1 (MPJPE) and Protocol 2 (P-
MPJPE), as defined in [23].

MPI-INF-3DHP dataset includes both indoor and out-
door scenes. It consists of recordings from 14 cameras cap-
turing the movements of 8 actors. The dataset includes eight
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standard actions. Additionally, MPI-INF-3DHP provides a
test set consisting of recordings from 6 subjects, featuring
various scenes.

4.2. Implementation details

TMT is a training strategy based on transformers. In
the following experiments, we utilized the state-of-the-art
model MixSTE as the 2D-3D lifting estimator. Our strategy
was implemented using PyTorch. Two RTX 3090ti GPUs
were employed for both training and testing. The input for
the 2D keypoints consisted of the results from CPN (Cas-
caded Pyramid Network) [4] and the 2D ground truth. The
weight setting in Weighted MPJPE (WMPJPE) was deter-
mined based on the joint type.

4.3. Comparison with state-of-the-art methods

Human 3.6m. The input for TMT and other baseline
models consists of the 2D human pose estimation from the
CPN network and the ground truth. The specific results for
15 different motions are provided in Tab. 1.. The last col-
umn displays the average results across all 15 actions. No-
tably, the MPJPE (Mean Per Joint Position Error) has been
reduced from 21.6 mm to 18.6 mm, which corresponds to a
reduction of approximately 13.8%.

For the CPN 2D detector, the test set results of 15 ac-
tions (S9 and S11) are presented in Tab. 2. Under Protocol
1, TMT achieves a value of 40.5 mm, while under Protocol
2, it reaches 32.4 mm. The comparison of the total MPJPE
for different joints and the 3D target average velocity for
each joint on the Human3.6M test set is depicted in Fig. 2a.
Additionally, the correlation between the total MPJPE and
average velocity is illustrated in Fig. 2b. When compar-
ing limb joints with trunk joints, it is observed that limb
joints have a higher average velocity, and the average veloc-
ity increases as the joints move farther away from the trunk.
Overall, there is a positive relationship between the aver-
age velocity of a joint and its MPJPE, indicating a strong
correlation between average velocity and MPJPE.

Comparing to GT 2D keypoints, the improvement on
CPN input is limited. This observation motivates the ex-
ploration on effects of input qualities.

MPI-INF-3DHP. Tab. 3 shows the comparison between
TMT and other methods on MPI-INF-3DHP. The ground
truth is used as the input. In the Tab. 3, TMT reaches the
best results in MPJPE, outperforming the traditional strat-
egy by 12% on average.

4.4. Parameters and FLOPS

In TMT, there is no need for additional model parame-
ters apart from the embedding matrix in the first layer. As a
result, the number of parameters in TMT shows almost no
increase compared to MixSTE. Table 4 provides a compari-
son of the parameters and FLOPS (floating point operations

Methods (GT) MPJPE
Pavllo et al. [23] 84.8
Lin [14] 79.8
Li et al. [11] 99.7
Chen et al. [3] 79.1
Wang et al. [32] 68.1
Gong et al. [8] 73.0
Zheng et al. [40] 77.1
MixSTE [37] (T=27) 54.9
TMT (T=27,MixSTE-based) 48.3

Table 3. The comparison results of MPJPE on MPI-INF-3DHP
with 2D ground truth input. The result in bold is the best result.

per second) between MixSTE and TMT.

T
Parameters (M) FLOPS (G)

MixSTE TMT MixSTE TMT
9 33.66 33.67 10.30 10.30

27 33.67 33.67 30.89 30.90
81 33.70 33.70 92.69 92.70
243 33.78 33.79 278.08 278.10

Table 4. The comparison of parameters and FLOPS between
MixSTE and TMT (MixSTE-based).

4.5. Time for convergence

Tab. 5 shows that TMT achieves faster convergence com-
pared to MixSTE when using the same batch size and learn-
ing rate. Although TMT takes two training steps in each
batch, resulting in approximately double the time for each
epoch, the total number of epochs required for convergence
in TMT is less than half of that in MixSTE. As a result,
the overall time for convergence in TMT is less than that in
MixSTE. This indicates that TMT can achieve convergence
more efficiently within a shorter training time.

T Batch lr Total time (min)
MixSTE TMT

27 1024 0.00004 2167 1543
81 1024 0.00004 2346 1731

243 1024 0.00004 2205 1652
27 2048 0.00008 1408 1213
81 2048 0.00008 1532 1024

243 2048 0.00008 2101 1557

Table 5. The comparison of time for convergence between
MixSTE and TMT (MixSTE-based) under different batchsize
(Batch) and learning rate (lr).

4.6. Ablation study

Parameter setting analysis. Tab. 6 shows the effective-
ness of different hyper-parameters under protocol 1 with
MPJPE on MixSTE. There are three hyper-parameters for
the network: the depth of Pose Estimation Block (dl), the
dimension of Pose Estimation Block (dm), and the input se-
quence length (T ). We divided the settings into three parts.
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Each part will decide the best result of one parameter while
keeping other parameters fixed. The best settings in the ta-
ble are in bold font.

dl dm T MPJPE
4 64 27 35.9
6 64 27 34.2
8 64 27 33.6

10 64 27 33.7
8 128 27 32.1
8 256 27 31.2
8 512 27 30.7
8 600 27 30.9
8 512 64 25.1
8 512 81 24.7
8 512 128 23.0
8 512 243 18.6
8 512 256 19.5

Table 6. Hyper-parameters setting analysis in dl, dm and T with
ground truth input on Human3.6M.

Effectiveness of two-step training process. This sec-
tion discusses the necessity of the two-step training process.
Tab. 7 shows the comparison results of TMT, TMT1 and
TMT2 given the same parameter setting. TMT1 means that
TMT without training step 2, TMT2 means that TMT with-
out training step 1. TMT reaches the best result.

For TMT1, due to the lack of velocity feature as input
in training step 2, the result performance falls back to the
same level with traditional training strategy. And the ac-
curacy is still lower than TMT, probably because the extra
zero vectors introduce overfitting problems.

For TMT2, the inference result is largely degraded com-
pared to the other two, mainly because the data information
of training process is inconsistent with that of inference pro-
cess. Specifically, 2D input is concatenated with 3D veloc-
ity when training and then with zero vector for inference,
resulting in different input distribution.

dl dm T TMT1 TMT2 TMT
4 64 27 38.4 69.1 35.9
6 64 27 36.7 65.4 34.2
8 64 27 34.4 62.3 33.6
8 128 27 34.2 58.4 32.1

Table 7. The MPJPE (mm) comparison results of TMT, TMT1 and
TMT2.

Effectiveness of the 2D position input. The quality of
the 2D position input plays a significant role in determin-
ing the performance of TMT. To investigate the impact of
different-quality 2D inputs on the final 3D predictions, we
generate inputs of varying qualities by continuously approx-
imating the CPN input to the ground truth (GT). Tab. 8 illus-
trates the relationship between the input quality of 2D key-
points and the improvement effect of the final 3D prediction
at T=243. As the CPN input progressively approaches the
GT, the quality of the 2D keypoints improves, resulting in

a more substantial improvement effect in the TMT predic-
tions. In other words, the closer the CPN input is to the GT,
the better the performance of TMT becomes.

m MixSTE TMT Improvement
0 40.9 40.5 0.98%

0.25 36.45 36.04 1.12%
0.5 29.2 28.8 1.37%
0.75 23.9 23.3 2.51%
0.80 22.7 21.8 3.96%
0.85 22.3 20.9 6.28%
0.90 22.0 20.4 7.27%
0.95 21.8 19.2 11.93%

1 21.6 18.6 13.89%

Table 8. The comparison of MPJPE between different 2D position
input (different m).

Effectiveness of different concatenation. In the train-
ing step 2, 2D position input can concatenate with 2D ve-
locity vector V2, and also can concatenate with 3D velocity
V3 and acceleration A3. The calculation formulas of V2 and
A3 are described by Eq. (3) and Eq. (4), respectively. In
Eq. (3) and Eq. (4), i ∈ [2, T ] and j ∈ [1, N ]. P2 denotes
the ground-truth 2D positions. V2(1,j) and A3(1,j) are set to
0 for the same reason as described in Eq. (1).

V2(i,j) = [P2(i,j) − P2(i−1,j)]/∆T (3)

A3(i,j) = [V3(i,j) − V3(i−1,j)]/∆T (4)

TMTv2 represents that 2D position input concatenated
with V2 into 4D input. TMTa3 means the 2D position input
concatenated with A3 into 5D input. TMTva3 means the 2D
position input concatenated with V3 and A3 into 8D input.
Tab. 9 shows that TMT reached the best result. The 2D ve-
locity in TMTv2 input lacks 3D information, resulting in a
higher value of MPJPE than TMT. Because 3D acceleration
has been expressed in the model through 3D velocity infor-
mation, the 3D acceleration in TMTva3 input is redundant,
resulting in slightly worse performance.

As expected, the result of TMTv2 is worse than TMTva3

and TMT, because 2D velocity is the difference of adjacent
frames input, providing less useful information. And the
accuracy of TMT and TMTva3 is almost at the same level,
with the same reason that 3D acceleration is just simple lin-
ear combination of 3D velocity. It can be observed that the
performance of TMTva3 is slightly degraded compared to
TMT, probably resulting from overfitting problem.

Effectiveness of loss function. The loss function of
TMT is exactly the same as the loss function of the selected
method. MixSTE is taken as an example to explore the im-
pact of the loss function on the TMT result. Tab. 10 shows
the results. Each loss function is used for training pro-
cess, and MPJPE and MPJVE are recorded after model con-
vergence respectively. WMPJPE apply different weight to
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2D position input T TMTv2 TMTa3 TMTva3 TMT
CPN 81 42.5 42.6 42.6 42.2
CPN 243 41.0 41.1 40.9 40.5
GT 81 26.5 25.6 25.1 24.2
GT 243 22.1 21.4 19.6 18.6

Table 9. The comparison of MPJPE between different concatena-
tion on GT and CPN.

each joint regarding their loss. The MPJPE with WMPJPE
training loss is less than that with pure MPJPE loss. How-
ever, WMPJPE loss + TCLoss has higher MPJVE value
(0.93 mm) than WMPJPE loss + MPJVE loss MPJVE value
(0.89 mm).Furthermore, combining WMPJPE, MPJVE and
TCLoss shows best performance in both indicator.

Loss function MPJPE MPJVE
MPJPE loss 20.5 1.17
WMPJPE loss 20.2 1.03
WMPJPE loss+TCLoss 19.6 0.93
WMPJPE loss+MPJVE loss 19.9 0.89
ours (WMPJPE loss+MPJVE loss+TCLoss) 18.6 0.84

Table 10. Ablation study for loss functions.

4.7. Qualitative results

In this section, we utilize the S11 dataset from Hu-
man3.6M for evaluation purposes. Fig. 3 illustrates the re-
sults of our estimation as well as the MixSTE estimation
with ground truth input on Human3.6M. It is evident from
Fig. 3 that the estimation using the TMT strategy performs
better in handling scenes with occlusion.

To visualize the spatial and temporal correlation of the
pose estimation, we conducted a visualization of the self-
attention weights among joints and sequences. Fig. 4 dis-
plays the attention outputs of two heads, allowing us to ob-
serve the different correlations among joints and frames.
The attention outputs have been normalized to a range of
[0, 1]. The rows and columns in Fig. 4 represent the queries
and predicted outputs, respectively.

5. Conclusion
In this paper, we propose the Two-step Mixed-Training

Strategy (TMT), a training strategy for 3D human pose es-
timation (3DHPE) using a transformer-based model. TMT
incorporates the 3D velocity vector as a new input feature
to enhance the learning of relevant features in the shallow
layers. Additionally, TMT enables models to effectively
handle input data from two distributions, resulting in min-
imal overhead and potentially faster training speeds. Fur-
thermore, TMT introduces a method to obtain 2D keypoints
of varying qualities. Experimental results demonstrate that
our strategy improves the state-of-the-art results by up to

Figure 3. The comparison results of our strategy (TMT) and
MixSTE with different actions on Human3.6M. The blue arrows
highlight the better result of TMT.

Figure 4. The upper two images show the spatial correlation
among joints. The pixel denotes the attention weight wi,j of the
j-query for the i-th output where i is the row index and j the col-
umn index. The lower two images show the temporal correlation
among frames.

13.8% when using ground truth as input. Although we cur-
rently concatenate the 3D velocity vector to the input vector
in TMT, exploring different methods of including it during
the training process is still valuable.

3339



References

[1] Yujun Cai, Liuhao Ge, Jun Liu, Jianfei Cai, Tat-Jen Cham,
Junsong Yuan, and Nadia Magnenat Thalmann. Exploit-
ing spatial-temporal relationships for 3d pose estimation
via graph convolutional networks. In Proceedings of the
IEEE/CVF international conference on computer vision,
pages 2272–2281, 2019.

[2] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh.
Realtime multi-person 2d pose estimation using part affinity
fields. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7291–7299, 2017.

[3] Tianlang Chen, Chen Fang, Xiaohui Shen, Yiheng Zhu,
Zhili Chen, and Jiebo Luo. Anatomy-aware 3d human
pose estimation with bone-based pose decomposition. IEEE
Transactions on Circuits and Systems for Video Technology,
32(1):198–209, 2021.

[4] Yilun Chen, Zhicheng Wang, Yuxiang Peng, Zhiqiang
Zhang, Gang Yu, and Jian Sun. Cascaded pyramid net-
work for multi-person pose estimation. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 7103–7112, 2018.

[5] Hai Ci, Chunyu Wang, Xiaoxuan Ma, and Yizhou Wang. Op-
timizing network structure for 3d human pose estimation. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 2262–2271, 2019.

[6] Rishabh Dabral, Anurag Mundhada, Uday Kusupati, Safeer
Afaque, Abhishek Sharma, and Arjun Jain. Learning 3d
human pose from structure and motion. In Proceedings of
the European conference on computer vision (ECCV), pages
668–683, 2018.

[7] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[8] Kehong Gong, Jianfeng Zhang, and Jiashi Feng. Poseaug:
A differentiable pose augmentation framework for 3d hu-
man pose estimation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
8575–8584, 2021.

[9] Mir Rayat Imtiaz Hossain and James J Little. Exploiting tem-
poral information for 3d human pose estimation. In Proceed-
ings of the European conference on computer vision (ECCV),
pages 68–84, 2018.

[10] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian
Sminchisescu. Human3. 6m: Large scale datasets and pre-
dictive methods for 3d human sensing in natural environ-
ments. IEEE transactions on pattern analysis and machine
intelligence, 36(7):1325–1339, 2013.

[11] Shichao Li, Lei Ke, Kevin Pratama, Yu-Wing Tai, Chi-Keung
Tang, and Kwang-Ting Cheng. Cascaded deep monocular
3d human pose estimation with evolutionary training data.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 6173–6183, 2020.

[12] W Li, H Liu, H Tang, P Wang, and L MHFormer Van Gool.
Multi-hypothesis transformer for 3d human pose estimation.
arxiv 2021. arXiv preprint arXiv:2111.12707.

[13] Zhi Li, Xuan Wang, Fei Wang, and Peilin Jiang. On boost-
ing single-frame 3d human pose estimation via monocular
videos. In Proceedings of the IEEE/CVF international con-
ference on computer vision, pages 2192–2201, 2019.

[14] Jiahao Lin and Gim Hee Lee. Trajectory space factoriza-
tion for deep video-based 3d human pose estimation. arXiv
preprint arXiv:1908.08289, 2019.

[15] Kenkun Liu, Rongqi Ding, Zhiming Zou, Le Wang, and Wei
Tang. A comprehensive study of weight sharing in graph net-
works for 3d human pose estimation. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, Au-
gust 23–28, 2020, Proceedings, Part X 16, pages 318–334.
Springer, 2020.

[16] Ruixu Liu, Ju Shen, He Wang, Chen Chen, Sen-ching Che-
ung, and Vijayan Asari. Attention mechanism exploits tem-
poral contexts: Real-time 3d human pose reconstruction. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 5064–5073, 2020.

[17] Xiaoxuan Ma, Jiajun Su, Chunyu Wang, Hai Ci, and Yizhou
Wang. Context modeling in 3d human pose estimation: A
unified perspective. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
6238–6247, 2021.

[18] Julieta Martinez, Rayat Hossain, Javier Romero, and James J
Little. A simple yet effective baseline for 3d human pose esti-
mation. In Proceedings of the IEEE international conference
on computer vision, pages 2640–2649, 2017.

[19] Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal
Fua, Oleksandr Sotnychenko, Weipeng Xu, and Christian
Theobalt. Monocular 3d human pose estimation in the wild
using improved cnn supervision. In 2017 international con-
ference on 3D vision (3DV), pages 506–516. IEEE, 2017.

[20] Gyeongsik Moon and Kyoung Mu Lee. I2l-meshnet: Image-
to-lixel prediction network for accurate 3d human pose and
mesh estimation from a single rgb image. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part VII 16, pages
752–768. Springer, 2020.

[21] Georgios Pavlakos, Xiaowei Zhou, and Kostas Daniilidis.
Ordinal depth supervision for 3d human pose estimation. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 7307–7316, 2018.

[22] Georgios Pavlakos, Xiaowei Zhou, Konstantinos G Derpa-
nis, and Kostas Daniilidis. Coarse-to-fine volumetric pre-
diction for single-image 3d human pose. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 7025–7034, 2017.

[23] Dario Pavllo, Christoph Feichtenhofer, David Grangier, and
Michael Auli. 3d human pose estimation in video with tem-
poral convolutions and semi-supervised training. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 7753–7762, 2019.

[24] Wenkang Shan, Zhenhua Liu, Xinfeng Zhang, Shanshe
Wang, Siwei Ma, and Wen Gao. P-stmo: Pre-trained spa-

3340



tial temporal many-to-one model for 3d human pose estima-
tion. In Computer Vision–ECCV 2022: 17th European Con-
ference, Tel Aviv, Israel, October 23–27, 2022, Proceedings,
Part V, pages 461–478. Springer, 2022.

[25] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way
to prevent neural networks from overfitting. The journal of
machine learning research, 15(1):1929–1958, 2014.

[26] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep
high-resolution representation learning for human pose es-
timation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 5693–5703,
2019.

[27] Xiao Sun, Bin Xiao, Fangyin Wei, Shuang Liang, and Yichen
Wei. Integral human pose regression. In Proceedings of
the European conference on computer vision (ECCV), pages
529–545, 2018.

[28] Mikael Svenstrup, Soren Tranberg, Hans Jorgen Andersen,
and Thomas Bak. Pose estimation and adaptive robot be-
haviour for human-robot interaction. In 2009 IEEE Interna-
tional Conference on Robotics and Automation, pages 3571–
3576. IEEE, 2009.

[29] Bugra Tekin, Artem Rozantsev, Vincent Lepetit, and Pas-
cal Fua. Direct prediction of 3d body poses from motion
compensated sequences. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
991–1000, 2016.

[30] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
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