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Abstract

The objective of Continual Test-time Domain Adaptation
(CTDA) is to gradually adapt a pre-trained model to a se-
quence of target domains without accessing the source data.
This paper proposes a Dynamic Sample Selection (DSS)
method for CTDA. DSS consists of dynamic thresholding,
positive learning, and negative learning processes. Tra-
ditionally, models learn from unlabeled unknown environ-
ment data and equally rely on all samples’ pseudo-labels
to update their parameters through self-training. However,
noisy predictions exist in these pseudo-labels, so all sam-
ples are not equally trustworthy. Therefore, in our method,
a dynamic thresholding module is first designed to select
suspected low-quality from high-quality samples. The se-
lected low-quality samples are more likely to be wrongly
predicted. Therefore, we apply joint positive and negative
learning on both high- and low-quality samples to reduce
the risk of using wrong information. We conduct extensive
experiments that demonstrate the effectiveness of our pro-
posed method for CTDA in the image domain, outperform-
ing the state-of-the-art results. Furthermore, our approach
is also evaluated in the 3D point cloud domain, showcasing
its versatility and potential for broader applicability.

1. Introduction

Consider an intelligent agent moving around non-

stationary environments where the input domain gradually

changes over time. As an illustration, a self-driving car

could transition from daylight to darkness and then enter

a snowy scenario. Another example is an automated robot

processing images captured from multiple continual do-

mains like blurry and bright domains. Therefore, the intelli-

gent agent requires Continual Test-Time domain Adaptation
(CTDA) to adapt to gradually changing environments. Be-

cause of its real-life applicability, researchers have recently
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Figure 1. Illustration of our learning strategy: (a) Pseudo label-

ing described is accomplished by the mean-teacher model, where

a teacher model yields a pseudo label for a given sample. Some

of the unlabeled samples probably assign incorrect pseudo-labels.

Hence, treating all samples equally leads to error accumulation.

(b) Our proposed method introduces Dynamic Sample Selection

(DSS), to monitor the pseudo label generated by the mean teacher

model and it selects low-quality pseudo labels via our proposed

dynamic thresholding process. Ultimately, we use positive learn-

ing for samples with high-quality pseudo-label and negative learn-

ing for all samples.

started exploring this new area [6, 27]. In contrast to tradi-

tional domain adaptation tasks, CTDA imposes some con-

straints: 1) There should be multiple continual test domains

instead of one, and the model should gradually adapt to con-

tinual domains using unlabeled test data. 2) The source data

with which the model is trained cannot be used during the

adaptation process. Instead, it is only allowed to leverage

the pre-trained model developed from the source data.

Error accumulation is a well-known challenge in CTDA.

In this task, the model adapts continual domains during test

time on unlabeled test samples. The model normally re-

lies on samples’ pseudo-labels for the adaptation. However,
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not all pseudo-labels are reliable. As the erroneous pseudo-

labels arise from the continual domains, the network tends

to absorb inaccurate feedback, leading to an incorrect ad-

justment of its parameters over time. This accumulation of

errors from the previous domains would have an adverse

impact on the model’s performance in the subsequent do-

mains. To address this, the existing SOTA method [27] gen-

erates augmented samples of a given input sample and cal-

culates an augmentation-averaged prediction score from a

teacher model. The assumption is that pseudo-labels calcu-

lated from the augmentation-averaged prediction score be-

come more accurate over time.

To address the aforementioned problem, we introduce

a Dynamic Sample Selection (DSS) method, which incor-

porates jointly dynamic thresholding, positive, and nega-

tive learning. More specifically, to mitigate the issue of

error accumulation, using dynamic thresholding, we de-

sign a class-wise confidence metric to evaluate the predic-

tion quality of the pseudo-label for each sample in a batch.

Dynamic thresholding monitors the confidence and identi-

fies high- and low-quality samples. As shown in Figure

1, our proposed method treats the unlabeled samples dif-

ferently based on confidence. We employ only the sam-

ples with higher confidence for positive learning, thus re-

ducing the amount of noise introduced. At the same time,

we utilize all examples for negative learning. The nega-

tive learning aims to eliminate the impact of low-confidence

class prediction. A prediction that is potentially consid-

ered wrong is replaced by a negative complementary la-

bel. Traditionally, CTDA methods are tested on only 2D

image datasets. However, in addition to challenging 2D

image datasets (CIFAR-10-C [10], CIFAR-100-C [10], and

ImageNet-C [10]), we experimented with 3D point cloud

data ScanObjectNN-C [22]), demonstrating the robustness

of our proposed method. Our method consistently outper-

forms existing methods by a decent margin.

In summary, contributions of this work are three-fold:

• We develop a novel method, Dynamic Sample Selec-

tion (DSS) for the CTDA task. DSS selects high- and

low-quality samples for training, and it effectively re-

duces the negative impact of error accumulation of

CTDA.

• We apply joint positive and negative learning on noisy

pseudo-labels to reduce the risk of propagating mis-

leading information during the CTDA task.

• Our study is pioneering in investigating the CTDA

problem in the domain of 3D point cloud objects. We

have benchmarked the performance of existing 2D ap-

proaches on 3D data and identified new challenges as-

sociated with 3D point cloud objects.

2. Related work
Test-time Domain Adaptation. Compared with traditional

unsupervised domain adaptation, Test-Time domain Adap-

tation (TTA) adapts the model trained from the source do-

main to the novel target domain without access to the orig-

inal source data during inference time. One popular ap-

proach to reducing the domain gap in the absence of source

data is to fine-tune the source model by adopting an unsu-

pervised loss function based on the target distribution. Test

entropy minimization (TENT) [26] updates the trainable

batch normalization parameters from a pre-trained model at

test time by minimizing the entropy of the model prediction.

Source hypothesis transfer (SHOT) [17] employs an entropy

minimization and diversity regularizer with label smooth-

ing techniques to train a general feature extractor from a

pre-trained source model. Alternatively, Test-Time Train-

ing (TTT) [23] introduced a self-supervised rotation pre-

diction auxiliary task to update model parameters for novel

target samples. Test-Time Training with Masked Autoen-

coders [8] similarly adopts the idea of masked autoencoders

as an auxiliary task to train the model for each test sample.

Recently AdaContrast [3] first leveraged contrastive learn-

ing with online pseudo refinement to learn better feature

representations with less noisy pseudo labels. Conjugate

PL [9] propose a general way of obtaining test-time adap-

tation loss which is used for more robust predictions under

distribution shifts.

Continual Test-time Domain Adaptation.In addressing

the challenge of Continual Test-time Domain Adaptation

(CTDA), various solutions have been proposed. Notably,

the online version of Tent, introduced by Wang et al. [26],

presents an applicable approach. However, a drawback

of earlier methods lies in their reliance on source data

during inference. A significant advancement in this field

is the Continual Test-time Adaptation Approach (CoTTA)

developed by Wang et al. [27]. CoTTA is notably the

first method explicitly tailored to the demands of on-

line continual test-time adaptation. This method employs

a weighted augmentation-averaged mean teacher frame-

work, building upon the insights from prior work such as

the mean teacher predictions introduced by Tarvainen and

Valpola [24]. Remarkably, the student-teacher framework

proposed by CoTTA [27] serves as a foundational architec-

ture for numerous subsequent studies. In particular, Niu et
al. [18], adopt a similar student-teacher framework. They

incorporate continuous batch normalization statistics up-

dates to reduce computational costs, thereby refining the ef-

ficiency of the adaptation process. Another notable avenue

explored by researchers is the utilization of a mean teacher

setup with symmetric cross-entropy and contrastive learn-

ing, as demonstrated in the work by Dobler et al. [6] under

the name RMT. While this approach introduces valuable in-

sights, it remains dependent on source data to establish the
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source prototypes during a warm-up stage. Consequently,

RMT cannot be categorized as a truly source-free approach

within the realm of continual test-time domain adaptation.

Alternatively, Gan et al. [7] present an innovative strategy

that leverages visual prompt learning in conjunction with a

homeostasis-based adapting strategy.

Pseudo Labelling. Pseudo-labelling is a widely used tech-

nique in semi-supervised learning or self-learning. It uses

the model’s output class probability as a label for train-

ing. FixMatch [21] is a semi-supervised method that gener-

ates pseudo labels using the model’s predictions on weakly

augmented unlabeled images. Then the model is trained

to match the pseudo-label with the prediction on strongly-

augmented images. In contrast, UPS [20] not only produces

reliable pseudo-labels with high confidence and low uncer-

tainty, but it also incorporates negative learning to further

reduce the model calibration error. In the context of unsu-

pervised domain adaptation, the process of pseudo-labeling

frequently involves generating labels for unlabeled target

samples by utilizing the predicted class probability of the

source model. Existing methods [6, 27] mainly rely on

pseudo labels as a form of “supervision” in order to com-

pensate for the absence of ground truth labels in the target

domain. However, they did not closely investigate the qual-

ity of pseudo labels, as mislabeled samples used in self-

learning accelerate error accumulation ultimately. In con-

trast, in this paper, we propose joint positive and negative

learning with dynamic threshold modules to minimize the

effect of error accumulation from mislabeled pseudo labels.

3. Dynamic Sample Selection

3.1. Problem Formulation

Given a sequence of domains D = {D1, . . . , Dt, . . . ,

DT }, we define the domain at time step t as Dt = {xt,i}nt
i=1,

where xt,i is the ith sample, and nt is the number of samples.

The first domain, D1, is referred to as the source domain.

We assume that a deep learning model hθ1(.), where θ1 is

the pre-trained parameters on the source data x1,i in D1.

However, we discard the source data thereafter, typically

because of privacy or memory concerns. More precisely,

we cannot access source data D1 for future new domains.

Therefore, the future domains Dt with t > 1, are termed as

the target domains. Within the CTDA framework, our ob-

jective is to improve the performance of the model hθ1(x)
during test time for a dynamically changing target domain

in an online manner. This involves feeding the model unla-

beled test data from the target domain sequentially. To be

more specific, at target domain Dt, the unlabeled data xt is

given to the model hθt(xt), and the model needs to make

the prediction and adapt itself accordingly (θt → θt+1) for

the next target domain, Dt+1. In the process of test-time

training, we ensure that the model is adapted to each current

sample from the target domain. Following this adaptation,

the updated model is utilized to predict the class label of the

respective sample.

3.2. Model Overview

This section provides a brief overview of our proposed

architecture, Dynamic Sample Selection (DSS), which is

illustrated in Figure 2. Similar to other methods in Con-

tinual Target Domain Adaptation (CTDA) [27], we adopt

the student and teacher setup from the mean teacher frame-

work [24] as the foundational structure for self-learning in

our approach. Given the input xt from domain Dt, the

teacher model computes the pseudo label ŷt based on an

augmentation module, while the student model produces the

output ȳt. The model is then trained using the loss function

that enforces consistency between ŷt and ȳt, thus promoting

alignment between the predicted labels. It is worth noting

that ŷt is typically used as the final prediction.

As indicated in Figure 2, we do not treat all samples

in Dt equally for adaptation. In contrast, we assume that

not all samples have enough quality for training during

test time. To achieve this objective, we employ adaptive

pseudo-labelling from recent advances in semi-supervised

learning [28, 32], a learning approach that involves con-

tinuous monitoring of the model’s learning progress in ac-

cordance with its learning status [1]. In other words, we

utilize a dynamic threshold module to modulate the learn-

ing progress adaptively each time we encounter new do-

mains. Therefore, we design a DSS framework on top of

the mean teacher model to select samples for different train-

ing strategies. To be more specific, given input xt in Dt, we

leverage the student-teacher setup to generate the predic-

tion (or pseudo) label ŷt. Using ŷt, we compute the adap-

tive class-wise threshold πt,c(ŷt) for class c. Based on πt,c,

we group high- and low-quality samples, xt,high and xt,low.

Then, both xt,high and xt,low are used for negative learning.

Meanwhile, the model is trained with the positive learning

loss with high-quality samples xt,high alone.

3.3. Dynamic Thresholding

In CTDA, the learning progress of the model hθ varies

over time since different target domains have significant

domain gaps. When adopting a model to new test sam-

ples from different domains, pseudo labels inevitably suf-

fers from label noise due to the presence of domain shifts.

To minimize noise in test-time, We adopt a threshold mech-

anism to adjust the confidence threshold dynamically.

As shown in Figure 2, the samples xt from Dt are first

given to the teacher model to compute the initial predictions

ŷt. Subsequently, taking inspiration from the threshold

strategy [28, 32] and in order to track the learning progress,

we implement a dynamic approach that involves detecting

low-confidence predictions in samples through the use of
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Figure 2. The proposed Dynamic Sample Selection (DSS) framework for continual test-time domain adaptation (CTDA). Unlabeled target

domains are changing over time. At time step t, the model first makes the predictions for samples xt from Dt. Taking the input xt from

domain Dt, the teacher model computes the pseudo label ŷt based on augmentation module while the student model gives the output ȳt.

The dynamic threshold module then outputs a suitable threshold to split the samples xt into two groups, high- and low-quality groups.

Positive learning is exclusively applied to the high-quality group of samples, ensuring that the model focuses its learning efforts on reliable

and accurate data. Conversely, in negative learning, complementary labels are generated for classes that yield low prediction scores.

This approach enables the model to learn from and address the challenging samples actively, contributing to improved performance and

adaptability in evolving domains.

a dynamic threshold. The common practice is to use a

fixed confidence threshold to remove suspected noisy la-

bels. However, model confidence on out-of-distribution

samples could differ vastly for each domain, which may

hurt the adaptation performance under a fixed threshold.

Thus, we propose the adaptive threshold function to output

a suitable selection threshold πt:

πt,j = λπt,j−1 + (1− λ) · 1

N

N∑

i=1

max ŷt,j,i (1)

where j denotes the order of the batch. For simplicity, we

drop the most j in the following context. πt denotes the

adaptive threshold value for the samples xt. ŷt,i is the pre-

dicted confidence vector for ith sample. max ˆyt,i indicates

the highest confidence value in ˆyt,i. The number of sam-

ples from each batch is denoted as N , and λ represents the

exponential moving average factor.

An appropriate initial threshold could help the algorithm

to converge more swiftly to an effective threshold in an on-

line manner. It is important to note that DSS algorithm op-

erates in an online fashion during the inference phase. Start-

ing with a threshold value that is considerably distant from

the current confidence level may result in a significant time

delay before reaching a satisfactory threshold. Therefore,

we adopt the following approach to initialize the thresh-

old at the start of each domain: we take the average of

the previous model confidence at the beginning, denoted as

πt,0 = (πt−1,final +
1
C )/2 where πt−1,final is the com-

puted threshold from the previous domain and C represents

the number of classes. It should be mentioned that for the

first domain, we set π0,0 = 1
C . By incorporating the aver-

age of the previous domain’s threshold, we aim to achieve

an accurate estimation of the initial threshold by leveraging

the knowledge acquired from the previous domains. Unlike

other existing methods in semi-supervised learning [2], we

use flexible threshold initialization in CTDA to provide a

more appropriate initial value when facing a new domain

instead of using a fixed average constant.

To reflect the discrepancy between the adaptation status

among different classes, we further give the threshold in a

class-wise manner to ensure that the class with average low

confidence (low-certainty class) is not ignored. The class-

wise manner guarantees sufficient samples for training as

there are many low-certainty classes. The aim is to prevent

the model from being biased toward the majority classes.

We first compute the rescale ratio τt,c for class c as follows:
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τt,c =
δt,c

maxδt
(2)

where δt is the vector where one element is the average con-

fidence for one class. δt,c is the average confidence for class

c of samples in Dt. The formulation δt,c is given as follows:

δt,c =
1

N

N∑

i=1

max ŷt,i · �(argmax ŷt,i = c) (3)

where max ŷt,i is the maximum prediction probability in

the vector ŷt,i. Hence, the improved version of the adaptive

threshold in a class-wise manner is calculated as:

πt,c = πt · τt,c (4)

For Dt, after achieving πt,c for samples, we divide xt
into the high- and low-quality groups, xt,high and xt,low.

xt,high are samples where their predicted confidence is

above the threshold πt,c, and vice versa.

In the following algorithmic steps, the different train-

ing strategies will be used for xt,high and xt,low. Overall,

the self-adaptive threshold accurately identifies correctly-

and wrongly-predicted samples as high- and low-certainty

groups. Grouped samples will facilitate positive and nega-

tive learning, introduced in the following subsection.

3.4. Joint Positive and Negative Learning

Training the model in CTDA without access to data la-

bels is challenging. To be more specific, assigning the com-

puted pseudo label to the unlabeled data runs the risk of

letting the model learn incorrect information as the pseudo

label is noisy, which could lead to lower overall accuracy.

To address this issue, as shown in Figure 2 we first group

samples into high- and low-quality groups using dynamic

threhold. Then, we train two groups of samples in two dif-

ferent ways (See “DSS: Positive and Negative Learning” of

Figure 2).

More specifically, we restrict positive learning to the

high-quality group xt,high, as these samples are expected

to have a higher probability of being accurately classified

by the network. Conversely, negative learning [13, 14] is

applied to both groups (i.e., xt,high and xt,low) to mitigate

the risk of providing inaccurate information to the model by

generating the complementary labels for the training.

To train our proposed DSS, we employ a cross-entropy

loss function. We first have the pseudo-label generated by

the teacher model ŷk,high, and then we apply temperature

scaling to minimize the prediction entropy by sharpening

the prediction distribution [2].

Sharpen(ŷk,high, Tp) := ŷTp
k,high/

C∑

k=1

ŷTp
k,high (5)

where Tp is the temperature hyper-parameter. Most exist-

ing methods construct pseudo labels in one-hot way [21,32].

However, in CTDA, we mildly give pseudo labels by apply-

ing the sharpening. Specifically, we propose to minimize

entropy by constructing sharpened pseudo labels with Tp
for selected high-certainty samples. It somewhat avoids

overfitting by preserving prediction structures from the

teacher model.

The loss function for positive learning is formulated as

the cross entropy loss between the student and teacher pre-

dictions:

Lpst(ȳk,high, ŷk,high) = −
C∑

k=1

ŷk,high log ȳk,high (6)

where is ȳk,high the prediction from the student model.

This loss function will enforce alignment between the stu-

dent prediction and the more accurate teacher prediction af-

ter sharpening. To adequately utilize ŷ, the complementary

label is also created based on low class confidences. The

complementary label represents ”the input does not belong

to particular classes.” This provides more reliable informa-

tion regarding the classes that are most likely not to be the

true label. Following this, we present the negative learning

loss as follows:

Lneg(ȳk, ŷk) = −
C∑

k=1

y̌k log (1− ȳk) (7)

where y̌k = �(ŷk < α) is the complementary label based

on the prediction from the teacher model, ŷk. Applying the

complementary label y̌ in the negative learning pushes the

prediction away from those classes with low confidence.

α is the threshold vector whose element value is set to

0.05. Notably, we keep the teacher model fixed and back-

propagate the student model only. The reason is that we aim

to ensure a stable student-teacher setup. Finally, having the

Equations 6 and 7 at hand, we build the total loss function

as follows:

Ltotal = Lneg + Lpst (8)

Moreover, the teacher model with θ̂ is updated by the

moving average of the parameters of the student model, θ̄.

Hence, we have

θ̂t+1 = βθ̂t + (1− β)θ̄t+1 (9)

where β is the coefficient. We set θ to 0.999 which is the

same as that in [27]. The overall training process is de-

scribed in Algorithm 1.

4. Experiments
Extensive experiments are conducted in this section to

demonstrate the effectiveness of our DSS approach. We
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Algorithm 1 The proposed DSS for CTDA

Initialization: A source model hθ1 pre-trained on

source domain D1, teacher model ht
θt

and student

model hs
θt

initialized from hθ1 .

Input: Unlabeled test data xt for target domain Dt, t >
1,

1: for t = 2 to T do
2: Augment xt and get pseudo-labels ŷt;

3: Generate class-wise threshold πt,c via Eq. (4);

4: Divide xt into xt,low and xt,high by πt,c;

5: Compute Lpst via Eq. (6);

6: Compute Lneg via Eq. (7);

7: Update student model via Ltotal in Eq. (8);

8: Update teacher model via Eq. (9);

Output: Prediction ŷt, updated student and teacher

models hs
θt

and ht
θt

, selection threshold πt,c.

evaluate our method on three 2D image continual test-time

adaptation benchmark tasks, CIFAR-10-C [11], CIFAR-

100-C [11], and ImageNet-C [11], designed to assess the

robustness of machine learning models to corruptions and

perturbations in the input data. In addition, we test our pro-

posed method on a 3D point cloud dataset ScanObjectNN-C

derived from ScanObjectNN [25].

4.1. Datasets

CIFAR10-C. CIFAR10-C is an extension of the CIFAR-10

dataset [15], which consists of 32 × 32 color images from

10 classes. CIFAR10-C includes 15 different corruptions,

each at five levels of severity. The corruptions are applied

to test images of CIFAR-10, resulting in a total of 10,000

images.

CIFAR100-C. CIFAR100-C is an extension of the CIFAR-

100 dataset [15], which consists of 32× 32 color images in

100 classes. CIFAR100-C includes 15 different corruptions,

each at five levels of severity. The corruptions are applied to

the test images of CIFAR-100, resulting in a total of 10,000

images.

ImageNet-C. ImageNet-C is an extension of the ImageNet

dataset [5], which contains over 14 million images in more

than 20,000 categories. ImageNet-C includes 15 different

corruptions, with 5 severity levels. The corruptions are ap-

plied to the validation images of ImageNet.

ScanObjectNN-C. ScanObjectNN [25] is a point cloud

classification dataset that is collected from the real world. It

contains 15 classes, with 2309 samples in the train set and

581 in the test set. To build ScanObjectNN-C, we employ

the setting proposed by [22], to generate 15 corruptions in

the test set of ScanObjectNN for our experiments.

4.2. Implementation

We strictly follow the setting of CTDA that no source

data is accessed [27]. All models are evaluated based on the

largest corruption severity level of five for all datasets in an

online fashion. Model predictions are first generated before

adapting to the current test stream.

Following [27], we adopt standard pre-trained WideRes-

Net [31], ResNeXt-29 [30] and ResNet-50 [4] on CIFAR10-

C, CIFAR100-C, and ImageNet-C as the source models.

The sharpening factor Tp used in temperature scaling is

set to 0.6, and augmentation module from [27] is used to

generate the augmentation-weighted pseudo-label. For 3D

experiments, we use DGCNN [29] pre-trained on the clean

set as the backbone.

4.3. Main Results

2D Results. We first examine the adaptation performance

on 2D tasks, and the experimental results are summarized

in Table 1, 2, and 3. Directly testing the source model

on target domains in sequence yields high average errors

of 43.5%, 46.4%, and 77.2% on CIFAR10-C, CIFAR100-

C, and Imagenet-C respectively. Applying BN Stats Adapt

[16] to update the batch normalization statistics from the

current test stream, the average error across all target do-

mains is significantly reduced on all datasets. The TENT-

based method [26] also helps the model to adapt to the

target domain in sequence, but it may suffer severe error

accumulation in the long term.As shown in Table 2, the

TENT-based method [26] yields a substantially higher er-

ror rate of 60.9% in the long run on CIFAR100-C. Sim-

ilarly, Conjugate PL [9] perform well in early adaptation

to multiple initial domains, but soon experiences a gradual

increase in error rate over time. Based on more accurate

weighted augmentation-averaged predictions, CoTTA [27]

has the lowest average error rate in comparison with other

adaptation methods.

By leveraging joint positive and negative learning with

an adaptive threshold, our proposed method DSS constantly

outperforms its baseline CoTTA in all datasets. This in-

dicates that DSS helps the model better adapt to contin-

ual target domains with less suffering from error accumu-

lation generated from noisy pseudo labels. We notice that

this phenomenon becomes more evident in more difficult

datasets, where the model has low certainty on proceeding

target domains. Compared with CoTTA, DSS successfully

reduces the average error from 32.5% to 30.9% and 66.8%
to 64.6% on CIFAR100-C and ImageNet-C respectively,

which demonstrates the advantage of our DSS module.

To further investigate the effectiveness of DSS over the

baseline, we also evaluate its adaptation performance over

ten different sequences on ImageNet-C (See Table 4). There

is a 1.4% decrease on average over 10 diverse sequences

in comparison with CoTTA, indicating that our method is
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Method Gaussian shot impulse defocus glass motion zoom snow frost fog brightness contrast elastic trans pixelate jpeg Mean
Source 72.3 65.7 72.9 46.9 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.5 30.3 43.5

BN Adapt [16] 28.1 26.1 36.3 12.8 35.3 14.2 12.1 17.3 17.4 15.3 8.4 12.6 23.8 19.7 27.3 20.4

TENT-cont [26] 24.8 20.6 28.6 14.4 31.1 16.5 14.1 19.1 18.6 18.6 12.2 20.3 25.7 20.8 24.9 20.7

AdaContrast [3] 29.1 22.5 30.0 14.0 32.7 14.1 12.0 16.6 14.9 14.4 8.1 10.0 21.9 17.7 20.0 18.5

Conjugate PL [9] 27.6 25.7 35.9 12.7 34.8 14.1 12.0 17.1 17.3 15.0 8.4 12.3 23.5 19.3 26.7 20.2

CoTTA [27] 24.3 21.3 26.6 11.6 27.6 12.2 10.3 14.8 14.1 12.4 7.5 10.6 18.3 13.4 17.3 16.2

DSS (Ours) 24.1 21.3 25.4 11.7 26.9 12.2 10.5 14.5 14.1 12.5 7.8 10.8 18.0 13.1 17.3 16.0

Table 1. Classification error rate (%) on CIFAR10-C. The best numbers are in bold.

Method Gaussian shot impulse defocus glass motion zoom snow frost fog brightness contrast elastic trans pixelate jpeg Mean
Source 73.0 68.0 39.4 29.3 54.1 30.8 28.8 39.5 45.8 50.3 29.5 55.1 37.2 74.7 41.2 46.4

BN Adapt [16] 42.1 40.7 42.7 27.6 41.9 29.7 27.9 34.9 35.0 41.5 26.5 30.3 35.7 32.9 41.2 35.4

TENT-cont [26] 37.2 35.8 41.7 37.9 51.2 48.3 48.5 58.4 63.7 71.1 70.4 82.3 88.0 88.5 90.4 60.9

AdaContrast [3] 42.3 36.8 38.6 27.7 40.1 29.1 27.5 32.9 30.7 38.2 25.9 28.3 33.9 33.3 36.2 33.4

Conjugate PL [9] 39.2 37.1 36.9 26.3 39.4 28.4 26.4 32.9 33.2 38.2 25.7 29.3 34.0 30.3 39.0 33.1

CoTTA [27] 40.1 37.7 39.7 26.9 38.0 27.9 26.4 32.8 31.8 40.3 24.7 26.9 32.5 28.3 33.5 32.5

DSS (Ours) 39.7 36.0 37.2 26.3 35.6 27.5 25.1 31.4 30.0 37.8 24.2 26.0 30.0 26.3 31.1 30.9

Table 2. Classification error rate (%) on CIFAR100-C. The best numbers are in bold.

Method Gaussian shot impulse defocus glass motion zoom snow frost fog brightness contrast elastic trans pixelate jpeg Mean
Source 95.3 94.6 95.3 84.9 91.1 86.8 77.2 84.4 80.0 77.3 44.4 95.6 85.2 76.9 66.7 77.2

BN Adapt [16] 87.6 87.4 87.8 87.7 88.0 78.2 64.5 67.6 70.6 54.9 36.4 89.3 58.0 56.4 66.6 66.2

TENT-cont [26] 85.7 80.0 78.3 82.2 79.2 70.9 59.1 65.6 66.4 55.4 40.6 80.3 55.5 53.5 59.0 67.4

Conjugate PL [9] 85.2 79.6 77.1 82.4 79.8 70.8 59.3 65.2 66.1 54.8 39.8 79.5 55.1 52.7 58.7 67.1

CoTTA [27] 87.5 86.0 84.4 85.1 84.4 73.9 61.5 63.6 64.2 51.9 38.6 74.8 51.1 45.1 50.2 66.8

DSS (Ours) 84.6 80.4 78.7 83.9 79.8 74.9 62.9 62.8 62.9 49.7 37.4 71.0 49.5 42.9 48.2 64.6

Table 3. Classification error rate (%) on ImageNet-C. The best numbers are in bold.

more robust to the order of the target domain sequence.

3D Results. While our method is designed to address the

CTDA task for 2D image recognition, we also adapt and

evaluate our method for the case of 3D point cloud recog-

nition [12, 19, 29]. To this end, we evaluate our proposed

methods on ScanObject-C. As shown in Table 5, DSS is

again able to reach the lowest error rate of 43.1% using

DGCNN [29] as the backbone. The CoTTA method, on

the other hand, performs 0.2% worse on average due to the

rapid accumulation of errors during the adaptation process.

4.4. Ablation Study

Component analysis. Our method selectively matches the

standard student distribution, in contrast to CoTTA which

attempts to align prediction probability for all test data.

Aligning distributions for all data leads to error accumu-

lation, as demonstrated in Table 6 where CoTTA naively

matching distributions without considering the noisy con-

dition of pseudo labels consistently generates larger errors

over the continual domains. In comparison, we demonstrate

that using our adaptive threshold (DSS w/DT) can yield ad-

ditional improvements of 0.7% and 0.8% on CIFAR100-

C and Imagenet-C respectively. Furthermore, the positive

learning (DSS w/DT&PL) leads to 0.8% and 1.2% im-

provements respectively over DSS w/DT on CIFAR100-

C and Imagenet-C. By applying negative learning (DSS

w/DT&PL&NL) to utilize more unlabelled low-confidence

samples, we achieve further improvements of approxi-

mately 0.1% and 0.2%. Apart from these, we observe that

the overall improvement in CIFAR10-C is marginal com-

pared with other cases, and this may due to the fact that the

model is already very confident on those related target do-

mains with average confidence greater than 90%. In that

case, the source model is able to produce low-entropy pre-

dictions even without online adaptation, and our approach

has a limited effect to overcome the bias that lies in the high-

confidence predictions.

Threshold. Here, we validate the effectiveness of the

dynamic threshold via comparisons with the simple fixed

threshold approach across all domains. The results, as pre-

sented in Table 7, first show that using a fixed threshold

with π = 0.2 may help to reduce the average error rate

by 0.1% on CIFAR100-C. However, using a fixed thresh-

old still causes incorrect predictions to be utilized for self-

learning, resulting in a higher error rate of 0.6% compared

with the dynamic threshold. Note that the averaged model

confidence on out-of-distribution data clearly varies across

all target domains (See the green line of Figure 3), and an

inappropriate fixed threshold could limit the generalization

performance. To illustrate this point, in Table 7, we also

show that fixed π = 0.2 actually increases the error rate to

67.8% from 66.8% on ImageNet-C, whereas our dynamic

threshold still consistently decrease the error rate. This is

mainly due to the fact that a fixed threshold may filter out

excessive samples, leaving inadequate data for model adap-

ation. Thus, we argue that our adaptive threshold approach

strikes a better balance between maximizing target adapta-

tion performance and minimizing error accumulation.
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Avg. Error (%) Source BN Adapt [16] Test Aug TENT [26] CoTTA [27] DSS (Ours)
ImageNet-C 82.4 72.1 71.4 66.5 63.0 (±1.8) 61.6 (±0.3)

Table 4. Classification error rate (%) on ImageNet-C over 10 sequences. The best numbers are in bold.

Method uniform gaussian background impulse upsampling rbf rbf-inv den-dec dens-inc shear rot cut distort oclsion lidar Mean
Source 58.7 49.6 55.4 43.5 53.9 37.5 33.2 24.1 19.6 32.9 38.4 24.8 34.8 91.7 92.6 46.0

TENT-cont [26] 53.2 41.3 59.9 46.5 49.7 37.7 36.0 31.0 26.3 37.5 40.3 34.8 39.1 90.5 90.9 47.6

BN [16] 51.3 41.1 53.0 48.7 49.6 34.8 31.7 29.4 22.2 32.9 37.2 32.4 34.8 90.2 90.4 45.3

CoTTA [27] 56.6 47.2 57.0 39.2 49.6 33.2 31.0 21.2 16.2 29.8 34.6 21.3 30.3 90.9 91.4 43.3

DSS (Ours) 56.6 46.8 57.1 39.1 49.6 32.9 31.0 21.2 16.0 29.8 34.1 21.9 30.1 89.8 90.0 43.1

Table 5. Classification error rate (%) on ScanObjectNN-C. DGCNN [29] is adopted as the backbone. The best numbers are in bold.

Avg. Error (%) CIFAR10-C CIFAR100-C Imagenet-C
CoTTA [27] 16.2 32.5 66.8

DSS (w/ DT) 16.1 31.8 66.0

DSS (w/ DT&PL) 16.1 31.0 64.8

DSS (w/ DT&PL&NL) 16.0 30.9 64.6

Table 6. Component analysis. DT, PL, and NL are dynamic thresh-

olding, positive and negative learning. DSS (w/ DT) indicates

solely using the high-quality samples and training the model with

Lcst, as CoTTA does. DSS (w/ DT&PL) and (w/ DT&PL&NL)

are trained with Lpst and Lneg + Lpst, respectively.

Figure 3. The average prediction confidence (green line) and adap-

tive threshold (red line) on ImageNet-C across domains.

Moreover, applying positive learning with a fixed thresh-

old on ImageNet-C instead resulted in an increased average

error rate of 77.4% from 66.8%, indicating that naive en-

tropy minimization by positive learning would lead to an

increase in error accumulation rate. As such, the positive

learning component can only be effectively applied with an

appropriate threshold that filters out most incorrect pseudo

labels. Our adaptive threshold module, however, can always

provide a reliable value to filter suspected noisy labels.

Sharpening. Sharpening is employed to decrease the en-

tropy of teacher predictions to assist with model generaliza-

tion. Here, we demonstrate that in Table 8 when Tp = 0.6,

it has the lowest average error rate over all domains. Never-

theless, the average error rate increases when the Tp value

falls below or exceeds 0.6. The reasoning behind this phe-

nomenon may be attributed to two different factors. Firstly,

as Tp approaches 1, the model’s ability to gain knowledge

from predictions with higher entropy is limited, resulting in

Avg. Error (%) CIFAR100-C Imagenet-C
CoTTA [27] 32.5 66.8

DSS (w/ fixed π) 32.4 67.8

DSS (w/ fixed π&PL) 32.1 77.4

DSS (w/ fixed π&PL&NL) 31.9 76.8

DSS (w/ DT) 31.8 66.0

DSS (w/ DT&PL) 31.0 64.8

DSS (w/ DT&PL&NL) 30.9 64.6

Table 7. Adaptive threshold versus Fixed threshold. DT, PL, and

NL are dynamic threshold, positive and negative learning.

Avg. Error (%) CIFAR100-C Imagenet-C
CoTTA [27] 32.5 66.8

DSS (Tp = 0.2) 32.1 74.8

DSS (Tp = 0.4) 31.7 66.6

DSS (Tp = 0.6) 30.9 64.6
DSS (Tp = 0.8) 31.7 64.7

DSS (Tp = 1) 32.0 64.9

Table 8. Temperature scaling with Tp ranging from 0.2 to 1.

lower accuracy. On the other hand, decreasing Tp below

0.6 may push the models to output overconfident predic-

tions, potentially resulting in noise overfitting.

5. Conclusion

In this paper, we introduce a novel method, termed Dy-

namic Sample Selection (DSS), based on joint positive and

negative learning with a dynamic threshold for the CTDA

task. Traditional methods for CTDA struggle with error ac-

cumulation since the adaptation method relies on suspected

noisy pseudo-labels as a part of the adaptation process. To

address this, in this paper, we consistently monitor the pre-

diction confidence in an online manner and select low- and

high-quality samples for different training strategies. To

this end, we use positive learning for high-quality samples

and negative learning for both low- and high-quality sam-

ples. Moreover, we have shown that our proposed method

can also be applied to 3D point cloud data as well as 2D im-

ages, which showcases its versatility and potential for wide

applicability.
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[1] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Ja-

son Weston. Curriculum learning. In Proceedings of the 26th
annual international conference on machine learning, pages

41–48, 2009. 3

[2] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas

Papernot, Avital Oliver, and Colin A Raffel. Mixmatch: A

holistic approach to semi-supervised learning. Advances in
neural information processing systems, 32, 2019. 4, 5

[3] Dian Chen, Dequan Wang, Trevor Darrell, and Sayna

Ebrahimi. Contrastive test-time adaptation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 2022. 2, 7

[4] Francesco Croce, Maksym Andriushchenko, Vikash Se-

hwag, Edoardo Debenedetti, Nicolas Flammarion, Mung

Chiang, Prateek Mittal, and Matthias Hein. Robustbench:

a standardized adversarial robustness benchmark. arXiv
preprint arXiv:2010.09670, 2020. 6

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 6

[6] Mario Döbler, Robert A Marsden, and Bin Yang. Robust

mean teacher for continual and gradual test-time adaptation.

arXiv preprint arXiv:2211.13081, 2022. 1, 2, 3

[7] Yulu Gan, Xianzheng Ma, Yihang Lou, Yan Bai, Renrui

Zhang, Nian Shi, and Lin Luo. Decorate the newcomers: Vi-

sual domain prompt for continual test time adaptation. arXiv
preprint arXiv:2212.04145, 2022. 3

[8] Yossi Gandelsman, Yu Sun, Xinlei Chen, and Alexei A

Efros. Test-time training with masked autoencoders. arXiv
preprint arXiv:2209.07522, 2022. 2

[9] Sachin Goyal, Mingjie Sun, Aditi Raghunathan, and J Zico

Kolter. Test time adaptation via conjugate pseudo-labels. Ad-
vances in Neural Information Processing Systems, 35:6204–

6218, 2022. 2, 6, 7

[10] Dan Hendrycks and Thomas Dietterich. Benchmarking neu-

ral network robustness to common corruptions and perturba-

tions. In International Conference on Learning Representa-
tions, 2019. 2

[11] Dan Hendrycks and Thomas Dietterich. Benchmarking neu-

ral network robustness to common corruptions and perturba-

tions. arXiv preprint arXiv:1903.12261, 2019. 6

[12] Jie Hong, Shi Qiu, Weihao Li, Saeed Anwar, Mehrtash Ha-

randi, Nick Barnes, and Lars Petersson. Pointcam: Cut-

and-mix for open-set point cloud learning. arXiv preprint
arXiv:2212.02011, 2023. 7

[13] Youngdong Kim, Junho Yim, Juseung Yun, and Junmo Kim.

Nlnl: Negative learning for noisy labels. In Proceedings
of the IEEE International Conference on Computer Vision,

pages 101–110, 2019. 5

[14] Y. Kim, J. Yun, H. Shon, and J. Kim. Joint negative and posi-

tive learning for noisy labels. In 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages

9437–9446, Los Alamitos, CA, USA, jun 2021. IEEE Com-

puter Society. 5

[15] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. 2009. 6

[16] Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and

Xiaodi Hou. Revisiting batch normalization for practical do-

main adaptation. arXiv preprint arXiv:1603.04779, 2016. 6,

7, 8

[17] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need

to access the source data? source hypothesis transfer for un-

supervised domain adaptation. In International Conference
on Machine Learning, pages 6028–6039, 2020. 2

[18] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen,

Shijian Zheng, Peilin Zhao, and Mingkui Tan. Efficient test-

time model adaptation without forgetting. arXiv preprint
arXiv:2204.02610, 2022. 2

[19] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,

2017. 7

[20] Mamshad Nayeem Rizve, Kevin Duarte, Yogesh S Rawat,

and Mubarak Shah. In defense of pseudo-labeling: An

uncertainty-aware pseudo-label selection framework for

semi-supervised learning. arXiv preprint arXiv:2101.06329,

2021. 3

[21] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao

Zhang, Han Zhang, Colin A Raffel, Ekin Dogus Cubuk,

Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying

semi-supervised learning with consistency and confidence.

Advances in neural information processing systems, 33:596–

608, 2020. 3, 5

[22] Jiachen Sun, Qingzhao Zhang, Bhavya Kailkhura, Zhiding

Yu, Chaowei Xiao, and Z Morley Mao. Benchmarking ro-

bustness of 3d point cloud recognition against common cor-

ruptions. arXiv preprint arXiv:2201.12296, 2022. 2, 6

[23] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei

Efros, and Moritz Hardt. Test-time training with self-

supervision for generalization under distribution shifts. In

International conference on machine learning, pages 9229–

9248, 2020. 2

[24] Antti Tarvainen and Harri Valpola. Mean teachers are better

role models: Weight-averaged consistency targets improve

semi-supervised deep learning results. Advances in neural
information processing systems, 30, 2017. 2, 3

[25] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua,

Duc Thanh Nguyen, and Sai-Kit Yeung. Revisiting point

cloud classification: A new benchmark dataset and classifi-

cation model on real-world data. In International Conference
on Computer Vision (ICCV), 2019. 6

[26] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Ol-

shausen, and Trevor Darrell. Tent: Fully test-time adaptation

by entropy minimization. In International Conference on
Learning Representations, 2021. 2, 6, 7, 8

[27] Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai.

Continual test-time domain adaptation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7201–7211, 2022. 1, 2, 3, 5, 6, 7, 8

[28] Yidong Wang, Hao Chen, Qiang Heng, Wenxin Hou, Marios

Savvides, Takahiro Shinozaki, Bhiksha Raj, Zhen Wu, and

1709



Jindong Wang. Freematch: Self-adaptive thresholding for

semi-supervised learning. arXiv preprint arXiv:2205.07246,

2022. 3

[29] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,

Michael M Bronstein, and Justin M Solomon. Dynamic

graph cnn for learning on point clouds. Acm Transactions
On Graphics (tog), 38(5):1–12, 2019. 6, 7, 8

[30] Dong Yin, Raphael Gontijo Lopes, Jon Shlens, Ekin Dogus

Cubuk, and Justin Gilmer. A fourier perspective on model

robustness in computer vision. Advances in Neural Informa-
tion Processing Systems, 32, 2019. 6

[31] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-

works. In Edwin R. Hancock Richard C. Wilson and William

A. P. Smith, editors, Proceedings of the British Machine Vi-
sion Conference (BMVC), pages 87.1–87.12. BMVA Press,

September 2016. 6

[32] Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jin-

dong Wang, Manabu Okumura, and Takahiro Shinozaki.

Flexmatch: Boosting semi-supervised learning with curricu-

lum pseudo labeling. Advances in Neural Information Pro-
cessing Systems, 34:18408–18419, 2021. 3, 5

1710


