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Abstract

Recent deep generative models (DGMs) such as

generative adversarial networks (GANs) and diffusion

probabilistic models (DPMs) have shown their impressive

ability in generating high-fidelity photorealistic images. Al-

though looking appealing to human eyes, training a model

on purely synthetic images for downstream image process-

ing tasks like image classification often results in an unde-

sired performance drop compared to training on real data.

Previous works have demonstrated that enhancing a real

dataset with synthetic images from DGMs can be benefi-

cial. However, the improvements were subjected to certain

circumstances and yet were not comparable to adding the

same number of real images. In this work, we propose a

new taxonomy to describe factors contributing to this com-

monly observed phenomenon and investigate it on the popu-

lar CIFAR-10 dataset. We hypothesize that the Content Gap

accounts for a large portion of the performance drop when

using synthetic images from DGM and propose strategies to

better utilize them in downstream tasks. Extensive experi-

ments on multiple datasets showcase that our method out-

performs baselines on downstream classification tasks both

in case of training on synthetic only (Synthetic-to-Real) and

training on a mix of real and synthetic data (Data Augmen-

tation), particularly in the data-scarce scenario.

1. Introduction

Over the past decade, DGMs powered by large-scale

datasets have demonstrated revolutionary results in the field

of image synthesis. Models based on different working the-

ories such as the variational autoencoder (VAE) [28] and

GANs [16] have shown astonishing performance in gen-

erating realistic-looking images. More recently, diffusion-

based models [11,21] have emerged as the new state-of-the-

art family in this challenging task and have broken the long-

time dominance of the GAN family. The rapidly improved

image quality and mode coverage of generative models

Figure 1. An illustration of the commonly observed performance

degradation when training a model on synthetic data and testing

it on real data. Such effects can be attributed to the Domain Gap,

which we split into three aspects (appearance, content, quality).

leaves us wondering: to which degree is synthetic data from

these models ready to replace real samples for image recog-

nition tasks, especially in the case of data scarcity?

Despite the inevitable performance degradation in low

data regimes, many researchers have tried to adapt genera-

tive models to various domains where real data is hard and

time-consuming to acquire (e.g., defective industrial prod-

ucts) [37, 56, 63]. In such cases, images from generative

models serve as a kind of data augmentation. For example,

by navigating in the learned latent space, most of the gener-

ative models can deliver images with novel semantic infor-

mation according to the guidance [9, 23, 39, 44, 58]. How-

ever, the usefulness of synthetic data is highly dependent on

use cases as discovered in many works [24, 45, 56, 63, 64].

Tasks such as pose estimation [24] benefit more from syn-

thetic data than object recognition tasks. However, it has

been widely observed that in most cases the effectiveness

of synthetic images is not on par with that of real ones, and

the boost brought by them not only saturates much faster

but also diminishes rapidly once more real data are avail-
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able [3, 19, 46]. Prior works generally attribute the cause of

these effects to the Domain Gap.

In this paper, we go beyond the general description of the

Domain Gap and define a new taxonomy to detail its possi-

ble factors into the Appearance Gap, the Content Gap, and

the Quality Gap as illustrated in Fig. 1. Then, we endeavor

to answer the following questions:

• Does the synthetic data generated by DGMs introduce

novel information (rendering DGMs a semantically

meaningful data augmentation method), or is its util-

ity only equivalent to resampling a subset of the real

dataset the DGM was trained on?

• Which components of the Domain Gap contribute

most to cases with poor performance?

To address these questions, a novel set of investigations

were conducted to examine the effectiveness of synthetic

CIFAR-10 [29] images from two popular DGMs [48, 54].

Our results strongly suggest that the Content Gap has the

highest impact among the factors on the utility of synthetic

images in downstream tasks. Inspired by these findings,

we further propose two remedies—Pretrained Guidance and

Real Guidance—, aiming to boost the effectiveness of syn-

thetic data despite its current shortcomings in downstream

recognition tasks.

Extensive results on multiple datasets demonstrate that

the proposed Pretrained Guidance, where we use a large-

scale pretrained model (e.g., pretrained on ImageNet [10])

as a prior to regularize the distance between features during

downstream classifier training, surpass other synthetic-to-

real generalization methods. Moreover, together with Real

Guidance to mitigate the negative effect of synthetic data,

our method outperforms all baselines when mixing with real

data, especially in the low data regimes.

2. Related Work

Domain adaptation [14, 51, 53] and generalization [31]

have been important research topics in recent studies on

deep learning, where the main aim is to recover perfor-

mance drops caused by the domain gap. Among their

sub-disciplines, synthetic-to-real adaption and generaliza-

tion [13,40,42,52] have been promising research directions

for domains where acquiring large amounts of data or la-

bels is either hard or time-consuming (e.g., industrial, and

medical). Early works mainly focused on synthetic images

from physically based rendering (PBR), where the simula-

tor aims to closely match the physical reality and achieve

photo-realism. However, models trained on such kinds

of synthetic images often generalize poorly on the target

real data despite the relatively low cost of data collection.

Many researchers have proposed different methods to mit-

igate the performance drop caused by the Appearance Gap

(e.g., unrealistic textures or over-simplified lighting condi-

tions) such as by utilizing adversarial learning [34, 61] or

meta-learning [32]. Lately, Chen et al. proposed to lever-

age the ImageNet pretrained weights as prior knowledge

from real domain and combine it with a continual learn-

ing scheme [8] or a contrastive learning framework [7] to

implicitly align learned features to their ImageNet counter-

parts. Unlike their works, we do not impose such feature

similarity and instead relax the constraint by encouraging

the similarity between the distance distribution of features.

More recently, DGMs have emerged as a new alternative

to synthetic data generation [5, 11, 21, 26, 48, 54, 60]. They

come with several favorable features over PBR: 1) superior

photorealism from training on real-world data; 2) requir-

ing less storage space; 3) applicable for sophisticated cases

that cannot be modeled by PBR (e.g., defects in produc-

tion). Few earlier works [4,24,45,64] have attempted to ex-

plore the synthetic data from DGMs for image recognition

tasks but mainly focused on GAN-based methods. With the

recent bloom of diffusion-based models, some researchers

have reported their investigation [19,46] regarding synthetic

data from the state-of-the-art text-to-image generation mod-

els and revealed the potential of zero-shot generation, i.e.,

without seeing any real target data.

However, it remains unclear how the synthetic data from

DGMs trained on small-scale datasets (e.g., 100 or 1,000

samples) would affect the downstream recognition tasks.

Despite the appealing ability of zero-shot generation from

popular text-to-image models, it is non-trivial to adapt it to

some specific domains like industrial products, which are

critically under-represented online. The plausible solutions

therefore lie in low-/few-shot adaption [15,33,43,49,59,65]

of DGMs. Beckham et al. [3] designed a shallow genera-

tive network to study the effectiveness of synthetic data in

the few-shot scenario, where they concluded that the bene-

fit of synthetic data was rather subtle in this case. This phe-

nomenon of synthetic data being less effective than real data

has been widely observed in previous works [4, 24, 45, 64]

and only becomes more pronounced in the low data regime.

For scenery datasets, researchers [1, 2] have attributed the

drop in performance to a distribution shift in the image con-

tent and reported that DGMs tend to omit rare or hard com-

ponents (e.g., humans). We would consider this one aspect

of the Content Gap and investigate it for object-centered

images. Unlike scenery images, the loss of a mode repre-

senting an object with plausible but rare attributes (e.g., a

cat in the water) might be easily overlooked. In this work,

we study the impact of such mode drop on downstream clas-

sification tasks and propose remedies based on our findings.

3. Empirical Investigations

In this section, we first introduce a new taxonomy to

detail the potential factors for the Domain Gap and then
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present an empirical investigation of the two questions

stated in Sec. 1, linking the factors of Domain Gap to the

effectiveness of synthetic data.

3.1. Domain Gap Factors

Researchers often refer to the negative effects, which

happen when the data distribution of training and testing

sets are different, as Domain Gap. However, it remains

unclear what exactly are the factors leading to the distri-

bution shift. To dig deeper into multiple constituents of

the domain gap, we classify the potential factors into three

categories—the Appearance Gap, the Content Gap, and the

Quality Gap. The Appearance Gap refers to the perfor-

mance gap induced by artifacts such as unrealistic textures,

which is more often observed in the synthetic data acquired

from PBR [41]. The Content Gap addresses the distribution

shift in the composition of a generated image. For exam-

ple, Bau et al. [2] studied the typical failure cases of GANs

by examining the deviation between a specific scene image

and its reconstruction, concluding that the models tend to

skip difficult subtasks like large human figures. Finally, the

Quality Gap is stated for the structural distortion in the syn-

thetic images such as two-headed fish or faceless humans.

3.2. Study on Synthetic Datasets

Our exploration on effects of synthetic data was carried

out by first assuming full access to a widely used benchmark

dataset in image synthesis—CIFAR-10, and checkpoints of

popular DGMs trained on CIFAR-10. Then, we sampled

synthetic clones of CIFAR-10 from the selected DGMs and

analyzed the behavior of classifiers trained on the original

and synthetic sets of CIFAR-10 for object-centered image

classification. Analogous experiments and effects on Ima-

geNet can be found in Appendix B.4.

Experiment setup. We selected two popular DGMs

with state-of-the-art FID [20] at the time—LSGM [54]

and StyleGAN-XL (SG-XL) [48]—and sampled images di-

rectly from the provided checkpoints by the authors. LSGM

is limited to unconditional image synthesis. We there-

fore leveraged an off-the-shelf Wide Residual Network

(WRN) [62] (Top-1 Accuracy on CIFAR-10 classification:

96.21%1) during the sampling process to obtain labels for

the synthetic dataset (with predicted softmax probability >

0.8). To make a fair comparison, we also applied the same

filtering procedure on the conditional SG-XL.

We present the results under the setting that all classi-

fiers were initialized with pretrained ImageNet weights and

the learning rate was set to 0.0001 (See Appendix B.2 for

random initialization). Although the performance drops are

extensively observed in different network structures (e.g.,

EfficientNet [50], ViT [12]), we chose the widely deployed

ResNet-50 [18] as backbone for demonstration. We set the

1https://github.com/xinntao/pytorch-classification-1

Table 1. The achieved accuracy of classifiers trained and tested on

different sources of images. Note that the results were all acquired

from the training sets, therefore the high accuracy in the diago-

nal line indicates that the classifiers have converged on their own

training set.

Source of Test Images Real LSGM SG-XL

Classifier Trained on Real 96.34 93.54 98.68

Classifier Trained on LSGM Images 85.76 97.71 99.11

Classifier Trained on SG-XL Images 78.90 91.14 99.82
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Figure 2. The training and validation curves of CIFAR-10 images

from different sources over five runs. Standard deviations are plot-

ted as shaded areas. (Zoom in.)

image resolution to 224 × 224, the batch size to 128 and

trained the models for 200 epochs. To observe the full ef-

fect of synthetic data, only random crop and random flip

were applied as data augmentation. We evaluated all mod-

els on the official CIFAR-10 test set and reported the av-

eraged accuracy over five random runs. Note that we em-

ployed a fixed train-val split for the real dataset throughout

the paper—500 samples from each class were randomly se-

lected in the beginning as the validation set and the remain-

ing 45,000 images formed the training set. For simplicity,

we later denote real images as Real and synthetic images

from DGMs as Synthetic.

Observation #1: The non-mutual performance gap.

It has been widely observed that there exists a performance

gap between real and synthetic data. A commonly accepted

hypothesis attributes this behavior to the domain gap be-

tween the two distributions. Based on this assumption, one

would presume that the domain gap between synthetic data

and real data is mutual, meaning that the performance drop

in the case of synthetic-to-real should be at a similar scale

to the opposite case of real-to-synthetic. However, this pre-

sumption does not hold as seen in Tab. 1. We can see that the

performance of the classifier trained on Real is not affected

too much when classifying synthetic images, while the clas-

sifiers trained on Synthetic sources (e.g., SG-XL) exhibit

drastic degradation in accuracy. Moreover, SG-XL shows a

more severe decrease than LSGM, presumably due to diffu-
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sion models being better in mode coverage than GANs.

Observation #2: The training accuracy saturates

quickly when training on Synthetic sources. We show the

training and validation accuracy curves of all image sources

in Fig. 2. It can be seen that the training accuracy of Syn-

thetic sources grew much faster in the early epochs (< 25)

and saturated faster compared to the classifier trained on

the Real. While the performance gap between the train-

ing and validation can be explained by the distribution shift,

the peculiar behavior of the training curves of Synthetic was

puzzling—all the classifiers were tasked with the same ob-

jective (i.e., classify the images into ten classes), why would

the classifiers trained on the Synthetic sources seemed to be

solving an easier task? We hypothesize that this behavior

can be attributed to the Content Gap between synthetic and

real data, where the compositions of an object and its rare

but possible attributes (e.g., a car in the sea) were either

dropped by the models or barely generated. Therefore, the

resulting synthetic dataset only contains images associated

with frequent attributes, forming a less diverse and simpli-

fied training set. This led to the next question: do the current

synthetic images from the DGMs just reflect a subset of the

real data?

Observation #3: Very small losses are observed for

Synthetic samples. To validate the hypothesis that synthetic

images only cover a subspace of the real dataset, we further

examine the training samples from all sources. We propose

to measure the importance of a sample by the cross entropy

loss it brings to a trained classifier of an opposite source.

This means we evaluate all the samples from the Synthetic

sources by a classifier trained on Real samples and vice

versa. The concept behind it is that if an incoming sample

contains novel information which was not captured during

the training process, the loss it simulates should be high.

Conversely, if the information a sample can bring is already

learned by the model, its loss should be close to zero.

We plot the measured losses in Fig. 3. In each subgraph,

the solid bars present the loss distribution in the case where

the classifier was trained on Real data and used to evaluate

Synthetic images. On the contrary, the dotted bars show

the case of training a classifier on Synthetic and test on

Real images. It can be observed that the synthetic samples

(Solid) overall have a lower loss compared to the real ones

(Dotted). Compared to the losses brought by the real sam-

ples (Dotted), much more synthetic samples (Solid) have a

close-to-zero loss and only a small portion possess a value

bigger than 1 (See more low- and high-loss images in Ap-

pendix B.3). Interestingly, we still observe that utilizing the

low-loss synthetic samples for data augmentation is benefi-

cial for downstream performance (see Appendix B.1).

3.3. Conclusion

All three observations emphasize that despite training on

a relatively large dataset and having promising FID, images

from DGMs still suffer from the domain gap. While the

Appearance Gap is eliminated by learning directly on the

real data, it was unclear whether the synthetic images in

our investigations suffered from Quality or Content Gap.

The following two details however suggest that the Content

Gap is the main issue: (1) The accuracy of Real classifiers

in Observation #1 does not show signs of obstruction, as

would be assumed from distorted images. (2) The distorted

data should also simulate a high loss in Observation #3, yet

the loss from synthetic samples is generally lower than that

of the real ones.

We thus conclude that sampling directly from current

DGMs will result in a subset of the real data due to the Con-

tent Gap, which worsens the long-tailed nature that most

real-world data exhibit—rare samples are either omitted by

the generative models or barely ever generated. Therefore,

downstream feature extractors trained exclusively on such

misrepresented distributions tend to show undesirable be-

havior (e.g., performance drop in classification accuracy)

when tested on real data. However, at the end of Obser-

vation #3, we observe that even adding synthetic samples

with lower loss to the real training set still has minor pos-

itive effects. We hypothesize that this is because the syn-

thetic images from DGMs are lacking rare samples but do

add variations within the covered parts of the training dis-

tribution. As a result, we introduce two strategies to boost

their effectiveness in the following section.

4. Remedies

The Content Gap can also be cast as a mode cover-

age problem: sampling synthetic data most likely leads

to a less diverse and simplified dataset, where rare sam-

ples are not represented. The information such a simpli-

fied dataset can provide is therefore mostly covered by the

original dataset. Unsurprisingly, training recognition mod-

els on such a dataset can easily result in degraded perfor-

mance and factitious-biased representation. One potential

way to acquire synthetic data with higher information den-

sity is to apply additional techniques during the sampling

process [17, 22, 57]. However, this only works under the

assumption that the rare samples are still learned by the

DGMs and are just rarely generated. The assumption might

be violated when the DGMs are trained on small datasets

and the rare cases in the training set are omitted by the

models. This is a practically relevant task however, be-

cause it is often impossible to acquire large-scale data for

training a well-behaved DGM from scratch in most real-

world scenarios (e.g., industrial). As a result, we propose

two novel regularization strategies to improve the effective-
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Figure 3. The loss distribution of the samples from different sources. We overlapped the evaluation of Real → Synthetic (Solid) and

Synthetic → Real (Dotted) in each subgraph and visualized the associated low-loss and high-loss samples of class Airplane. Note that all

models used for evaluation were initialized with ImageNet weights.

ness of the synthetic data even in low data regimes, termed

as Pretrained Guidance and Real Guidance.

Pretrained Guidance (PG). Models pretrained on

large-scale datasets like ImageNet often exhibit diverse and

rich representations that can be transferred to other tasks.

We propose exploiting this trait as external guidance to pre-

vent the models trained on the synthetic dataset from con-

verging into having less distinctive representations. The

closest previous works [7, 8] suggested tackling this prob-

lem by forcing the new model to have a similar probability

distribution to the pretrained ImageNet predictions, implic-

itly regularizing the new feature extractor to stay close to the

ImageNet. But such constraints are not always beneficial

and their performance depends heavily on how the model is

initialized as we later show in Sec. 5. In contrast, our pro-

posed PG allows the feature extractor to learn freely from

the new dataset while maintaining a similar span of data as

ImageNet.

The workflow of our PG is illustrated in Fig. 4(a). We

denote the model being trained as Mu and utilize a frozen

pretrained model Mp (note that Mp can be different to Mu).

In each forward pass, a synthetic sample will be given to

both networks and obtain the feature representations fp and

fu, respectively. For a batch of N images, the distance ma-

trices Dp ∈ R
N×N and Du ∈ R

N×N are computed with

respect to fp and fu using a metric δ. We then propose

to encourage Dp to possess a similar distance distribution

as Du. In this way, fu is allowed to learn the representa-

tions for the target task freely, while the guidance from the

pretrained model helps preserve the span of features. We

formulate the proposed PG regularization as

Dij
p = δ

(

fp(i), fp(j)
)

, Dij
u = δ

(

fu(i), fu(j)
)

,

Lpg =
∑

i

∑

j
sim

{

Dij
p , Dij

u

}

,
(1)

where i, j indicate different samples in a batch, δ(·) stands

for any distance metric like the cosine similarity, and sim{·}
can be any similarity metric such as L1 or KL-divergence2.

Note that the effect of PG is independent of initializing the

model with pretrained weights because despite providing

a good starting point, the initialization does not stop the

model from converging into having less distinctive repre-

sentations.

Real Guidance (RG). Inspired by replay-based contin-

ual learning (CL) approaches [6], we adapt the idea of gra-

dient episodic memory to our context to mitigate the domain

gap. In contrast to alleviating forgetting, we utilize it as a

way to regularize the gradient flow of the synthetic data.

Specifically, we assume that a small set of real data (e.g.,

10 or 100 samples) is available at training time. It is a more

realistic scenario than assuming the sole availability of syn-

thetic data, regarding it would usually require a handful of

real data to train or finetune the DGMs in the beginning.

Considering the gradients gr from real data as a positive

influence on the model, the gradients gf from synthetic data

can however be a confounder if the angle between gr and

gf are more than 90◦. We then channel the gradients from

the synthetic data so that they are at most perpendicular to

the real data, avoiding the misleading signal brought by gf .

2KL-divergence on distance matrices as derived in [38]
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(a) Pretrained Guidance (b) Real Guidance

Figure 4. The proposed Pretrained Guidance and Real Guidance.

This can be formulated as

gfnew
=

{

gf −
g⊤

f gr

g⊤
r gr

· gr , if g⊤f gr < 0

gf , otherwise
,

gupdate = λ1 · gr + λ2 · gfnew
.

(2)

In this way, we prevent the synthetic data from overfitting

itself while narrowing the domain gap by introducing infor-

mation from the real data.

In summation, the final objective for a target task is

L = LTask + λ3 · Lpg , (3)

where LTask can be a cross-entropy loss in case of classifi-

cation and λ1, λ2, λ3 are the hyperparameters to tune the

intensity of our proposed regularizations.

5. Experiments

To study the effectiveness of synthetic data from popu-

lar DGMs and to evaluate the usefulness of our proposed

remedies against the expected content gap, we consider two

cases: synthetic-to-real generation and synthetic data as

data augmentation. The first case represents a scenario in

which no real data is available for downstream tasks, which

we also refer to as the Zero-shot task. Although it is a the-

oretical setting ignoring the real samples that were required

to train a DGM, the results from this case can serve as

a quantitative assessment of the discrepancy between syn-

thetic and real data. The second case presents a scenario as-

suming at least a handful of real images (e.g., 100 or 1,000)

are available, which we describe as the Low-shot task. It is

more common in real-life settings (e.g., industrial), other-

wise training or finetuning a DGM as well as evaluating in

downstream tasks would be generally infeasible.

Datasets. Besides the three sets of CIFAR-10 (Real,

LSGM and SG-XL) mentioned in Sec. 3, synthetic images

of two popular benchmark datasets (CUB Bird [55], Oxford

Flower [36]) and one industrial dataset (SDI [56]3) from

3We thank the authors [56] for providing the dataset for our benchmark.

three generative models4 (SG-XL, Projected GAN (Proj-

GAN) [47], and DT-GAN [56]) were used for evaluations.

For the first two datasets, we sampled images to meet the

size of the original datasets. For the SDI dataset, we sam-

pled images to balance the original SDI dataset and thus,

resulted in three sets of synthetic data with size 8,000. Note

that due to the mode-dropping issue when training on small

datasets, we conducted all classification experiments on a

subset of CUB Bird and Oxford Flower. Details on genera-

tive model training and sampling are in Appendix A.1.

Experiment Setup. We deployed the same setup for

training ResNet-50 classifiers as described in Sec. 3. All

following experiments were conducted under the same set-

ting unless otherwise specified. The reported accuracies

were averaged over five random runs. We used default hy-

perparameters from the authors for selected baselines and

set λ1, λ2 and λ3 of our method differently for each dataset.

See Appendix A.2 for the chosen hyperparameters and Ap-

pendix C for more results in different settings.

5.1. Zeroshot Image Classification

We investigate the zero-shot classification performance

of the synthetic data from various models. As seen in Tab. 2,

simply training the classifiers on synthetic images leads to

a degraded performance compared to the classifiers trained

on the same amount of real data. However, has the current

synthetic data reached its full potential? We argue that the

drop in performance can be reduced based on our insights

from Sec. 3 and the proposed PG for regularization as in-

troduced in Sec. 4. It can be seen that methods like [7, 8]

highly depend on the initialization of the model. Also, their

regularizations are not always beneficial. For example, they

often leads to worse results when the number of samples in

each class is relatively high (e.g., CIFAR-10). For datasets

that do not benefit from the ImageNet initialization even for

real data (e.g., industrial products like SDI-A and SDI-C in

Tab. 2), these methods often fail to deliver promising re-

sults. In contrast, our PG provides better performance in

4Diffusion-based models are omitted due to their low performance in

the low data regimes. See Appendix A.1 for more information.
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Table 2. The achieved accuracy of classifiers trained on different synthetic datasets. (A) The networks were trained from scratch. (B) The

networks were initialized by pretrained ImageNet weights. Note that for a fair comparison, we omit the second stage of ASG [8], which

uses reinforcement learning for selective parameter update.

Dataset CIFAR-10 CUB Flower SDI-A SDI-B SDI-C

Size 45,000 4,521 1,010 8,000 8,000 8,000

Source LSGM SG-XL Proj-GAN SG-XL Proj-GAN SG-XL DT-GAN

(A)

Baseline 85.08 72.22 12.30 10.80 13.54 13.07 64.72 86.80 61.14

ASG [8] 80.66 71.68 1.64 1.83 5.32 5.12 32.78 69.40 31.43

CSG [7] 82.47 72.94 1.41 1.86 8.21 8.04 43.94 74.55 32.19

Ours (L1) 85.58 75.07 11.93 13.94 13.89 13.69 64.73 87.20 64.00

Ours (KL) 84.76 77.45 17.11 13.45 17.16 15.53 66.36 88.40 62.52

Real 90.27 18.82 35.59 83.20 87.8 72.38

(B)

Baseline 85.57 78.94 33.15 27.20 32.40 28.42 53.64 74.00 52.95

ASG [8] 82.40 77.86 43.62 39.90 5.63 5.47 67.78 87.95 50.47

CSG [7] 82.67 79.01 43.62 38.81 5.45 4.33 62.33 84.45 50.86

Ours (L1) 85.74 79.87 32.89 27.32 30.91 26.00 51.63 73.40 53.52

Ours (KL) 84.73 80.66 34.50 28.93 33.52 30.01 57.64 85.20 53.90

Real 91.80 43.15 52.12 66.36 90.00 63.81

Table 3. The achieved accuracy of classifiers trained on synthetic

CIFAR-10 datasets, where a simplified version of ResNet-50 was

used for training images at resolution 32.

Method LSGM SG-XL

Baseline 78.55 70.68

ASG [8] 76.63 66.31

Ours (L1) 78.33 70.80

Ours (KL) 80.11 74.21

Real 84.53

most cases considering both kinds of initialization, suggest-

ing its practical usefulness in real-world industrial cases.

Moreover, our PG requires not the same model architec-

ture for the frozen pretrained model Mp and the new model

Mu. Therefore, it can also combine pretrained weights

from wide-spread architectures to new models where no

pretrained weights are available. As an exemplary case, we

set Mu to a simplified ResNet-505, where its network struc-

ture was customized to work for CIFAR-10 at resolution 32

× 32 and its ImageNet pretrained weights were not avail-

able. Meanwhile, Mp was set to be the original ResNet-50

with pretrained weights from ImageNet. It should be noted

that the feature representations fp and fu have different di-

mensions (1024 vs. 256) due to the structural difference.

As shown in Tab. 3, our method again outperforms ASG in

this case and delivers the best results when using the KL

distance. CSG on the other hand is not feasible in such a

scenario due to its design requiring Mp and Mu to have

identical structures.

The flexibility of our method also allows choosing the

distance and similarity metrics freely. Our results have

shown that applying KL distance together with cosine sim-

5https://github.com/kuangliu/pytorch-cifar

ilarity generally yields better performance in our experi-

ments. All further experiments were therefore conducted

with this setting only.

5.2. Lowshot Image Classification

In the low-shot scenario, we investigate our method in

the situation where the synthetic data is used as data aug-

mentation to enlarge the real training set. We also compare

our results to baseline methods that were designed for do-

main adaptation, where the synthetic data and real data are

used sequentially instead of simultaneously.

We conducted the experiments in the following two set-

tings: (1) Assuming that a large-scale dataset (CIFAR-10)

was available for pretraining generative models. For the

downstream task, classification in our setting, only very few

real samples (< 20) from the large-scale dataset are avail-

able. (2) Assuming that a smaller scale dataset (e.g., CUB,

Flower, and SDI) is available but has no public accessible

pretrained generative models. The training data therefore

needs to be used for both to train the generative models from

scratch and to train the model for the downstream (classifi-

cation) task. Note that these settings result in datasets with

different proportions of synthetic and real images, which we

denote as “Syn-to-Real Ratio”.

Theoretically, more settings would be possible such as

using pretrained weights from a large-scale dataset for fine-

tuning the generative model on a smaller scale dataset.

However, finetuning a DGM requires carefully adaptions

and we leave a complete study of all options for future work.

Baselines. For data augmentation, we set the baseline as

simply adding the synthetic images to the real training set.

In addition, we selected A-GEM [6] as regularization to aid

this baseline. Conceptually, this is the closest baseline to

our method. For domain adaptation, we chose four domain
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Table 4. The achieved accuracy of classifiers trained with different methods under various setting: RG indicate Real Guidance, PG-F

means only apply Pretrained Guidance to the synthetic data, and PG-R means only apply Pretrained Guidance to the real data. Note that

we denote the baseline two-stage domain adaption as Adp. and baseline data augmentation as Aug..

Dataset CIFAR-10 (10-shots) CUB Flower SDI-A SDI-B SDI-C

Syn-to-Real Ratio 450:1 1:1 1:1 2:1 2:1 2:1

Source RG PG-R PG-F LSGM SG-XL Proj-GAN SG-XL Proj-GAN SG-XL DT-GAN

Baseline (Real) - - - 91.80 43.15 52.12 66.36 90.00 63.81

Baseline (Fake) - - - 85.57 78.94 33.15 27.20 32.40 28.42 53.64 74.00 52.95

Baseline (Adp.) - - - 84.81 78.38 39.56 37.94 37.71 36.70 81.09 91.40 83.43

Baseline (Aug.) - - - 85.71 79.38 52.94 52.28 60.54 60.61 86.73 90.80 86.86

ADDA [53] - - - 78.73 74.42 23.47 22.07 29.30 27.79 56.72 70.00 57.33

DADA [51] - - - 83.39 76.56 26.42 23.68 20.59 18.93 55.09 74.20 53.33

DANN [14] - - - 86.52 81.01 57.34 55.79 59.88 58.80 77.09 87.60 77.14

LTDA [25] - - - 81.67 73.89 24.72 18.92 20.22 17.39 66.00 83.20 74.29

A-GEM [6] - - - 86.91 80.33 33.38 29.37 33.09 31.88 66.91 91.60 67.81

Ours

- v v 86.25 80.96 54.71 53.51 61.47 61.10 89.27 93.00 87.61

v - - 86.91 80.33 59.39 57.87 64.57 63.31 90.73 96.20 91.43

v v - 85.59 81.25 60.65 58.69 66.04 64.88 85.27 95.20 90.48

v - v 86.58 79.70 59.90 58.51 65.00 64.74 89.82 95.60 88.57

v v v 85.94 81.93 60.17 59.11 66.24 65.05 87.64 95.80 89.33

adaptation methods as baselines—DANN [14],ADDA [53],

DADA [51] and LTDA [25]. Note that unsupervised meth-

ods like ADDA and DADA do not use the labels of real im-

ages. Also, all methods except DANN deployed a two-stage

training scheme, meaning the model is first pretrained on

synthetic data for 150 epochs and then finetuned on real data

for 50 epochs instead of directly training for 200 epochs. To

incorporate real data during the training process, DANN,

ADDA, and DADA aim to learn a domain-agnostic feature

extractor via an adversarial scheme. LTDA deploys a meta-

learning framework to adapt the model to the target distri-

bution with a small subset from the target domain.

We report the results for different datasets in Tab. 4. It

is worth noting that the domain adaptation methods besides

DANN drastically underperformed compared to the base-

line data augmentation. This is predictable because all the

domain adaptation methods except DANN deployed a two-

stage training scheme, where the synthetic data used for pre-

training are not directly accessible at the finetuning stage.

However, it also shows that the current domain adaptation

methods, which mainly tackle the significant distribution

shift (e.g., cartoon dogs ↔ dogs in natural images), do not

address the fine-grained distribution shift between the syn-

thetic images from a DGM and the real images. We believe

that such kind of synthetic-to-real adaptation could be an

interesting topic for future work.

However, using synthetic data for data augmentation is

a promising approach. Note that the one-stage training

scheme allows DANN to access synthetic and real data dur-

ing the training process directly. Therefore, its performance

is closer to the data augmentation baseline. We also com-

pared our results to A-GEM, where the gradients from the

real images are only used to constrain the gradients from the

synthetic ones but not used to update the model. We argue

that in the case of synthetic data as data augmentation, it is

important to also incorporate the real gradients during the

training, particularly when the available real data are more

than a few shots. It can be observed in Tab. 4 that apply-

ing our proposed PG and RG largely improved the classi-

fier performance in most cases, especially in the low data

regimes. This showcases the effectiveness of our method in

regularizing the distances between data points and eliminat-

ing the negative effect of the synthetic data.

6. Conclusion

In this work, we examined to which degree synthetic data

from popular DGMs can replace real data in downstream

recognition tasks. While a severe performance drop is com-

monly observed in the context and generally attributed to

Domain Gap, we further classified the potential factors into

three categories. Moreover, we presented a series of ob-

servations indicating that the performance degradation can

be mainly attributed to the Content Gap, where the syn-

thetic data from DGMs can only form a simplified dataset

in which rare samples are not represented. Motivated by

this hypothesis, we proposed a novel method combining

two strategies—Pretrained Guidance and Real Guidance—

to regularize the downstream models to keep the span of

features despite training on a simplified dataset, even when

the regularization comes from a different network architec-

ture. Extensive results on multiple datasets show that our

method not only outperformed other synthetic-to-real gen-

eralization methods in zero-shot scenarios but also largely

improved the effectiveness of the synthetic data when serv-

ing as data augmentation in low-shot settings.
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Editing in style: Uncovering the local semantics of gans.

2020 IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 5770–5779, 2020. 1

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition (CVPR), pages 248–255. Ieee,

2009. 2, 15

[11] Prafulla Dhariwal and Alexander Nichol. Diffusion models

beat gans on image synthesis. Advances in Neural Informa-

tion Processing Systems (NeurIPS), 34:8780–8794, 2021. 1,

2, 15

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, et al. An image is worth 16x16 words: Trans-

formers for image recognition at scale. ArXiv, 2020. 3

[13] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip
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