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Abstract

Eye tracking research is important in computer vision
because it can help us understand how humans interact
with the visual world. Specifically for high-risk applica-
tions, such as in medical imaging, eye tracking can help
us to comprehend how radiologists and other medical pro-
fessionals search, analyze, and interpret images for diag-
nostic and clinical purposes. Hence, the application of eye
tracking techniques in disease classification has become in-
creasingly popular in recent years. Contemporary works
usually transform gaze information collected by eye track-
ing devices into visual attention maps (VAMs) to supervise
the learning process. However, this is a time-consuming
preprocessing step, which stops us from applying eye track-
ing to radiologists’ daily work. To solve this problem, we
propose a novel gaze-guided graph neural network (GNN),
GazeGNN, to leverage raw eye-gaze data without being
converted into VAMs. In GazeGNN, to directly integrate
eye gaze into image classification, we create a unified rep-
resentation graph that models both images and gaze pattern
information. With this benefit, we develop a real-time, real-
world, end-to-end disease classification algorithm for the
first time in the literature. This achievement demonstrates
the practicality and feasibility of integrating real-time eye
tracking techniques into the daily work of radiologists. To
our best knowledge, GazeGNN is the first work that adopts
GNN to integrate image and eye-gaze data. Our experi-
ments on the public chest X-ray dataset show that our pro-
posed method exhibits the best classification performance
compared to existing methods. The code is available at
https://github.com/ukaukaaaa/GazeGNN.

1. Introduction
Image classification has always been a complicated task

in the computer vision field. In recent years, because
∗
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of the explosive development of machine learning tech-
niques, deep learning-based classification algorithms have
been proposed to deal with this challenging task [12, 14,
22, 23, 36, 41]. However, compared to the classical natu-
ral image datasets such as ImageNet-1k [7], medical im-
age datasets are usually characterized by a relatively limited
scale and low signal-to-noise ratio [5], which makes disease
classification a more challenging task. This problem is par-
ticularly evident in chest X-ray classification. It is because
chest X-ray has limited soft tissue contrast, containing a va-
riety of complex anatomical structures overlapping in pla-
nar (2D) view [29]. Many tissues, such as organs, blood
vessels, and muscles, have similar intensity values on the
chest X-ray images [32]. This can easily confuse the deep
learning model to distinguish between normal and abnor-
mal tissues, making it difficult to identify the true location
of abnormalities accurately.

Therefore, deep learning algorithms encounter difficul-
ties in accurately identifying abnormality based solely on
chest X-ray images. To overcome this challenge, many re-
cent studies have applied eye-tracking techniques to com-
plement the model with prior knowledge of the location
of abnormality regions. Eye-tracking techniques collect
eye-gaze data from radiologists during screening proce-
dures [37, 38]. This eye-gaze data represents the search
pattern of radiologists for tumors or suspicious lesions on
the scans. It indicates the location information that radiol-
ogists have fixations and saccades on the images during di-
agnostic screenings. Since these positions are highly likely
to hold abnormality and potentially important regions, eye-
gaze data can provide extra location information of the dis-
ease that is often challenging to be observed from medical
images alone. This supplementary information, a high-level
attention, can guide the deep learning model to learn the
disease feature in an interpretable way. Hence, embedding
eye-gaze information into diagnostic analysis has become a
popular topic in recent years [2, 20, 21, 37].
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Figure 1. Illustration of our proposed method and other frameworks that integrate eye-gaze information in medical image classification.

The prior mainstream works on this topic can be broadly
categorized into two approaches. The first one [3, 8, 18, 33,
39, 42, 44, 46] is referred to as the attention consistency ar-
chitecture, illustrated in Fig. 1(a). It calculates the attention
map based on the model learned by image. At the same
time, eye gaze is utilized to supervise the attention map gen-
erated by the model. This ensures that the model’s atten-
tion aligns closely with the attention patterns observed by
human experts. However, since this architecture only uti-
lizes eye gaze during training as a supervision source and
excludes it during testing, there is a potential risk in classi-
fication performance and model robustness. This is related
to the inherent variability in eye-gaze data. The eye-gaze
data can differ significantly from case to case since each ra-
diologist may have their own unique search patterns. This
individualized nature of eye-gaze data may introduce incon-
sistencies that complicate the learning process for classifi-
cation models. Therefore, it is challenging to learn a gen-
eralized model to capture standardized eye-gaze data pat-
terns for one specific disease. In section 4.4, we verify that
attention consistency architecture exhibits poor model ro-
bustness and has a remarkable performance drop when dis-
tribution gaps exist in the data. This motivates us to study
other structures to integrate eye-gaze information.

The second approach [18, 27, 28, 31] is known as the
two-stream architecture, as depicted in Fig. 1(b). It consists
of two branches dedicated to processing the image and eye
gaze information separately. These branches extract fea-
tures from their respective sources, which are then concate-
nated and fed into the classification head. In the end, the
predicted probabilities of each disease class are achieved.

However, since the eye-gaze data consists of a group of fix-
ation points, which is not a regular grid or sequence repre-
sentation, two-stream architecture transforms the eye-gaze
data into visual attention maps (VAMs) and then integrates
the VAMs with the medical images. It is not ideal for real-
world clinical practice because it is time-consuming to gen-
erate VAM for each image during inference (∼10s for each
image). There is still a need to prepare all the VAMs in ad-
vance before sending them into the network one by one. As
a result, this hinders the practical application of eye tracking
techniques in the daily clinical workflow.

Therefore, to address the problems of the existing two
architectures, we develop a new framework illustrated in
Fig. 1(c). We consider eye gaze as the model input to en-
hance the model robustness and directly utilize the raw eye-
gaze data without converting it to the VAMs to improve
time efficiency. To bypass the usage of VAM and fully inte-
grate eye gaze with image, we apply a graph to model mul-
tiple information in a single representation and adopt the
Graph Neural Network (GNN) to learn the graph. Unlike
the nowadays’ widely sought Transformer model, GNN is
shown to be highly effective even with limited training data,
making it a better choice for medical settings [10]. Addi-
tionally, GNN has the advantage of capturing the relational
information between different parts of the image according
to their semantic and categorical attributes [11]. This capa-
bility facilitates the learning of relationships between var-
ious organs and even the distinction between normal and
abnormal regions within the image.

To adapt GNN for disease classification, the image is di-
vided into patches to construct a graph. In the graph, each
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node stands for a feature fused from three types of informa-
tion: the location of the patch in the image, the local inten-
sity information of the image patch, and the human attention
information from the patch. Respectively, we employ three
different embedding techniques to encode the information
respectively: (i) positional embedding for the location of
the patch, (ii) patch embedding for patch local intensity val-
ues extraction, and (iii) gaze embedding for aggregating the
fixation time of radiologists on the patch. Then, for each
patch, the three embedding features are combined as a sin-
gle feature vector. Finally, each node is connected to its k-
nearest neighbors to build the graph. By feeding the graph
into a GNN, we obtain the disease classification model.

The major contributions of this work are summarized as:

1. We propose a novel Gaze-guided GNN framework,
GazeGNN, which can directly integrate raw eye-gaze
data with images, bypassing the need to convert gaze
into VAMs. This reduces the inference time of each
case from ∼10s to less than 1s, making it the first study
that can be applied to real-world clinical practice due
to its efficiency and seamless integration.

2. We leverage the flexibility of a graph network to design
a unified graph representation that can encode multi-
ple types of information - the location of the patch in
the image, the local intensity information of the image
patch, and the human attention information focused on
the patch - within a single representation.

3. Rather than a supervision source, we verify incorpo-
rating eye-gaze data as a model input that can enhance
the model’s robustness and reduce performance drop
in scenarios where distribution gaps exist.

4. By evaluating GazeGNN on a public chest X-ray
dataset [18], our proposed method achieves the state-
of-the-art performance on the disease classification
task. It outperforms the existing strategies that utilize
both image and eye-gaze data, from the perspectives of
accuracy, robustness, and time efficiency.

2. Related Works
2.1. Chest X-ray Classification

Chest X-ray classification has witnessed significant ad-
vances in recent years with the power of large-scale public
chest X-ray datasets and advanced machine learning tech-
niques. Large-scale chest X-ray datasets such as CheX-
pert [15], MIMIC-CXR [17], ChestX-ray14 [30], and oth-
ers [4, 6, 19, 45] have significantly contributed to the model
training and evaluation. These datasets provide nearly a
million of chest X-ray images (in total) with class anno-
tations, enabling the development of chest X-ray classifica-

tion algorithms developments. On the other side, the de-
velopment of advanced deep learning algorithms has en-
hanced the accuracy and performance of chest X-ray clas-
sification. Most methods are mainly based on chest X-ray
images and propose new network architectures to conduct
the analysis [1, 9, 16, 30, 35]. Very recently, studies have
started to explore the eye-gaze data on chest X-ray clas-
sification task [18, 39, 42]. Research has shown that the
inclusion of additional human expert knowledge via eye-
gaze patterns can significantly enhance the accuracy of deep
learning models.

2.2. Integration of Eye-gaze Data in Medical Image
Analysis

The prior mainstream works commonly transform the
eye-gaze data into VAMs. A VAM is an image that high-
lights radiologists’ attention regions on the corresponding
medical image. Related works can be generally divided
into two categories based on their utilization of the VAMs.
The first category considers the VAMs as a part of the input
for the network models. For example, in [27, 28, 31], au-
thors apply VAMs to process the images and take the pro-
cessed images as the model input. In [18], authors employ a
CNN-LSTM hybrid two-stream neural network, where the
CNN is used to process the medical images, and the LSTM
is used to encode the VAMs. The second category min-
imizes the difference between VAMs and class activation
maps (CAMs) [3, 42] or the difference between VAMs and
the attention maps generated by a U-Net decoder [18, 44].

More recently after the release of Segment Anything
Model (SAM) by Meta, a human-computer interaction sys-
tem, GazeSAM [40], is proposed. Basically, it combines
eye tracking technology with SAM and enables users to
segment the object they are looking at in real-time, which
noticeably proves the possibility of bringing real-time eye
gaze integration into routine clinics.

3. Method
In this section, we describe the framework of the pro-

posed GazeGNN for the disease classification task. As illus-
trated in Fig. 2, GazeGNN constructs a graph from an image
and eye-gaze data. Each node in the graph is represented as
a combination of features through patch, gaze, and position
embedding. After graph is constructed, a graph neural net-
work is applied to update and aggregate the information of
all the nodes in order to produce a feature representing the
whole graph. By performing graph-level classification, we
can obtain the predicted class for the input image.

3.1. Graph Representation

Our proposed GazeGNN method takes two distinct data
types as input: the chest X-ray image and the corresponding
eye-gaze information. The image is a regular grid structure
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Figure 2. An overview of our proposed GazeGNN framework. It includes a graph construction based on patch, gaze, and position
embeddings and a graph neural network for disease classification.

data, while eye-gaze information is a group of scatter points
that indicates the attention locations of radiologists during
their evaluation process. To integrate both types of informa-
tion effectively, we employ following techniques to embed
them into feature vectors to construct a graph accordingly.

3.1.1 Patch Embedding

The image input size in this task is 224 × 224. Therefore,
if we treat each pixel as an individual node, there will be
50,176 nodes in the graph. This is an excessive number
and makes the GNN training difficult. Instead, we divide
the image into multiple 15 × 15 patches and consider each
patch as a node.

Given an image I ∈ RH×W , we split it into N patches
P = {p1, p2, ..., pN}, where pi ∈ RS×S for i = 1, 2, ..., N .
For each patch pi, we extract a feature vector x(I)

i ∈ RD

that encodes the local image information, which is:

x
(I)
i = F (pi), (1)

where F (·) is the feature extraction method. In this work,
we adopt the overlapping patch embedding method [43] to
extract the feature vectors from image patches.

3.1.2 Gaze Embedding

Eye-gaze data consists of many scatter points, and each of
them means that the radiologists’ eyes have concentrated on

this location for a moment when they were performing im-
age reading. More importantly, eye gaze not only provides
the location information but also offers the time duration for
each point. As illustrated in “Eye Gaze” of Fig. 2, there are
many red dots with different sizes scattered on the image. A
bigger red dot indicates that the radiologist has spent a rel-
atively longer time focusing on the corresponding area. To
maintain consistency with the feature vector defined for a
single image patch in Eq. (1), we perform time aggregation
to get the fixation time for each patch. Assume that there
are Q eye-gaze points g(m1,n1), g(m2,n2), ..., g(mQ,nQ), in
which g(mi,ni) indicates that radiologist’s eyes fix at loca-
tion (mi, ni) for g(mi,ni) seconds. Then, to conduct the
time aggregation, we sum up all the eye-gaze points’ fixa-
tion time in the patch to represent the attention feature of
the patch, i.e., for each patch pi, the gaze embedding is:

x
(T )
i =

∑
(mj ,nj)∈pi

g(mj ,nj), (2)

where i ∈ [1, N ] and j ∈ [1, Q]. Next, we replicate the
scalar x(T )

i to the vector x(T )
i ∈ RD for feature fusion.

3.1.3 Position Embedding

During the graph processing in GNN, the features are
treated as unordered nodes. To keep the positional infor-
mation in the original image, we adopt the position embed-
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Figure 3. The architecture of the proposed Graph Neural Network (GNN).

ding method from [11], which contains two steps. The first
step is to add a learnable absolute positional encoding vec-
tor ei ∈ RD to the feature vector

(
x
(I)
i + x

(T )
i

)
. In the

second step, we calculate the relative positional distance be-
tween nodes as eTi ej , and this distance is used to determine
the neighbors of a given node in the k-nearest neighbors
algorithm for the graph construction.

3.1.4 Graph Construction

With patch, gaze, and position embeddings, the graph node
feature vector xi is elaborated as:

xi = x
(I)
i + x

(T )
i + ei, (3)

and these features represent the vertices V =
{x1,x2, ...xN}. By calculating the k-nearest neigh-
bors, the edges of the graph are defined as

E = {(xi,xj) | xj ∈ K(xi)}, (4)

where K(xi) represents the k-nearest neighbors of xi. In
this way, a graph G = {V, E} is constructed.

3.2. Graph Neural Network (GNN)

As illustrated in Fig. 3, the graph neural network con-
sists of L graph processing blocks [11], an average pool-
ing layer, and a graph classification head. Graph processing
block consists of multiple fully-connected (FC) layers and
a graph convolutional layer [24].

Suppose the graph is represented as N D-dimension fea-
ture vectors. Given an input graph Xt = [xt

1,x
t
2, ...,x

t
N ] ∈

RN×D at block t, a graph processing block outputs Zt ∈
RN×D as

Yt = Ψ2

(
Φ
(
Ψ1

(
Xt

)))
+Xt, (5)

Zt = Ψ4

(
Ψ3

(
Yt

))
+Yt, (6)

where Φ denotes the graph convolution operation and Ψ in-
dicates FC layer. Here, we ignore the activation and batch
normalization layers. Let Yt ∈ RN×D stand for the in-
termediate output after the first shortcut connection and

Rt = Ψ1(X
t) stand for the input of graph convolutional

layer. The graph convolution St = Φ(Rt) is defined as

sti = W ·max
({

rti − rtj | j ∈ K
(
rti
)})

, (7)

where St = [st1, s
t
2, ..., s

t
N ] ∈ RN×D and Rt =

[rt1, r
t
2, ..., r

t
N ] ∈ RN×D. W is a trainable weight matrix

to update the feature for the node. The max term is the
aggregation function that aggregates features from the i-th
node’s neighbors. Therefore, graph convolution aggregates
node neighbors’ feature information and updates it into the
node feature. In the final step, the classification head is de-
signed as a fully-connected layer with the softmax function.
It outputs the predicted probability of each category.

4. Experiments
Our experiments are implemented on a workstation with

an Intel Xeon W-2255 CPU and an NVIDIA RTX 3090
GPU using PyTorch. We train GazeGNN using AdamW op-
timizer [26] with the learning rate of 0.0001 and the batch
size of 32. The checkpoint model with the best testing ac-
curacy is saved during the training. Cross-entropy loss is
used as the classification loss function. In the following
experiments, we adopt [18] as the implementation of two-
stream architecture and [42] as the implementation of atten-
tion consistency architecture.

4.1. Dataset Preparation

The experiments in this paper are carried out on a public
chest X-ray dataset [18], which contains 1083 cases from
the MIMIC-CXR dataset [17]. For each case, a gray-scaled
X-ray image with the size of around 3000 × 3000, eye-
gaze data, and ground-truth classification labels are pro-
vided. These cases are classified into 3 categories: Normal,
Congestive Heart Failure (CHF), and Pneumonia. For the
comparison experiments, we generate the static VAMs from
the eye-gaze data using the data post-processing method
as described in [18]. The model performance is evaluated
through multiple metrics, including accuracy, the area un-
der the receiver operating characteristic curve (AUC), pre-
cision, recall, and F1-score. The higher these metrics are,
the better the model is. For all the experiments, we apply
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Table 1. Classification results on the Chest X-Ray dataset [18].

Method Accuracy AUC Precision Recall F1-Score
Normal CHF Pneumonia Average

Temporal Model [18] - 0.890 0.850 0.680 0.810 - - -
U-Net+Gaze [18] - 0.910 0.890 0.790 0.870 - - -
DenseNet121+Gaze [39] - - - - 0.836 - - 0.270
GazeMTL [33] 78.50% 0.915 0.913 0.833 0.887 0.786 0.781 0.779
IAA [8] 78.50% 0.922 0.902 0.875 0.900 0.780 0.774 0.776
EffNet+GG-CAM [46] 77.57% 0.906 0.914 0.843 0.888 0.770 0.772 0.770
GazeGNN 83.18% 0.938 0.916 0.914 0.923 0.839 0.821 0.823
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Figure 4. Comparisons of ROC curves and AUC scores

the same data augmentation techniques, including random
resize crop into 224× 224, random horizontal flip, and ran-
dom rotation by up to 5◦.

4.2. Improving Disease Classification Accuracy

We compare GazeGNN with the state-of-the-art
methods, including temporal model [18], U-Net+Gaze
model [18], and DenseNet121-based model [39]. These
methods adopt the official training and test datasets, so we
directly include their reported results in this paper. We also
compare GazeGNN with some other gaze-guided methods,
which have not been validated on this dataset yet, or have
used this dataset but did not follow the official splitting
strategy. These methods include GazeMTL [33], IAA [8],
and EffNet+GG-CAM [46]. To make the comparison
fair, we train these methods under the same setting as
GazeGNN.

The quantitative results are summarized in Table 1. Al-
though we primarily compare the accuracy metric in this
work because we save the checkpoint models with the best
testing accuracy, it is noted that the proposed GazeGNN
still achieves the best performance on all the evaluation met-
rics. Moreover, Fig. 4 shows receiver operating character-
istic (ROC) curves of the comparison method with the best
average AUC and our GazeGNN. The ROC curves of other
compared methods are presented in the supplemental mate-
rials.

4.3. Improving Inference Speed

Eye-gaze data is composed of a group of scatter points,
indicating the location coordinates of the radiologists’ gaze
on the medical image. It is not a regular grid or sequential
data format. To align the eye-gaze data with the medical im-
age, existing methods typically transform the eye-gaze into
the VAMs for training purposes. The generation of VAM
for each image can be a time-consuming process. There
are two approaches to accomplish this step. One method
is to apply a Gaussian distribution to each eye-gaze point
and aggregate the individual distributions to obtain the final
VAM. The other approach is to apply a Gaussian filter ker-
nel to smooth the eye-gaze intensity value (duration time
on a certain image location) on the whole image. Due to
the large size of chest X-rays (approximately 2500x3000)
and the considerable number of eye-gaze points, generat-
ing VAMs for each image requires substantial time. Con-
sequently, existing methods often pre-generate all VAMs in
advance before training or inference. This is not ideal when
we want to integrate the eye-gaze into the radiologists’ daily
work. In our method, on the other hand, we bypass the

Table 2. Comparison of inference speed.

Method Gaze Inference Time
GazeGNN ✓ 0.353s
Two-stream Architecture ✓ 9.246s
Attention Consistency Architecture 0.294s

process of generating VAM and propose a novel technique,
called time aggregation with gaze embedding, to conduct
eye-gaze integration. Due to the simple calculation inside
the time aggregation, we significantly reduce the inference
time, as shown in Table 2. We compare the inference speed
of our method and the current two mainstream architectures.
We test on 100 cases and calculate the average processing
time as the inference time. For attention consistency ar-
chitecture, a Gaussian filter kernel, with standard deviation
σ = 150, is applied to generate the VAM for each case.

From the result shown in Table. 2, we can find that
two-stream architecture takes the longest inference time,
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Table 3. Performance comparison of our method across different backbones.

Backbone Accuracy AUC Precision Recall F1-Score
Normal CHF Pneumonia Average

DenseNet121 [13] 71.03% 0.903 0.855 0.620 0.793 0.696 0.689 0.689
ResNet18 [12] 71.96% 0.906 0.820 0.687 0.804 0.706 0.706 0.705
ResNet50 [12] 70.09% 0.898 0.818 0.663 0.793 0.685 0.685 0.684
ResNet101 [12] 71.03% 0.852 0.862 0.756 0.823 0.703 0.705 0.703
Swin-T [25] 77.57% 0.925 0.898 0.732 0.852 0.762 0.760 0.755
Swin-S [25] 74.77% 0.911 0.873 0.728 0.837 0.733 0.735 0.733
Swin-B [25] 76.64% 0.907 0.880 0.770 0.852 0.771 0.754 0.748
GNN 83.18% 0.938 0.916 0.914 0.923 0.839 0.821 0.823

around 10 seconds. This is mainly due to the time-
consuming process of VAM generation. It is worth not-
ing the GazeGNN obtains comparable inference time as at-
tention consistency architecture. The attention consistency
architecture does not require gaze input in the inference
stage, while GazeGNN involves the eye-gaze. This demon-
strates the efficiency of eye-gaze integration in our archi-
tecture, which points out the feasibility to bring real-time
eye-tracking techniques into the radiology rooms.

4.4. Improving Model Robustness

Table 4. Comparison of performance drop when testing on the
dataset with distribution shift.

Method Performance Drop ↓
Accuracy Precision Recall F1-Score Average AUC

GazeGNN 2.78% 1.10% 2.87% 3.97% 0.20%
ACA 13.79% 15.30% 15.63% 18.38% 4.86%

In attention consistency architecture, the eye-gaze data
is considered a supervision source during training, as illus-
trated in Fig. 1. The inference stage of attention consistency
architecture does not involve eye-gaze information. This re-
quires the model to learn the eye-gaze pattern for certain
diseases. However, the eye-gaze data is different case by
case and each radiologist has his own search patterns when
doing image reading. Further, even for the same radiolo-
gist’s second time reading of the same scan may show dif-
ferences in eye-gaze patterns. Therefore, learning standard-
ized eye-gaze data patterns for a specific disease is chal-
lenging, and likely not a generalizable model.

To fully utilize the power of eye-gaze information, we
postulate that the model should incorporate gaze input in
the inference stage. In this way, when encountering new
data that exhibits a distribution shift from the original train-
ing dataset, we can still leverage the eye-gaze data to pro-
vide the model with the location information of the poten-
tial abnormality. To prove this assumption, we introduce
random noise to the testing dataset, creating a distribution
gap from the original training dataset. We then evaluate our

method and attention consistency architecture (ACA) on the
original and noisy testing datasets. Based on the results pre-
sented in Table 4, it is evident that the attention consistency
architecture exhibits a larger performance drop compared to
our proposed method, validating our previous assumption.

4.5. Effectiveness of GNN

After combining the position, gaze, and patch embed-
ding, we obtain a single feature that represents both image
and eye gaze. In this work, the feature is used to construct
a graph and processed by GNN. But it also works for other
backbone architectures. We employ strong backbone net-
works, including DenseNet, ResNet, and Swin Transformer,
and compare the performance with GNN.

The performance of our method across different back-
bones is shown in Table 3. The Transformer backbone does
not exhibit the best performance. This might be because
it suffers from limited data. In addition, we see that our
method with GNN achieves the best results over all the eval-
uation metrics. This can be attributed to two key factors.
Firstly, unlike the Transformer model, GNN demonstrates
remarkable effectiveness even when presented with limited
training data. The other reason is that GNN can capture
and comprehend the intricate relationships between patches
through graph learning.

4.6. Ablation Study of Gaze Usage

To study the effectiveness of the gaze information, we
remove the gaze embedding and only fuse the features from
patch embedding and position embedding. In this way, gaze
information is not used. The comparison is presented in
Table 5 and supplementary. Without the gaze information,
accuracy, average AUC, precision, recall, and F1-score all
descend. This validates the assumption that introducing the
eye-gaze data can improve classification performance. It is
noted that even without gaze embedding, our obtained ac-
curacy is higher than 80% and the average AUC is higher
than 0.900, superior to most gaze-guided state-of-the-art
methods. This is because the proposed graph representa-
tion is powerful enough to help the model recognize the
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Chest X-ray Image Eye Gaze Grad-CAM without
Eye-Gaze Integration

Grad-CAM with
Eye-Gaze Integration

Normal CHF Normal

Pneumonia Normal Pneumonia

Pneumonia Normal Pneumonia

Figure 5. Gaze map and Grad-CAM based attention maps with and without eye-gaze data are shown. Under the images, original label of the
chest X-ray is represented by the black color, while the red and green labels indicate incorrect and correct model predictions, respectively.

image. In addition, we visualize the model’s intermediate

Table 5. Ablation study on GazeGNN with/without the eye-gaze
information.

Gaze Accuracy Average AUC Precision Recall F1-Score
✓ 83.18% 0.923 0.839 0.821 0.823

80.37% 0.910 0.800 0.805 0.801

features to show the power of eye-gaze integration. We
use Grad-CAM [34] to generate the attention map from the
trained model. From Fig. 5, it is observed that before the
eye-gaze integration, the model fails to focus on the abnor-
mal regions, resulting in incorrect classification decisions.
However, when eye-gaze is introduced, the model’s atten-
tion shifts to the regions highlighted by radiologists. This
indicates the guidance of eye-gaze enhances the model’s ca-
pability to achieve more accurate abnormality localization.

5. Conclusion
In this study, we propose a novel gaze-guided graph

neural network, GazeGNN, to perform the disease classi-

fication task. With the flexibility of graph representation,
GazeGNN can utilize the raw eye-gaze information directly
by embedding it with the image patch and the position in-
formation into the graph nodes. Therefore, this method
avoids generating the VAMs that are required in mainstream
gaze-guided methods. With this benefit, we develop a real-
time, end-to-end disease classification algorithm without
preparing the visual attention maps in advance. We show
that GazeGNN can produce a significantly better perfor-
mance than existing methods under the same training strat-
egy. This proves the feasibility of bringing real-time eye
tracking techniques to radiologists’ daily work.
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