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Figure 1. Our multimodality-guided image style transfer results. We show style transfer results guided by two text styles (left) and two
imag styles (right). 15 stylized images are synthesized by evenly interpolating between these four styles.

Abstract

Image Style Transfer (IST) is an interdisciplinary topic
of computer vision and art that continuously attracts re-
searchers’ interests. Different from traditional Image-
guided Image Style Transfer (IIST) methods that require a
style reference image as input to define the desired style,
recent works start to tackle the problem in a text-guided
manner, i.e., Text-guided Image Style Transfer (TIST). Com-
pared to IIST, such approaches provide more flexibility with
text-specified styles, which are useful in scenarios where the
style is hard to define with reference images. Unfortunately,
many TIST approaches produce undesirable artifacts in the
transferred images. To address this issue, we present a
novel method to achieve much improved style transfer based
on text guidance. Meanwhile, to offer more flexibility than
IIST and TIST, our method allows style inputs from multiple
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sources and modalities, enabling MultiModality-guided Im-
age Style Transfer (MMIST). Specifically, we realize MMIST
with a novel cross-modal GAN inversion method, which
generates style representations consistent with specified
styles. Such style representations facilitate style transfer
and in principle generalize any IIST methods to MMIST.
Large-scale experiments and user studies demonstrate that
our method achieves state-of-the-art performance on TIST
task. Furthermore, comprehensive qualitative results con-
firm the effectiveness of our method on MMIST task and
cross-modal style interpolation.

1. Introduction

As a research topic at the intersection of computer vi-
sion and art, Image Style Transfer (IST) aims to apply cer-
tain style patterns to a given content image. The seminal
work of Gatys et al. [13] proposed to transfer the style of
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one image to another content image by optimizing the pixel
values using both style and content losses, inspiring many
subsequent works in this field. To speed up the style trans-
fer process, [17] trained a feed-forward neural network for
each style to transfer it to different contents. Going beyond
single style transfer, [15] introduced the idea of arbitrary
style transfer and aimed to transfer arbitrary styles to any
content in a single forward pass. Based on this formula-
tion, [6, 16, 27, 29, 33, 37, 42, 48] improved [15] on multiple
aspects.

The above-mentioned methods can be classified as
Image-guided Image Style Transfer (IIST). They rely on ref-
erence style images, which are not always accessible in real-
world scenarios. For example, artists may conceive novel
styles that can be easily described via texts but never exist
in previous artworks. Such a dependence on reference style
images limits the application of IIST methods [25].

Recently, based on the large-scale image-text pretrained
model CLIP [35], several methods proposed to edit images
purely conditioned on text descriptions, achieving Text-
guided Image Style Transfer (TIST) [12,21,25,34]. Notably,
by training a lightweight U-Net on a single content image
using CLIP loss, CLIPStyler [25] can synthesize stylized
images from arbitrary content images and style text descrip-
tions, setting a state-of-the-art (SOTA) performance on this
task. However, although the styles of transferred images by
CLIPStyler are generally consistent with the corresponding
text descriptions, CLIPStyler often adds undesirable local
patterns to the stylized images, distorting the original con-
tent severely, as shown in Figure 2. This indicates CLIP-
Styler fails to disentangle the style and content information
from both text and image.

To address these issues, we propose a novel frame-
work to better manipulate images based on reference style
texts. Meanwhile, to offer more flexibility than IIST and
TIST methods, our framework is designed to accept style
guidance from multiple sources and modalities, enabling
MultiModality-guided Image Style Transfer (MMIST). The
ability to exploit multimodal style references can be use-
ful in many scenarios. For example, an artist may design
new artistic styles by modifying styles of existing artworks;
such modified styles can be easily defined by combining
text descriptions and existing art images, yet are difficult to
describe with text or image reference only.

To realize MMIST, we propose a novel cross-modal
GAN inversion method which generates diverse style repre-
sentations according to multi-modal style inputs (e.g., text
and image). Such generated style representations allow us
to generalize any IIST methods to tackle the problem of
MMIST. Specifically, we leverage a pretrained GAN model
and invert style text descriptions and/or style images into
GAN’s latent space to get the corresponding style reference
images. In this process, style-specific CLIP-based guidance

Figure 2. Failure case of CLIPStyler. We show one content and
one style text description, together with the results from CLIP-
Styler and our method. CLIPStyler adds many small face-like pat-
terns to the stylized images.

is used to connect the domains of text and image. After ob-
taining the style reference images, we then feed them into
an existing IIST approach which is adapted to take multi-
ple style references as input. To further enhance the quality
of stylized images, we propose a novel multi-style boost-
ing strategy which enriches the style patterns. Similar to
learned model parameters, the style representations can be
reused at test time, allowing our method to stylize arbitrary
contents in a single forward pass.

We evaluate our framework on 44 style text descrip-
tions and 61 content images, which result in 2,684 style-
content combinations. Both qualitative and user study re-
sults clearly show the improvement of our framework over
previous methods on TIST task. Furthermore, extensive ex-
periments also confirm the effectiveness of our framework
on MMIST task and cross-modal style interpolation.

Our main contributions can be summarized as follows:

• We introduce a more general problem than IIST and
TIST, i.e., MultiModality-guided Image Style Transfer
(MMIST), and solve it with a novel framework. The
proposed framework can transfer styles from arbitrary
number of reference images/texts to arbitrary content,
a task which is not feasible for all existing methods to
the best of our knowledge.

• We propose a novel cross-modal GAN inversion
method to distill styles from different modalities. This
inversion procedure also enables our method to inter-
polate between different styles arbitrarily.

• Extensive experiments and large-scale user studies
(5,041 users) confirm the effectiveness of our model in
terms of both qualitative results and user preference.

2. Related Work
2.1. Image-guided Image Style Transfer

Image-guided Image Style Transfer (IIST) has become a
popular research topic since the seminal work of Gatys et
al. [13]. Using a deep feature-based style loss and content
loss, Gatys et al. [13] directly optimized pixel values to ob-
tain decent style transfer results. To address the slow op-
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timization problem in this method, [17] and several subse-
quent works [39–41] proposed to train feed-forward neural
networks that can apply the pretrained style to arbitrary im-
ages in a single forward pass. Given its success, this idea
was further developed by allowing one single trained model
to store multiple styles. For example, [5] used multiple
convolutional filter banks to explicitly represent multiple
styles; [10] proposed conditional instance normalization to
achieve the same goal; and [28] introduced a selector struc-
ture to support incremental learning for new styles.

Recently, arbitrary IIST started to attract widespread
attention due to its effectiveness, efficiency, and flexibil-
ity. [15] proposed AdaIN to perform IST by adaptively
aligning the mean and variance of content features
with those of style features. With similar motiva-
tion, [6, 16, 27, 33] introduce new loss functions or novel
mechanisms to improve the style transfer quality. [29]
adaptively performs attentive normalization on a per-point
basis. Besides quality, some works focus on other prop-
erties of IST methods, e.g., domain-awareness [14] or
brushstroke-level optimization [24].

2.2. Text-guided Image Manipulation

Text-guided image manipulation aims to manipulate the
input image based on a text description while preserving
text-irrelevant parts in the original image. [9] employed a
GAN-based encoder-decoder model to achieve this goal.
[32] further introduced a text-adaptive discriminator to en-
sure that only text-related regions are modified. By extend-
ing GAN-based text-to-image generators [44–46], Li et al.
[26] proposed ManiGAN to manipulate images in a multi-
stage manner. [43] utilized GAN inversion, visual-linguistic
similarity learning, and instance-level optimization to build
a unified framework for multimodal image generation and
manipulation with text.

Recently, the success of CLIP [35] in connecting the
domains of image and text has inspired a new direction
to achieve text-guided image manipulation. By modifying
the latent space of StyleGAN [18–20] using CLIP guid-
ance, StyleCLIP [34] can perform text-guided manipulation
in three different ways. VQGAN-CLIP [7] achieved the
same goal by using CLIP loss to optimize the latent space
of VQGAN [11]. StyleGAN-NADA [12] proposed a direc-
tional CLIP loss to optimize a GAN model instead of the la-
tent space, resulting in more accurate manipulation effects.
More recently, diffusion models [8, 22, 36, 38] have been
combined with CLIP to obtain better performance [3, 21].

Most of these works are intended for content or attribute
editing. Although some of them [12, 21] can be applied
to style editing or transfer, the quality they can achieve is
far from desirable. By contrast, CLIPStyler [25] is specifi-
cally designed to solve the task of TIST, outperforming all
previous image manipulation methods on this task. How-
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Figure 3. The overview of our method. Taking styles from multi-
ple modalities as input, our method generates style representations
using cross-modal GAN inversion. With the adapted IIST model,
our method can apply the cached styles to any unseen content im-
age in a single forward pass.

ever, CLIPStyler still suffers from certain drawbacks, as il-
lustrated in Figure 2. Similar to CLIPStyler, [30] proposed
to transfer an image’s style conditioned on an artist’s name.
In this paper, we generalize the tasks of TIST and IIST to
MMIST, and solve it under a unified framework.

2.3. GAN Inversion

Traditional GAN inversion aims to invert a given image
back into the latent space of a pretrained GAN generator.
It emphasizes the accuracy and fidelity of the reconstructed
image. GAN inversion can be applied to a wide range of
downstream tasks, including image manipulation [12, 34,
43], image interpolation [1], image generation [43], etc.
Learning-based [49], optimization-based [1], or hybrid [2]
methods have been developed to invert a GAN. All of them
use a reconstruction loss such as L2 loss or LPIPS loss [47].

In this paper, we propose cross-modal GAN inversion.
Different from traditional methods that pursue a perfect
reconstruction of the whole input image, our cross-modal
GAN inversion only reconstructs partial information of the
input, i.e., style, which is defined by inputs of multiple
modalities such as text and image.
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3. Method Overview
Given a set of style images {Ii}NI

i=1 and a set of style text
descriptions {Ti}NT

i=1, our framework applies these specified
styles to a set of content images {Ci}NC

i=1 and synthesizes
a corresponding set of stylized images {Yi}NC

i=1. Different
from previous image editing methods that directly optimize
the stylized image [25], the latent of the content image [7,
34], or parameters of a generative model [12, 21], we train
a model for certain styles in a content-agnostic manner.

Our key insight is that MMIST can be achieved with
the aid of style representations that comply with the input
style text descriptions and image patterns. More specifi-
cally, we can generalize IIST methods to leverage such style
representations and thereby create stylized images guided
by multiple modalities. To this end, we propose a novel
cross-modal GAN inversion method to map all input mul-
timodal style references into the W+ space [1] of a pre-
trained StyleGAN3 [18] generator G, and thereby gener-
ate intermediate style representations {Si}NS

i=1 in the image
space. As is shown in Figure 3, the style representations are
images consisting of style patterns without meaningful con-
tents. The cross-modal GAN inversion ensures that {Si}NS

i=1

summarizes and combines the style information from all in-
put styles {Ii}NI

i=1 and {Ti}NT
i=1. To leverage {Si}NS

i=1, we
adapt an existing IIST method to make it compatible with
multiple style inputs. Denote the adapted IIST method by
M. We use M to stylize the content images {Ci}NC

i=1 with
intermediate style representations {Si}NS

i=1, producing styl-
ized outputs {Yi}NC

i=1.
Separating style representation generation from stylized

image synthesis is the key to the success of our framework.
When performing TIST task, previous methods [7, 21, 25]
always deal with style alignment and content preservation
simultaneously, resulting in distorted content or irrelevant
artifacts that appear in the results. In contrast, by leverag-
ing the strong style-content disentangling ability of IIST ap-
proaches, our method can put the entire focus on style rep-
resentation generation for creating high-quality stylized im-
ages. Besides, with generated intermediate style represen-
tations, only a single forward pass is needed for our method
to apply a learned style to any unseen content image.

4. Cross-modal GAN Inversion
To generate style representations from modalities other

than image or text only, we propose cross-modal GAN in-
version. In Table 1, we compare it with traditional GAN
inversion. The goal of traditional GAN inversion is to faith-
fully reconstruct the original input image. Naturally, this
only works for the image modality, and only one image at a
time. Since it is targeting pixel-wise reconstruction, all in-
formation from the input image is supposed to be stored in
the latent space of the GAN generator. However, the goal of

Table 1. Comparison between traditional GAN inversion and
cross-modal GAN inversion. “Ref.” means reference.

Method Ref. Modality Number of Ref. Inversion Target

Traditional Image Only Single Original Image
Cross-modal Multiple Multiple Style

cross-modal GAN inversion is completely different. It aims
to combine different styles together to generate intermedi-
ate style representations. Therefore, the inversion should be
able to accept multiple inputs from different references and
modalities. Besides, only the style components of inputs are
required to be inverted as their content parts are irrelevant
to the downstream task.

4.1. Style-specific CLIP Loss

We employ CLIP [35] to connect image with other
modalities, as well as to extract style components. However,
naively applying CLIP cosine similarity loss does not result
in accurate style representation, since the content compo-
nents are also entangled in the CLIP embedding space.

Following [25] and [12], we employ patch-wise CLIP
loss to address this problem. Formally, denote the pre-
trained CLIP image encoder by EI and text encoder by ET .
For each style text description Ti, we use the text-image
patch-wise directional CLIP loss proposed by [25], i.e.,

S = G(w),

{Sj}Ncrop
j=1 = aug(crop(S)),

∆Sj = EI(Sj)− EI(Isrc),

∆T = ET (Ti)− ET (Tsrc),

LTi =
1

Ncrop

Ncrop∑
j=1

(
1− ∆Sj ·∆T

∥∆Sj∥∥∆T∥

)
,

(1)

where w ∈ W+ is a vector in StyleGAN3 latent space that
we optimize, S is the style representation generated by G
from w. aug(·) is the augmentation function, crop(·) is the
patch crop function, and Ncrop is the number of cropped
patches. Tsrc and Isrc are the source text and source image
used to compute CLIP embedding directions, respectively.
For simplicity, Tsrc is set to be “a photo” following [25],
whereas Isrc is an arbitrary photo-realistic image.

Eq. 1 effectively measures the style similarity between
the input text Ti and the generated style S. However,
we want our model to handle style inputs from the image
modality as well. To this end, we propose an image-image
patch-wise directional CLIP loss as below:

{Iki }
Ncrop

k=1 = aug(crop(Ii)),

∆Iki = EI(I
k
i )− EI(Isrc),

LIi =
1

N2
crop

Ncrop∑
j=1

Ncrop∑
k=1

(
1− ∆Sj ·∆Iki
∥∆Sj∥∥∆Iki ∥

)
,

(2)
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Algorithm 1: Cross-modal GAN Inversion

Data: A set of style images {Ii}NI
i=1, a set of style

text descriptions {Ti}NT
i=1, and corresponding

style weights {αI
i }

NI
i=1, {αT

i }
NT
i=1.

Result: The generated style representation S and its
corresponding latent w∗ ∈ W+.

1 Randomly initialize w;
2 repeat
3 S ← G(w);
4 Run aug and crop on S and {Ii}NI

i=1 to obtain
{Sj}Ncrop

j=1 , {Iki }
Ni,Ncrop

i,k=1,1 ;
5 Calculate Lsty using Eq. 1, Eq. 2, and Eq. 3;
6 Adam update for w with∇wLsty;
7 until Lsty is converged;
8 return (S, w∗);

where Ii is the input style image, and ∆Sj is calculated us-
ing Eq. 1. Specifically, for every image Ii or S involved in
the CLIP embedding computation, we first randomly crop a
large number of patches and then augment them. After com-
puting the loss for each patch, we average them together to
obtain the final loss value. By computing the averaged co-
sine similarity between each direction pair, Eq. 2 accurately
estimates the style similarity between the input image Ii and
the generated style S.

In the general case where multiple style images {Ii}NI
i=1

and style text descriptions {Ti}NT
i=1 are given, we calculate

the style-specific CLIP loss Lsty, and solve the following
optimization problem:

w∗ = argmin
w∈W+

Lsty = argmin
w∈W+

NI∑
i=1

αI
iLIi +

NT∑
i=1

αT
i LTi

,

(3)

where {αI
i }

NI
i=1 and {αT

i }
NT
i=1 are the style weights.

4.2. Inversion Algorithm

With the style-specific CLIP guidance, it is straightfor-
ward to run our cross-modal GAN inversion algorithm. As
shown in Algorithm 1, after initializing w, we repetitively
calculate Lsty and use Adam optimizer [23] to update w,
until Lsty has converged.

Note that in this algorithm, both {Ii}NI
i=1 and {Ti}NT

i=1

are optional. If only {Ti}NT
i=1 is given, it degenerates to

text-guided style generation, converting our framework to
a method for TIST. Similarly, if only {Ii}NI

i=1 is given, it
degenerates into mixing multiple style images, i.e., gener-
ating a mixture of styles represented by multiple input im-
ages. When both {Ii}NI

i=1 and {Ti}NT
i=1 are provided, cross-

modal style interpolation, e.g., interpolating a style between

Algorithm 2: Multimodality-guided Style Transfer

Data: Input styles {Ii}NI
i=1, {Ti}NT

i=1, style weights
{αI

i }
NI
i=1, {αT

i }
NT
i=1, and a set of content

images {Ci}NC
i=1.

Result: A set of stylized images {Yi}NC
i=1.

1 if The aggregated feature F is not cached then
2 Run Algorithm 1 NS times to obtain {Si}NS

i=1;
3 {Fi}NC

i=1 ←Mf ({Si}NS
i=1);

4 F ← aggregate({Fi}NC
i=1);

5 end
6 {Yi}NC

i=1 ←Mt({Ci}NC
i=1, F );

7 return {Yi}NC
i=1;

a given text and a given image, can be naturally achieved by
adjusting the style weights {αI

i }
NI
i=1 and {αT

i }
NT
i=1.

5. Multimodality-guided Image Style Transfer
5.1. Multi-style Boosting

Due to the internal randomness of GAN inversion, one
single intermediate style representation may not cover all
style patterns specified by the input references, impairing
the style transfer quality of final results. To address this
problem, we propose a multi-style boosting algorithm. We
aim to enrich the intermediate style representations, while
keeping them compatible with the adapted IIST model M.
Specifically, for each set of style inputs, we run cross-
modal GAN inversion multiple times, resulting in a set of
style representations {Si}NS

i=1. Then we feed them into M
separately, and aggregate the outputs together to exploit
{Si}NS

i=1. The aggregation strategy depends on the specific
implementation of M. We describe one instance of M and
the aggregation strategy in the supplementary material.

5.2. Style Transfer Algorithm

We detail our style transfer method in Algorithm 2. For
brevity, we assume the adapted IIST model M can be de-
composed into a feature extraction network Mf and a style
transfer module Mt, i.e., M(C,S) = Mt(C,Mf (S)).
Similar to Algorithm 1, Algorithm 2 can be used for TIST
by only providing {Ti}NT

i=1, or MMIST by providing both
{Ii}NI

i=1 and {Ti}NT
i=1. In particular, if only one T0 is given,

our method degenerates to the IIST approach it generalizes
since cross-modal GAN inversion is not necessary in this
case. The aggregated style feature F from each unique set
of input styles can be cached for later use once it is pro-
duced. With cached F , when new content images arrive
with the same input styles, only the style transfer part Mt

needs to be executed. Since Mt is a feed-forward network,
our method runs significantly faster than previous meth-
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Figure 4. Comparison with other TIST methods. Our method delivers more accurate styles than others. Meanwhile, as opposed to other
methods which often distort the content or add unreasonable patterns, content information is greatly preserved in results of our method.

ods [7,21,25] that require ad-hoc optimization for each pair
of style and content.

6. Experiments

We consider three tasks to evaluate our method: (1)
TIST; (2) MMIST with one style image and one style text
description; and (3) MMIST with style interpolated from
multiple references in different modalities. Note that IIST
is trivial and unnecessary to consider because our method
degenerates to the IIST approach it includes, as mentioned
in Section 5.2. We employ AdaAttN [29] as our adapted
IIST method in all our experiments. Please see the supple-
mentary material for more implementation details.

6.1. Comparison with TIST Methods

Qualitative comparison. We conducted a qualitative com-
parison between our method and several TIST methods. In
this task, style transfer is conditioned on a single text de-
scription. Therefore, we simply set NT = 1 and NI = 0
in our method. We consider CLIPStyler [25], CLIPStyler-
F [25], DiffusionCLIP [21], Null-text Inversion [31], and
InstructPix2Pix [4] as our baselines. These methods ei-
ther exclusively focus on this task [25] and achieve state-
of-the-art performance, or treat TIST as one of their prac-
tical applications. It is worth noting that CLIPStyler and
CLIPStyler-F are proposed in the same paper, and the latter
is an extension of the former and achieves TIST in a single
forward pass for learned style text descriptions. By caching
style representations, the speed of our method is similar to
CLIPStyler-F, which is significantly faster than CLIPStyler
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Table 2. Quantitative user study results on four TIST meth-
ods. For each method, we report the number of positive responses
received from raters, as well as its percentage (over 161,040 re-
sponses in total). Our method outperforms baselines.

Method Style (%) ↑ Content (%) ↑ Overall (%) ↑
CLIPStyler 10631 (39.6) 9686 (36.1) 8966 (33.4)
CLIPStyler-F 14626 (54.5) 13453 (50.1) 11776 (43.9)
DiffusionCLIP 9768 (36.4) 7929 (29.5) 7395 (27.6)
Null-text Inversion 7375 (27.5) 16876 (62.8) 7166 (26.7)
InstructPix2Pix 10580 (39.4) 17453 (65.0) 8268 (30.8)
Ours 17151 (63.9) 18061 (67.3) 15125 (56.4)

and DiffusionCLIP.
Figure 4 shows comparison results on 9 content-style

pairs. We list the style text descriptions and the content
image in the first and the second rows, respectively. Style
transfer results of different methods are listed in the remain-
ing rows. As is shown, CLIPStyler often breaks or distorts
the original contents (1st and 7th columns). For results gen-
erated by DiffusionCLIP, their styles do not match the corre-
sponding text descriptions well (1st, 2nd, and 7th columns).
In addition, these methods tend to add undesirable local
patterns to stylized images (4th and 9th columns). The ab-
sence of an original image caption likely explains why Null-
text Inversion’s outcomes closely mirror the content images,
displaying minimal style variations. InstructPix2Pix some-
times compromises the content (3rd column) or introduces
inaccurate styles (2nd and 7th columns). In contrast, our
method delivers more accurate styles while greatly preserv-
ing the content information.
Quantitative user study. We conduct a large-scale quanti-
tative user study to better understand the performance of our
method. We still use CLIPStyler [25], CLIPStyler-F [25],
DiffusionCLIP [21], Null-text Inversion [31], and Instruct-
Pix2Pix [4] as our baselines. We apply 44 distinctive text-
described styles to 61 different content images, giving 2,684
stylized images. For each of them, we ask 10 different
raters to evaluate it from three aspects: style consistency,
content preservation, and overall quality. For each aspect,
raters are asked if the stylized image respects the aspect well
(positive) or not (negative). In total we obtain 161,040 re-
sponses where each method receives 26,840 responses and
each stylized image receives 10 responses. The total num-
ber of raters involved is 5,041. We report the number and
the percentage of positive responses. Table 2 shows that our
method outperforms all baselines in every aspect. Interest-
ingly, CLIPStyler-F received more positive responses than
CLIPStyler, although the former is designed to be a fast ex-
tension in [25]. This user study result is consistent with the
qualitative results shown in Figure 4.
Running speed. Our pre-computed style representations
enable fast stylization at test time. We compare speed of our
method with other TIST methods in Table 3. All methods
are under their fastest setting and run on an RTX A6000.

Table 3. Speed comparison with other TIST methods. Our
method is the fastest. (⋆) Null-text Inversion does not need per-
style training but has a per content inverison time of 80.7s.

Method Per-style Training Time (s) ↓ Stylization FPS ↑
CLIPStyler 0 0.03
CLIPStyler-F 44.1 4.40
DiffusionCLIP 1885 0.05
Null-text Inversion ⋆ 0.07
InstructPix2Pix 0 0.08
Ours 12.6 6.00

Table 4. Ablation study on different design choices. The perfor-
mance is evaluated through the user study.

Setting Preference % ↑ Setting Preference % ↑
CropSize128 39.5 PatchLoss500 49.9
NoCrop 41.9 PatchLoss2500 48.2
NoAug 47.9 NoBoosting 34.5

6.2. MMIST and Cross-modal Style Interpolation

Qualitative results of MMIST with one style image and
one style text description. To the best of our knowledge,
MMIST is infeasible for all the existing methods. However,
under our unified framework, it can be easily performed by
providing style references from more than one modality. We
first consider the case where input style is specified through
one style image and one style text description. Figure 5
shows MMIST results of our method on 8 different text-
image styles and 4 content images. Our method can suc-
cessfully summarize styles from a pair of style image and
text description, and apply it to various contents. Moreover,
contents are consistently preserved in all stylized images.
Qualitative results of MMIST with style interpolated
from multiple references in different modalities. As
mentioned in Section 5.2, our method is able to handle ar-
bitrary number of style inputs from different modalities. To
finer control the mixture degree of two or more given styles,
we interpolate the styles with various ratios. This is done
by setting different {αI

i }
NI
i=1 and {αT

i }
NT
i=1, while keeping

their summation fixed. Note that under our unified frame-
work, style interpolation between any number or kinds of
modalities can be achieved in the same way. Figures 1 and
6 demonstrate the style interpolation results defined by dif-
ferent mixtures of style images and text descriptions. Our
method produces decent and reasonable stylized images.
More results can be found in the supplementary material.

6.3. Ablation Study

We investigate a few design choices of our method and
quantitatively measure their effects in practice. To this end,
we consider the TIST task. In our experiment, we randomly
pair the style text descriptions and content images, and
obtain 1,012 pairs for stylized image generation. For each
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Figure 5. MMIST results. The first and second rows show style text descriptions and style images, respectively. The first column shows
content images. Our method successfully mixes multimodal styles and applies them to various content images.

Figure 6. MMIST and Style interpolation with four image and
text styles. Please zoom in to see the details.

specific pair, 10 raters are asked to pick their preferred
stylized image between the one generated by a certain de-
sign choice and the one generated by our full method. We
report the user preference percentage for all design choices
in Table 4. In the table, CropSize128 means we crop
128 × 128 patches when calculating style-specific CLIP
loss. NoCrop means we do not crop or augment the image,
and directly apply the loss. NoAug means we do not apply

augmentation to the cropped patches. PatchLoss500 and
PatchLoss2500 mean we set αT

0 = 500 and αT
0 = 2500,

respectively. NoBoosting means we do not use multi-style
boosting when applying the style to contents. We observe
that proper crop size and multi-style boosting are critical to
the good performance of our method, whereas the effects of
augmentation and style weight are relatively minor to our
method. Changing the style weight from 500 to 2500 almost
does not affect the performance, indicating that our method
is quite robust to this hyperparameter. Qualitative ablation
study results are available in the supplementary material.

7. Conclusions and Future Work
In this paper, we present a unified style transfer frame-

work to transfer styles defined by multiple modalities. The
proposed cross-modal GAN inversion enables our frame-
work to combine different styles and faithfully transfer them
to arbitrary images. Extensive experiments demonstrate that
our method achieves SOTA performance on TIST. In addi-
tion, the proposed method handles the new MMIST prob-
lem and cross-modal style interpolation task effectively.

While our work only considers style information from
image and text, there is no theoretical restriction on our
method to obtain styles from other modalities, e.g., audio.
We leave the exploration of this direction as future work.
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Alexei A Efros. Generative visual manipulation on the nat-
ural image manifold. In European conference on computer
vision, pages 597–613. Springer, 2016. 3

4985


