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Abstract

Recent advances in Neural radiance fields (NeRF) have
enabled high-fidelity scene reconstruction for novel view
synthesis. However, NeRF requires hundreds of network
evaluations per pixel to approximate a volume rendering in-
tegral, making it slow to train. Caching NeRFs into explicit
data structures can effectively enhance rendering speed but
at the cost of higher memory usage. To address these is-
sues, we present Hyb-NeRF, a novel neural radiance field
with a multi-resolution hybrid encoding that achieves effi-
cient neural modeling and fast rendering, which also al-
lows for high-quality novel view synthesis. The key idea of
Hyb-NeRF is to represent the scene using different encoding
strategies from coarse-to-fine resolution levels. Hyb-NeRF
exploits memory-efficiency learnable positional features at
coarse resolutions and the fast optimization speed and lo-
cal details of hash-based feature grids at fine resolutions.
In addition, to further boost performance, we embed cone
tracing-based features in our learnable positional encoding
that eliminates encoding ambiguity and reduces aliasing ar-
tifacts. Extensive experiments on both synthetic and real-
world datasets show that Hyb-NeRF achieves faster ren-
dering speed with better rending quality and even a lower
memory footprint in comparison to previous state-of-the-art
methods.

1. Introduction

Novel view synthesis targets rendering a scene from a
set of images and camera poses obtained from unobserved
viewpoints. Synthesizing novel views in real-time at photo-
realistic quality is a long-standing problem in computer vi-
sion and computer graphics. To address this problem, tra-
ditional approaches like rasterization and ray-tracing rely
on feature matching and view interpolation, requiring sig-
nificant manual effort in designing and pre-processing the
scene. Recently, Neural Radiance Fields (NeRF) and its
variants [2, 6, 20, 23] have shown impressive performance
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Figure 1. Top: Rendering performance comparison between our
Hyb-NeRF and JNGP [41] on the ficus scene in Blender. Our Hyb-
NeRF can render high-quality color images and synthesize an al-
pha map with less noise, enabling to accurate reconstruction of the
translucency of the leaf edges without jaggies. Bottom: In com-
parison with previous state-of-the-art fast NeRF training methods,
our Hyb-NeRF models can achieve the best rendering quality and
memory compactness, while maintaining fast rendering.

on scene representation and novel view synthesis. These ap-
proaches obtain high-quality rendering of scenes by implic-
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Figure 2. a) Multi-resolution hash encoding [24] maps the input
position x to hash-based feature grids at all resolution levels. b)
Our multi-resolution hybrid encoding uses the concatenation of
coarse-level learnable positional features and fine-level hash-based
dense grids of trainable features to represent the position x, result-
ing in a significantly lower memory footprint and higher quality
representation of synthetic and real-world scenes.

itly encoding colors and volume densities using coordinate-
based multi-layer perceptrons (MLPs).

A key commonality of NeRF-like models is to encode
the low-dimensional coordinate to a higher-dimensional
space that assists the MLPs in learning scene representa-
tion more accurately. NeRF and its variants [2, 23] encode
the input 5D coordinate as a multi-resolution sequence of
Fourier features using fixed positional encodings, allowing
the MLPs to capture high-frequency details that are essen-
tial for photo-realistic novel view synthesis. Despite the
significant progress in representing high-frequency details
of scenes, NeRF and its variants still require a large MLP to
transform the non-parametric features into color and den-
sity, which requires a lengthy time for training and render-
ing.

To address the computational efficiency issue, caching
neural radiance fields into explicit data structures has been
considered in recent works [6,11,30,36,42]. By caching ad-
ditional trainable parameters in an auxiliary data structure,
these approaches can learn color and density with a much
shallower MLP, which improves rendering speed at the cost
of storing a large set of features in a discrete data structure.
Previous methods [11, 42] have shown that high-resolution
grids with resolution initialization and progressive interpo-

lation work well on scene representation. Instead of do-
ing progressive interpolation from coarse to fine resolu-
tion, Instant NGP [24] employs multi-resolution voxel grids
of trainable features that enable end-to-end training. It
presents a multi-resolution hash encoding to map grids to
fixed-size feature arrays from coarse to fine resolution, see
Figure 2, and the feature arrays are cached in a hash table,
which represents a scene more compactly without sacrific-
ing rendering quality. By storing the feature grids in mem-
ory, the computational burden on the MLP is reduced and
training speed is significantly increased. While hash-based
multi-resolution grid representation can be fast to train and
therefore well suited to fast operation, trainable features at
coarse resolution levels have lower resolutions and are less
compressed than feature grids at fine resolution levels, re-
sulting in limited representation power and low memory ef-
ficiency. In this paper, we aim to move toward developing a
multi-resolution hybrid encoding for memory-efficient and
high-quality scene representation as well as fast rendering
by exploiting the different scene representation properties
of positional encodings and parametric grid-based encod-
ings.

We propose Hyb-NeRF, a novel radiance field repre-
sentation that is end-to-end optimizable for compact and
fast reconstruction, and also capable of learning an accu-
rate scene representation for novel view synthesis. Our
key ideas are as follows. First, to optimize neural implicit
map representations with less memory footprint, we pro-
pose coarse-to-fine hybrid features to model the scene ge-
ometry details and colors. Instead of using parametric fea-
ture grids to represent the scene at coarse levels, we present
a learnable positional encoding with much fewer trainable
parameters for coarse-level representation. As shown in
Figure 2, the learnable positional features are then concate-
nated with the fine-level multi-resolution feature grids for
multi-resolution scene representation, yielding detailed 3D
reconstructions and high-quality rendering. The learnable
positional encoding can adaptively learn the weights of po-
sitional features and improve memory efficiency and ren-
dering quality. Second, we embed cone tracing-based posi-
tional features in the learning of positional feature weights,
which helps to significantly disambiguate the optimization
process and eliminate aliasing artifacts.

Our Hyb-NeRF can effectively reduce memory usage
and enable fast high-fidelity novel view synthesis. We ex-
tensively evaluate our method with various settings and
compare it with several state-of-the-art view synthesis
methods in terms of the model size, rendering speed, and
quality on three benchmark datasets including both syn-
thetic and real-world scenes. All Hyb-NeRF models can
reconstruct high-quality radiance fields in 9 min. Our small-
est model with 8.4M trainable parameters takes 4 min to
achieve better-rendering quality than state-of-the-art meth-
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ods while requiring substantially less memory than previous
and concurrent voxel-based methods. Our contributions are
summarized as follows:

• We present Hyb-NeRF, a novel multi-resolution hybrid
encoding that brings together the benefits of positional
features and hash-based feature grids to scene repre-
sentation, enabling memory-efficient, fast, and high-
quality rendering.

• We design a learnable positional encoding that controls
positional features with much fewer learnable weights
to capture more geometry details at coarse resolution
levels and improve rendering quality.

• We introduce cone tracing-based features in the learn-
ing of positional feature weights, which enables our
encoding to work accurately and robustly at different
scales.

2. Related Work
Novel View Synthesis: The task of synthesizing images

from novel viewpoints given a set of photographs has been
widely studied in the field of computer graphics. Various
scene representation methods have been proposed to pre-
dict an underlying geometric or image-based representa-
tion that enables rendering from novel viewpoints. Light
field representations [1, 16, 22] directly synthesize novel
views by filtering and interpolating the input images, but
require high sampling rates and very dense scene capture.
To render novel views from sparsely captured images, some
approaches leverage pre-computed proxy geometry of the
scene [12, 28]. Mesh-based methods [25, 39] represent the
scene with surfaces and allow rendering in real-time. How-
ever, it is difficult to optimize a mesh to capture fine ge-
ometry and topological information. Volumetric representa-
tions, such as voxel grids and multi-plane images, are better
suited for gradient-based optimization and can synthesize
higher-quality views than mesh-based methods. Recently,
convolutional neural networks have been employed to esti-
mate voxel grids [13,21,31,32] and point clouds [19,34,40]
for inward-facing captures and multi-plane images [8,9,45]
for forward-facing captures. These discrete representations
are effective for view synthesis but do not scale well to
higher-resolution imagery. In contrast, recent neural repre-
sentations for novel view synthesis do not suffer from dis-
cretionary artifacts as they encode the scene geometry and
appearance as a continuous volume [23, 33].

Neural Radiance Fields: NeRF [23] maps the geometry
and appearance of the scene into the weights of MLPs. To
assist MLPs in capturing high-frequency variations in ge-
ometry and appearance and infer high-quality novel views,
NeRF encodes the input coordinate to a higher-dimensional
space of multi-resolution Fourier features using positional

encoding [37]. Subsequent efforts have extended NeRF
for various applications, e.g., relighting [4, 35, 38], large-
scale scene modeling [3, 30, 44], dynamic scene model-
ing [10, 26, 29], and deformation [27, 43]. However, NeRF
has limited reconstruction quality with sampling and alias-
ing issues. Many recent works have proposed to address
these issues [2,3,15]. Our method is more closely related to
Mip-NeRF [2] that casts cones instead of rays to consider
the shape and size of volume viewed by each ray and repre-
sents the volume covered by each conical frustum using an
integrated positional encoding. While NeRFs are effective
for photo-realistic view synthesis, they are often computa-
tionally expensive and impractical for fast rendering. In this
work, we introduce a learnable positional encoding that as-
sists our model to achieve accurate scene representation and
fast rendering with shallow MLPs.

NeRFs with explicit volumetric representations: Re-
cent approaches combine NeRFs with explicit volumetric
representations, such as octree [20], voxel grids [36], Tri-
Plane [5, 10] and factorization tensors [6, 7], to reduce the
size of MLPs and thus the time of training and inference.
These approaches store trainable parameters in grids and
interpolate these parameters to produce a continuous rep-
resentation of the scene. Although these approaches use
many more parameters than implicit representations, their
MLPs are much smaller and can be trained to converge
much faster. To represent scenes with a simple grid-based
model at high resolution without prohibitive memory re-
quirements, a series of works adopt a multistage train-
ing strategy to learn a sparse data structure [11, 42] from
coarse to fine. For instance, NSVF [20] learned a sparse
voxel structure progressively to encode local properties and
achieve efficient and high-quality rendering. DVGO [36]
first learned to find a coarse geometry and then a post-
activated density voxel grid was used in the second stage for
generating fine details. TensoRF [6] decomposed a 4D ten-
sor into low-rank components and applied coarse-to-fine re-
construction to achieve high memory compactness and fast
rendering. Unlike updating a data structure periodically, In-
stant NGP [24] proposed a multi-resolution hash encoding
method that stores feature vectors of multi-resolution grids
in a compact hash table and enables one-stage end-to-end
training with shallow MLPs. While this multi-resolution
dense grid-based representation increases rendering speed
drastically, it still requires a large memory footprint due to
a large number of parameters used in both low and high-
resolution grids. In contrast, we design a multi-resolution
hybrid encoding that replaces feature grids at coarse resolu-
tion levels with parametric positional features and enables
one-stage end-to-end training, resulting in more compact
modeling and faster reconstruction while achieving even
higher-quality rendering.
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3. Preliminaries
This section provides the relevant background on neural

radiance fields (NeRF)–based volume rendering using posi-
tional encodings and a multi-resolution hash encoding.

To represent a 3D scene with implicit fields for novel
view synthesis, existing NeRFs map a 3D position x and a
2D viewing direction d to the corresponding density σ and
3D color value c using two MLPs Fwθ

and Fwϕ
:

Fwθ
: x → (σ, e), (1)

Fwϕ
: (e,d) → c, (2)

where wθ and wϕ are the weights of Fwθ
and Fwϕ

, re-
spectively, and e is an intermediate embedding to help the
MLP Fwϕ

to predict color c. To render an image, the pre-
dicted color of a pixel Ĉ(r) is computed by casting a ray
r = o+ td (where o denotes the camera origin and t is the
distance from the origin along the ray) into the volume and
accumulating the color over N point samples taken along
the ray [23]:

Ĉ(r) =

N∑
i=1

Ti(1− exp(−σiδi))ci, (3)

where

Ti = exp

−
i−1∑
j=1

σjδj

 . (4)

Where δi is the distance between the i-th pair of adjacent
samples. To enable the MLPs to capture the high-frequency
details from the low-dimensional inputs, i.e., x and d, the
inputs are projected into a higher-dimensional space by en-
coding functions.

Encodings: Given a position x and a viewing direc-
tion d, NeRF [23] first transforms each from R into a
higher-dimensional space R2L using positional encoding-
based Fourier features [23, 37]. Instead of casting a single
infinitesimally narrow ray per point, integrated positional
encoding [2] casts a cone from each point and controls the
decay of the high-frequency Fourier features by approxi-
mating the conical frustums as a Gaussian distribution and
embedding them into the positional encoding. The choice
of the 3D conical frustum can significantly reduce aliasing
artifacts. The fixed positional encodings are subsequently
consumed by two large MLPs to estimate color and den-
sity. To reduce the size of the MLPs and save rendering
time, hash encoding [24] maps a cascade of grids to features
through a spatial hash function [24] and trilinear interpola-
tion. Since the features are stored as trainable parameters,
the size of the MLPs can be significantly reduced and both
the training and rendering times can be saved when com-
pared to functional encoding-based representations [2, 23].

4. Method
In this section, we describe Hyb-NeRF in detail. Given

a set of scenes with a collection of images and their cam-
era parameters, Hyb-NeRF learns a neural rendering model
that enables photo-realistic novel view synthesis. Hyb-
NeRF encodes the position x from L multiple resolution
levels with trainable encoding parameters. At the coarse
levels, a learnable positional encoding is designed to adap-
tively map the position x from low-dimension space R to a
higher-dimension space R2L, resulting an embedding vec-
tor γcoarse(x;α) with trainable parameters α. At the fine
levels, we model the high-frequency details with multi-
resolution parametric feature grids γfine(x;ϑ) with train-
able parameters ϑ. The multi-resolution hybrid encoding
of the position x is the concatenation of the coarse-level
encoding and the fine-level encoding, i.e., γhyb(x;α, ϑ) =
[γcoarse(x;α), γfine(x;ϑ)]. The direction d is transformed
into the spherical harmonic features ξ(d) using the spheri-
cal harmonic basis. The encoding results of the position x
and direction d are then fed into two concatenated shallow
MLPs Fwθ

and Fwϕ
to produce implicit fields. Later, the

implicit fields with the estimated densities and colors are
used for volume rendering. The overview of our Hyb-NeRF
is illustrated in Figure 3.

Fine-level Encoding: The goal of fine-level encoding is
to capture the high-frequency geometric details in a scene.
To realize it, we adopt multi-resolution hash-based feature

grids γfine(x;ϑ) =
{
γfine
l (x;ϑl)

}Lf

l=1
. The spatial reso-

lution of each level γfine
l (x;ϑl) is set between the coarsest

Nmin and the finest resolution Nmax:

Nl := ⌊Nminb
l⌋, (5)

where

b := exp

(
lnNmax − lnNmin

Lf − 1

)
. (6)

Coarse-level Encoding: At coarse resolution levels, the
encoding function aims to model the coarse scene geome-
try and scene layout. While the high-frequency geometric
details can be obtained by the multi-resolution hash encod-
ing at fine resolution levels, coarse-level feature grids with
trainable parameters have limited representation power. The
positional encoding can map the low-dimensional position
x into a sparser, higher-dimensional space without any
trainable parameters. Combined with a large MLP, posi-
tional encodings achieve high-quality scene representation
with slow training and rendering speed. To bring together
the benefits of both feature grids and positional encodings
to the fast high-quality novel view synthesis, we propose
a learnable positional encoding for coarse-level scene rep-
resentation. Specifically, we transform the input position
x into sinusoidal activations across Lc different frequency
levels using a fixed positional encoding [23, 37]:
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Figure 3. Illustration of our Hyb-NeRF. Given an input 3D position x, we encode x to hybrid features from coarse-to-fine resolution levels.
For coarse levels, we design a learnable positional encoding to map the position x into parametric Fourier features. For fine levels, we
map x to parametric features using a multi-resolution hash encoding function. The concatenated feature vectors from all levels are used to
predict color and density by two shallow MLPs.

γp(x) =
[
sin(x), cos(x), · · · , sin(2Lc−1x), cos(2Lc−1x)

]
.

(7)
γp(x) is a continuous, multi-scale, periodic representation
of x along each coordinate. To smoothly represent the scene
from coarse-to-fine levels, the setting of the level of the
positional encoding Lc is based on the coarsest resolution
Nmin as:

Nmin ≤ 2Lc . (8)

Since the frequency distribution of the local signal may
vary with coordinates and shallow MLPs will cause a per-
formance bottleneck of the fixed positional encoding, we
introduce learnable weights α to adaptively control the
Fourier features to adapt the variation and improve the rep-
resentation power. We use a single-layer MLP Fwp

with
trainable parameters wp and a tanh active function to learn
the weights of the Fourier features. Inspired by recent
work of embedding cones into the fixed positional encoding
in integrated positional encoding (IPE) [2], we embed the
cone tracing-based features into the learning of weights α
that assists the coarse-level encoding in representing texture
with less aliasing artifacts. In addition, to adaptively cap-
ture local details according to the position, we also embed
the fine-level multi-resolution feature grids into the learn-
ing of the weights α. To this end, the MLP Fwp

takes
the concatenation of the multi-resolution hash-based fea-
ture grids γfine(x;ϑ) and the cone tracing-based Fourier
features γp(f(x)) as input. The weights α can be learned
as:

Fwp
: (γfine(x;ϑ), γp(f(x))) → α, (9)

where f(x) is the cone tracing-based transformation of the
point x. We adopt cone tracing-based features by casting a

cone from each pixel and approximating a conical frustum
with a multivariate Gaussian [2]. The covariance of the final
multivariate Gaussian Σ is given by

Σ = σ2
t (dd

T ) + σ2
r

(
I− ddT

∥d∥22

)
, (10)

where σ2
t and σ2

r are the variances along the ray and the per-
pendicular direction of the ray, respectively. Instead of com-
puting the diagonal of the covariance matrix and integrating
only the axis-aligned Fourier features within the Gaussian
cone, here we compute the full upper triangular elements of
the covariance matrix:

f(x) = triu(Σ). (11)

This remains the non-axis-aligned/non-diagonal compo-
nents and improves the representation quality of the MLPs.
We map the input f(x) into a higher-dimensional space us-
ing the fixed positional encoding in Eq.(7) and obtain our
final cone tracing-based Fourier features γp(f(x)). The
coarse-level encoding can be obtained by weighting the
fixed positional encoding as:

γcoarse(x, α) = γp(x)⊗ α (12)

where ⊗ is element-wise multiplication.
Model Architecture: We employ two concatenated

MLPs Fwθ
and Fwϕ

to map each encoded position and
view direction into its corresponding volume density σ and
color c:

Fwθ
: γhyb(x;α, ϑ) → (σ, e), (13)

Fwϕ
: (e, ξ(d)) → c. (14)
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The estimated density and color are then used to predict
pixel color Ĉ(r) as in (3). Our model is optimized end-to-
end by minimizing the L2 reconstruction loss between the
rendered pixel color Ĉ(r) and the ground truth color C(r):

L =
∥∥∥C(r)− Ĉ(r)

∥∥∥2
2
. (15)

5. Experiments
This section evaluates the proposed Hyb-NeRF on ren-

dering of synthetic and realistic scenes. We compare our
method with previous state-of-the-art methods quantita-
tively and qualitatively and provide extensive ablation stud-
ies to validate different options in encoding designs. In ad-
dition, we also provide the rendering performance of our
model with different training times and amounts of param-
eters.

Datasets: We conduct our experiments on three
datasets including Blender [23], Synthetic-NSVF [20] and
Tanks&Temples [18, 20]. 1) Blender: It consists of 8 syn-
thetic scenes and each scene has an object (chair, drums,
ficus, hotdog, lego, materials, mic, and ship) with 400 syn-
thesized images and their corresponding camera parame-
ters. 2) Synthetic-NSVF: Similar to Blender, Synthetic-
NSVF contains synthetic scenes with more complex physi-
cal structures. We use a subset of five scenes (bike, palace,
robot, toad, and wineholder) in our experiments. Each
scene has a set of synthesized images of an object and cam-
era poses. For both Blender and Synthetic-NSVF, the image
resolution is 800 × 800 pixels, and we follow the setups in
NeRF and NSVF to use 100 views for training and 200 for
testing. 3) Tanks&Temples: It is a benchmark real-world
dataset for image-based 3D reconstruction. We use a subset
of the provided scenes (Ignatius, Truck, Barn, Caterpillar,
and Family), each containing views captured by an inward-
facing camera circling. We follow the default split to pro-
duce training and testing views and the resolution of each
view is 1920× 1080 pixels.

Baselines: We compare our method to the following
baseline methods: NeRF [23], NSVF [20], Mip-NeRF [2],
DVGO [36], TensoRF [6], Instant NGP [24]. Since we im-
plement our Hyb-NeRF on top of a Jittor [14] reimplemen-
tation of Instant NGP, we also include this implementation
as our baseline and refer to it as JNGP [41].

Implementation Details: We use Lc = 8 frequency
bands for our learnable positional encoding γcoarse(x) at
coarse levels. For the hash encoding performed at high reso-
lutions, the setting of the hash table length T and the dimen-
sion of the feature vectors F at each level are the same as In-
stant NGP (T = 219 and F = 2). The density MLP Fwθ

is
a single-hidden-layer network and the color MLP Fwϕ

is a
two-hidden-layer network. For both, each layer contains 64
channels. We set the coarsest resolution Nmin = 180 and
use two different setups for Lf , i.e., Lf = 8 and Lf = 16,

resulting in 8.4 million (M) and 16.8M trainable parameters
of our model, respectively. We also include the rendering
results of JNGP [41] with two different Lf , i.e., Lf = 16
and Lf = 32, which produce 12.6M and 24.4M parame-
ters, respectively. It is valuable to mention that the coarsest
resolution Nmin in Instant NGP is set to 16, which is much
smaller than ours. Since our model uses a larger Nmin and
a smaller Lf , it contains much fewer trainable parameters
than Instant NGP. We use a batch size of 256K samples and
the Adam optimizer [17] with β1 = 0.9 and β2 = 0.99.
We train our model with a learning rate of 5 × 10−3 and
the same learning rate decay schedule as Instant NGP. Our
experiments are run on a PC with a single NVIDIA Geforce
RTX3090 GPU (24GB).

5.1. Comparisons

Quantitative Comparison: We report our quantitative
comparison results in Table 1 in terms of the peak signal-to-
noise ratio (PSNR) and structural similarity index (SSIM)
on the three datasets. To evaluate the effect of training time
and model size on rendering accuracy, we also report cor-
responding optimization iterations (the optimization itera-
tions of NeRF, NSVF, and MipNeRF are not present, as this
comparison would not be particularly meaningful), training
time as well as the number of trainable parameters. We pro-
vide rendering results of our method with different numbers
of parameters and training times, including two early-stop
models and two fully-trained models. We observe that our
early-stop model with 8.4M parameters can obtain compa-
rable numerical performance to most of the baselines. In-
creasing the number of resolution level Lf from 8 to 16 fur-
ther improves the reconstruction accuracy of our method.
Our early-stop model with 16.8M parameters performs bet-
ter than other methods on synthetic datasets and performs
nearly on par with the state-of-the-art neural implicit model
on realistic scenes while using less training time. In addi-
tion, our model trained with 16.8M parameters in 9 minutes
outperforms other methods with fewer errors on both syn-
thetic and real-world scenes.

Qualitative Comparison: Figure 4 shows the visual
comparison results on synthetic scenes in Blender. It shows
that our model can recover the finer appearance and geo-
metric details, e.g., lego’s holes, reflections on the surface of
materials and drums, chair’s color and texture. The visual
comparison results on real-world scenes in Tanks&Temples
are shown in Figure 5. We observe that TensoRF syn-
thesizes reasonable views but still contains blurry textures.
JNGP synthesizes views with more texture details but strug-
gles to handle the varying exposure and inconsistent masks,
resulting in chromatic aberrations. Since our model embeds
conical frustums, it obtains more visually realistic colors
while reconstructing surface detail well.
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Method Blender Synthetic-NSVF Tanks&Temples

#Params↓ Time↓ Iters↓ PSNR(dB)↑ SSIM↑ LIPIS↓ PSNR(dB)↑ SSIM↑ PSNR(dB)↑ SSIM↑

NeRF [23] 1191k 3h - 31.01 0.947 0.081 29.97 0.944 25.78 0.864
NSVF [20] 3-16M >48h - 31.75 0.953 0.047 34.47 0.976 28.48 0.901
MipNeRF [2] 612K 2.8h - 33.09 0.947 0.043 - - - - -
DVGO [36] >25M 15m 30k 31.95 0.957 0.053 34.51 0.972 28.41 0.911
TensoRF [6] 17M 17m 30k 33.14 0.963 0.047 36.24 0.981 28.56 0.920
Instant NGP [24] 12.6M 4min 30k 32.59 0.960 0.053 - - - -

JNGP [41] 12.6M 5min 40k 32.67 0.959 0.054 34.91 0.976 27.95 0.916
24.4M 7.5min 40k 32.96 0.963 0.051 35.71 0.983 28.11 0.921

Hyb-NeRF 8.4M 4min 21k 33.28 0.960 0.055 35.68 0.981 28.34 0.909
(early-stop) 16.8M 5min 21k 33.79 0.964 0.049 36.72 0.984 28.58 0.915
Hyb-NeRF 8.4M 7.5min 40k 33.49 0.961 0.053 36.27 0.982 28.70 0.915
(fully-trained) 16.8M 9min 40k 33.94 0.964 0.047 37.14 0.985 29.04 0.922

Table 1. Quantitative comparison on Blender, Synthetic-NSVF, and Tanks&Temples. We also report comparison results of the average
training times, the amounts of parameters, and iteration steps for the Blender dataset. Our method achieves the best rendering quality with
efficient memory use.

Figure 4. Visual comparison between our fully-trained model with NSVF [20], TensoRF [6] and JNGP [41] on four synthetic scenes in the
Blender dataset. Our model synthesizes the most photo-realistic novel views with finer detail.

5.2. Ablation Studies

Effect of the learnable positional encoding: We per-
form ablation evaluations on the Blender dataset to vali-
date the effectiveness of design choice on learning posi-
tional features and the concatenation of the learnable po-
sitional features and dense feature grids from coarse-to-fine
resolution levels. First, we compare the rendering quality
from the baseline JNGP model and two variants of Hyb-
NeRF: one is directly concatenating the original fixed posi-
tional encoding at coarse levels (Hyb-NeRF, fixed PE) and
another is concatenating the learnable positional encoding

that only uses the fine-level hash-based feature grids for pa-
rameter learning (Hyb-NeRF, learnable PE w hash encod-
ing). Quantitative results in Table 2 show that the model
with fixed PE (Hyb-NeRF, fixed PE) outperforms JNGP,
but achieves lower rendering quality than all models with
learnable positional encoding (Hyb-NeRF, learnable PE w
hash encoding; Hyb-NeRF, learnable PE w cone; Hyb-
NeRF). This is because fixed positional features at coarse
levels guarantee the convergence of Hyb-NeRF, fixed PE,
and all trainable feature grids at fine levels help to capture
better geometry details. Hyb-NeRF, learnable PE w hash
encoding achieves better results than Hyb-NeRF, fixed PE,
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caterpillar

ignatius

JNGP(24.4M) TensoRF Ours(16.8M) Ground Truth

Figure 5. Qualitative comparison results between our fully-trained model, JNGP [41] and TensoRF [6] on caterpillar and ignatius scenes
in the Tanks&Temples dataset. Our model reconstructs better physical details and colors at different scales.

since the position-related fine-resolution feature grids allow
the learnable positional encoding to adaptively capture lo-
cal details, enabling accurate scene representation with the
shallow MLPs.

Effect of the cone-tracing embedding: We also eval-
uate the effect of the cone-tracing embedding. We com-
pare the rendering quality from Hyb-NeRF with and with-
out embedding the cone tracing-based features in the learn-
ing of positional feature weights (Hyb-NeRF, learnable PE
w cone; Hyb-NeRF, learnable PE w hash encoding). As
shown in Table 2, the embedding of the cone tracing-based
features in γcoarse(x;α) indeed eliminates aliasing artifacts
and improves rendering quality. Meanwhile, we show that
a direct concatenation of the multi-resolution hash encod-
ing and IPE at all resolution levels (JNGP, cat. IPE) pro-
vides better rendering quality than JNGP, but lower render-
ing quality than our Hyb-NeRF models. This is because
IPE as an additional input encoding of the multi-resolution
hash encoding can assist the MLPs in capturing more ge-
ometry details. However, this performance boost is limited,
since the shallow MLPs use IPE with untrainable features
and have limited representation power. Our cone-tracing
embedding strategy (Hyb-NeRF, learnable PE w cone)
provides a significant rendering quality improvement over
other embedding design choices.

6. Conclusion
We proposed Hyb-NeRF, a novel neural scene represen-

tation that is end-to-end optimizable for high-quality and
fast rendering. Hyb-NeRF maps the input coordinate to a
hybrid encoding that includes parametric positional features
at coarse resolution levels and hash-based feature grids at
fine resolution levels. The parametric positional features
use much fewer trainable parameters for accurate coordi-

Method PSNR(dB)↑ SSIM↑
JNGP 32.67 0.959
JNGP, cat. IPE 33.09 0.960

Hyb-NeRF, fixed PE 32.83 0.960
Hyb-NeRF, learnable PE w hash encoding 33.19 0.961
Hyb-NeRF, learnable PE w cone 33.53 0.962
Hyb-NeRF 33.94 0.964

Table 2. Quantitative ablation study results on Blender. We com-
pare our model with variants in terms of PSNR and SSIM. All
models use 16 hash encoding levels.

nate representation at coarse levels, resulting in a signifi-
cantly lower memory footprint and higher rendering qual-
ity. In addition, we embed the cone tracing-based features
in the learning of modulating positional features, leading to
better reconstruction quality and photo-realistic novel view
synthesis. We show that using a learnable multi-resolution
hybrid encoding with tiny MLPs as scene representation en-
ables our Hyb-NeRF to provide favorably against the state-
of-the-art in synthesizing more realistic rendering results
and efficient memory use.
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