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Abstract

Image compositing plays a vital role in photo editing. Af-
ter inserting a foreground object into another background
image, the composite image may look unnatural and in-
harmonious. When the foreground is photorealistic and the
background is an artistic painting, painterly image harmo-
nization aims to transfer the style of background painting to
the foreground object, which is a challenging task due to the
large domain gap between foreground and background. In
this work, we employ adversarial learning to bridge the do-
main gap between foreground feature map and background
feature map. Specifically, we design a dual-encoder gener-
ator, in which the residual encoder produces the residual
features added to the foreground feature map from main
encoder. Then, a pixel-wise discriminator plays against
the generator, encouraging the refined foreground feature
map to be indistinguishable from background feature map.
Extensive experiments demonstrate that our method could
achieve more harmonious and visually appealing results
than previous methods.

1. Introduction

In many photo editing applications, it is often neces-
sary to cut a foreground object from one image and over-
lay it on another background image, which is referred to
as image composition [37]. However, when combining the
foreground and background from different image sources
to produce a composite image, the styles of foreground
and background may be inconsistent, which would severely
harm the quality of composite image.

When the foreground and background are both pho-
tographic images, the style mainly refers to illumination
statistics, e.g., the foreground is captured in the daytime
while the background is captured at night. To address the
style inconsistency between foreground and background,
image harmonization [9,10,32,50] aims to adjust the illumi-
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Figure 1. Example of painterly image harmonization. From left to
right are foreground object, background image, composite image,
and harmonized image.

nation statistics of foreground to be compatible with back-
ground, leading to a harmonious image. When the fore-
ground is from a photographic image and the background
is an artistic painting, the background style has the same
meaning as in artistic style transfer [13, 19, 39], which in-
cludes color, texture, pattern, strokes, and so on. To ad-
dress the style inconsistency between foreground and back-
ground, painterly image harmonization [35] aims to migrate
the background style to the foreground, so that the stylized
foreground is compatible with the background and naturally
blended into the background.

To the best of our knowledge, there are only few works
on painterly image harmonization. To name a few, Luan
et al. [35] proposed to update the composite foreground
through iterative optimization process that minimizes the
designed loss functions. However, the method [35] relies
on slow iterative optimization process, which imposes re-
strictions on real-time application. Inspired by [19], Peng et
al. [40] introduced AdaIN [19] to align the styles between
foreground and background, which is trained with content
loss and style loss. The method [40] runs much faster
than [35], but performs poorly when transferring the color
and brush texture of artistic paintings. Zhang et al. [56]
jointly optimized the proposed Poisson blending loss with
the style and content loss, and reconstructed the blending re-
gion by iteratively updating the pixels. Analogous to [35],
the method [56] is also very time-consuming. In summary,
the existing painterly image harmonization methods are ei-
ther time-consuming or weak in style transfer. Additionally,
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the image harmonization methods [9, 10, 32, 50] for photo-
graphic images are not suitable for our task (see Section 2.1)
and the artistic style transfer methods [13, 19, 39] have sev-
eral limitations when applied to our task (see Section 2.3).

One critical issue that hinders the performance of
painterly image harmonization is the large domain gap be-
tween photographic foreground and painterly background.
Considering that adversarial learning has been widely used
to close the gap between different domains [2, 51], we at-
tempt to employ adversarial learning in the painterly im-
age harmonization task. Actually, pixel-wise adversarial
learning has been used in previous works [18, 23] from re-
lated fields (e.g., video harmonization, photo retouching).
They use a discriminator to distinguish foreground pixels
from background pixels in the output image, which can help
strengthen the generator in an adversarial manner.

In this work, we apply similar idea to the feature
maps in the generator, that is, employing adversarial
learning to bridge the gap between foreground feature
map and background feature map. Specifically, we pro-
pose a novel painterly image harmonization network that
contains a dual-encoder generator (main encoder and resid-
ual encoder) and pixel-wise feature discriminators. In the
main encoder, we use pretrained VGG [43] encoder to ex-
tract multiple layers of feature maps from composite image
and background image. Then, we apply AdaIN [19] to align
the statistics between the foreground region in composite
feature maps and the whole background feature maps, lead-
ing to stylized composite feature maps. To further reduce
the domain gap between foreground and background, we
also propose an extra residual encoder to learn residual fea-
tures for each encoder layer. The learnt residual features are
added to the foreground regions of stylized composite fea-
ture maps, leading to refined composite feature maps. Af-
terwards, for each encoder layer, our pixel-wise feature dis-
criminator takes in the refined composite feature map and
plays against our dual-encoder generator by telling dishar-
monious pixels from harmonious ones, which encourages
the refined composite feature maps to be harmonious. Fi-
nally, the refined composite feature maps are delivered to
the decoder to produce the harmonized image. We name
our method as Painterly Harmonization via Adversarial
Residual Network (PHARNet).

Following previous works [35, 40], we conduct exper-
iments on COCO [31] and WikiArt [36], comparing with
painterly image harmonization methods and artistic style
transfer methods. Our major contributions can be summa-
rized as follows. 1) We are the first to introduce pixel-wise
adversarial learning to harmonize feature maps. 2) We pro-
pose PHARNet equipped with novel dual-encoder genera-
tor and pixel-wise feature discriminator. 3) Extensive ex-
periments on benchmark datasets prove the effectiveness of
our network design.

2. Related Work

2.1. Image Harmonization

The goal of image harmonization is to harmonize a com-
posite image by adjusting the illumination information of
foreground to match that of background. Early traditional
image harmonization methods [26, 45, 46, 55] tended to
match low-level color or brightness information between
foreground and background. After that, unsupervised deep
learning methods [58] were proposed to enhance the realism
of harmonized image using adversarial learning. With the
constructed large-scale dataset [9] containing paired train-
ing data, myriads of supervised deep learning approaches
[8,38,44,48,50] have been developed to advance the harmo-
nization performance. To name a few, [10,16] designed var-
ious attention modules which are embedded in the network.
[7, 9] treated foreground and background as different do-
mains, thus converting image harmonization task to domain
translation task. [14,15] introduced intrinsic decomposition
to image harmonization task. More recently, [8, 22, 29, 54]
integrated color transformation with deep learning network
to achieve better performance. However, the well-behaved
supervised image harmonization methods require pairs of
training data, which are almost impossible to acquire in
painterly image harmonization task.

2.2. Painterly Image Harmonization

When overlaying a photographic foreground onto a
painterly background, the task is called painterly image
harmonization. This task targeted at migrating the back-
ground style to the foreground and preserving the fore-
ground content. As far as we are concerned, there only
exist few works concentrating on painterly image harmo-
nization task. The existing approaches [35, 40, 56] can
be divided into optimization-based approaches [35, 56] and
feed-forward approaches [40]. The optimization-based ap-
proaches [35, 56] iteratively optimize over the foreground
region of input composite image to minimize the designed
loss functions (e.g., content loss, style loss, Poisson loss),
which is very inefficient. The feed-forward approaches [40]
pass the composite image through the network once and
output the harmonized image, which is much more efficient
than optimization-based methods. PHDNet [4] performed
image harmonization in both frequency domain and spatial
domain. PHDiffusion [34] introduced diffusion model to
painterly image harmonization.

Our proposed method belongs to feed-forward ap-
proaches. Although adversarial learning has been used in
[40], they perform image-level and region-level adversarial
learning, which is quite different from our pixel-wise ad-
versarial learning. Moreover, [40] tends to make the output
images indistinguishable from artistic ones, but lacks the
ability to match foreground style with background style.
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2.3. Artistic Style Transfer

Artistic style transfer [1, 5, 6, 13, 19, 21, 28, 30, 33, 47,
52, 53, 57] renders a photo with a specific visual style
by transferring style patterns from a given style image to
a content image. Similar to painterly image harmoniza-
tion, artistic style transfer methods can also be divided
into optimization-based methods [12, 13, 24, 28] and feed-
forward methods [11,19,20,27,33,39]. Artistic style trans-
fer methods can be applied to painterly image harmoniza-
tion task by transferring the style from background image
to the whole content image and pasting the cropped stylized
foreground on the background image. However, the fore-
ground region is prone to be insufficiently stylized. More-
over, the pasted foreground may not be naturally blended
into the background without considering the locality of
compositing task.

3. Our Method
3.1. Overview

By pasting the foreground object from a photographic
image on a painterly background image Is, we can obtain
the composite image Ic with foreground mask M . The goal
of painterly image harmonization is transferring the style of
background image Is to the foreground object in the com-
posite image Ic while preserving the foreground content.

The overview of our network is shown in Figure 2 ,
which contains a dual-encoder generator G, pixel-wise fea-
ture discriminators Dl

f , and a pixel-wise image discrimina-
tor Dm. The dual-encoder generator G consists of a main
encoder Em and a residual encoder Er. The generator G
takes in the background image Is, the composite image Ic,
and the foreground mask M , and generates a harmonized
output image Ĩo. In addition, we employ L pixel-wise fea-
ture discriminators {Dl

f |Ll=1} and a pixel-wise image dis-
criminator Dm to play against G by telling disharmonious
pixels from harmonious ones. The pixel-wise feature dis-
criminators Dl

f are attached to multiple layers of feature
maps in the generator, while the pixel-wise image discrimi-
nator Dm is attached to the output image Ĩo. Next, we will
introduce each component in our network.

3.2. Dual-encoder Generator

Our generator is composed of a main encoder Em, a
residual encoder Er, and a decoder. The main encoder
Em contains the first few layers (up to ReLU4 1) of a pre-
trained VGG-19 [43] and the decoder structure is symmetri-
cal to the main encoder. We fix the main encoder Em when
training our network. Following [42], we add skip connec-
tions on ReLU1 1, ReLU2 1, and ReLU3 1 to preserve the
content details in the low-level feature maps.

At first, Em extracts L = 4 layers of feature maps
from the background image Is and the composite image Ic,

leading to {F l
s|4l=1} and {F l

c |4l=1} from four encoder lay-
ers ReLU1 1, ReLU2 1, ReLU3 1, and ReLU4 1. For
the l-th layer, we feed both feature maps F l

s and F l
c with

the resized foreground mask M l to the AdaIN layer [19]
that aligns the statistics of the foreground region in F l

c with
those of F l

s, producing the stylized feature maps F l
a:

F l
a =

(
σ(F l

s)
F l
c − µ(F l

c ◦M l)

σ(F l
c ◦M l)

+ µ(F l
s)
)
◦M l (1)

+F l
c ◦ (1−M l),

where ◦ is Hadamard product, µ(·) and σ(·) are the channel-
wise mean and standard deviation of a certain region of a
feature map.

Although the AdaIN operation in Eqn. 1 roughly aligns
the composite foreground with the background image, the
domain gap between foreground and background in F l

a may
still exist. Therefore, we attempt to refine the foreground
details in the stylized feature maps to further reduce the do-
main gap. To this end, we design a residual encoder Er to
learn multiple layers of residual features that are added to
the foreground regions of stylized feature maps {F l

a|4l=1}.
Our residual encoder Er takes the concatenation of the

composite image Ic and the foreground mask M as input.
We employ four residual blocks to learn four layers of resid-
ual features. All residual blocks share the identical struc-
ture, that is, two convolutional filters followed by batch-
normalization layer and ReLU activation. For the l-th layer,
the learned residual features F l

r, i.e., the output from the l-
th residual block, are added to the foreground region in the
stylized feature map F l

a, leading to refined feature map F̃ l
a:

F̃ l
a = F l

a + F l
r ◦M l. (2)

Then, multiple layers of refined feature maps are deliv-
ered to the decoder through bottleneck or skip connection to
generate the output image Io. Afterwards, inspired by [44],
we adopt a blending layer to blend Io with the background
image Is. In particular, we feed the concatenation of the
final decoder feature map and the foreground mask M to
the blending layer [44], generating a soft mask M̃ . At last,
we blend the output image Io with the background image Is
using M̃ to obtain the final harmonized image Ĩo:

Ĩo = Io ◦ M̃ + Is ◦ (1− M̃). (3)

3.3. Pixel-wise Feature Discriminator

To supervise the learned residual features and mitigate
the foreground-background domain gap in the refined fea-
ture maps, we employ pixel-wise adversarial learning to en-
courage the foreground pixels to be indistinguishable from
the background pixels in the refined feature maps.

We attach a pixel-wise feature discriminator Dl
f to the

l-th layer of refined feature map F̃ l
a. Dl

f aims to distinguish

5143



Figure 2. An overview of our painterly image harmonization network PHARNet. The network contains a dual-encoder generator G, pixel-
wise feature discriminators Dl

f , and a pixel-wise image discriminator Dm.

inharmonious pixels from harmonious pixels and assign a
class label to each pixel in the feature map. Considering
the output format, we adopt encoder-decoder architecture
for Dl

f , which produces a mask. We use Dl
f (F̃

l
a) to de-

note the discriminator output for F̃ l
a. Dl

f (F̃
l
a) should be

close to M l so that the discriminator is guided to distinguish
the foreground pixels from background pixels, in which the
foreground pixels are labeled as 1 and the background pix-
els are labeled as 0. We also feed the feature map F l

s of
background image into the discriminator. Since there are
no inharmonious pixels in the background image, all pixels
should be labeled as 0. Therefore, the loss function to train
the discriminator Dl

f can be written as

LD
f =

4∑
l=1

∥Dl
f (F̃

l
a)−M l∥22 +

4∑
l=1

∥Dl
f (F

l
s)∥22. (4)

When training the generator G, we expect that the fore-
ground pixels are indistinguishable from the background
pixels in the refined feature maps, that is, all pixels should
be labeled as 0. Thus, the loss function for Dl

f can be writ-
ten as

LG
f =

4∑
l=1

∥Dl
f (F̃

l
a)∥22. (5)

Note that, unlike the commonly used global discrimina-
tor which classifies an image or a feature map to be real or
fake as a whole, our pixel-wise feature discriminator learns
to classify each pixel-wise feature vector separately.

3.4. Other Losses

In this section, we introduce the remaining losses im-
posed on the final harmonized image Ĩo.

We employ the style loss [19] to ensure that the style of
foreground object is close to that of background image:

Ls =

4∑
l=1

∥µ(Ψl(Ĩo) ◦M l)− µ(Ψl(Is))∥22+

4∑
l=1

∥σ(Ψl(Ĩo) ◦M l)− σ(Ψl(Is))∥22,

(6)

in which Ψl denotes the l-th ReLU-l 1 layer in the pre-
trained VGG-19 encoder.

We also employ the content loss [13] to enforce the har-
monized image to retain the content of the foreground ob-
ject:

Lc = ∥Ψ4(Ĩo)−Ψ4(Ic)∥22. (7)

Inspired by [18], we also apply pixel-wise adversarial
learning to the harmonized image Ĩo. Specifically, we train
a pixel-wise image discriminator Dm to distinguish inhar-
monious pixels from harmonious pixels by minimizing the
loss LD

m, while the generator strives to make the foreground
pixels indistinguishable from background pixels by mini-
mizing the loss LG

m. The definitions of LD
m and LG

m are
similar to LD

f in Eqn. 4 and LG
f in Eqn. 5 except the input,

so we omit the details here.
In summary, the total loss function for training the gen-

erator G is

LG = Lc + Ls + LG
f + LG

m. (8)
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The total loss function for training the discriminators
{Dl

f |4l=1} and Dm is

LD = LD
f + LD

m. (9)

Under the adversarial learning framework, we update the
generator and the discriminators alternatingly.

4. Experiments
4.1. Datasets

Following previous works on painterly image harmo-
nization [35,40,56], we conduct experiments on COCO [31]
and WikiArt [36] datasets. COCO is a large-scale dataset of
123,287 images, which have instance segmentation annota-
tions for the objects from 80 categories. Wikiart is a large-
scale digital art dataset which contains 81444 images from
27 different styles. In this work, we use the images from
WikiaArt dataset as painterly background images and ex-
tract photographic foreground objects from COCO dataset
using the provided instance segmentation masks. We ran-
domly choose a segmented object whose area ratio in the
original image is in the range of [0.05, 0.3], and paste it
onto a randomly selected painting background, producing
an inharmonious composite image. We follow the training
and test split of COCO and WikiArt as [49], based on which
we obtain 57,025 (resp., 24,421) background images and
82783 (resp., 40504) foreground objects for training (resp.,
testing).

4.2. Implementation Details

The overall architecture of our network has been de-
scribed in Section 3. For the residual encoder Er, we use
four residual blocks [17] to learn the residual features. All
residual blocks share the identical structure, that is, two
convolutional filters followed by batch-normalization layer
and ReLU activation. The pixel-wise feature discrimina-
tors Dl

f are small-scale auto-encoders consisting of down-
sample (DS) and upsample (US) blocks. For l ∈ {1, 2},
Dl

f contains three DS blocks and three US blocks. For
l ∈ {3, 4}, Dl

f contains two DS blocks and two US blocks.
Each DS block contains a convolutional layer with kernel
size being 4 and stride being 2, a batch normalization layer,
and a LeakyReLU activation sequentially. Each US block
contains an upsampling layer with scale factor being 2, a
reflection padding layer, a convolutional layer with kernel
size being 3 and stride being 1, a batch normalization layer,
and a ReLU layer. The pixel-wise image discriminator Dm

is also built upon DS blocks and US blocks as used in Dl
f .

For Dm, we employ seven DS blocks and seven US blocks.
Our network is implemented with Pytorch 1.10.2 and

trained using Adam optimizer with learning rate of 2e − 4
on ubuntu 18.04 LTS operating system, which has 32GB of

memory, Intel Core i7-9700K CPU, and two GeForce GTX
2080 Ti GPUs. We resize the input images to 256 × 256
in the training stage. However, our network can be applied
to the test images of arbitrary size due to the fully convolu-
tional network structure.

4.3. Baselines

There are two groups of methods which can be applied
to our task: painterly image harmonization [35, 40, 56] and
artistic style transfer [19, 33].

For the first group of methods, we compare with Deep
Image Blending [56] (“DIB” for short), Deep Painterly Har-
monization [35] (“DPH” for short), and E2STN [40]. We
also include traditional image blending method Poisson Im-
age Editing [41] (“Poisson” for short) for comparison.

For the second group of methods, they were originally
proposed to migrate the style of an artistic image to a com-
plete photographic image, so some modifications are re-
quired to adapt them to our task. In particular, we first
migrate the style of background image to the photographic
image containing the foreground object, using the artistic
style transfer methods. Then, we segment the stylized fore-
ground object and overlay it on the background image to ob-
tain a harmonized image. Since there are myriads of artistic
style transfer methods, we choose several iconic or recent
works for comparison: WCT [27], AdaIN [19], SANet [39],
AdaAttN [33], and StyTr2 [11].

4.4. Qualitative Analysis

We show the comparison with the first group of baselines
in Figure 3 and the comparison with the second group of
baselines in Figure 4. More visualization results could be
found in Supplementary.

As shown in Figure 3, Poisson [41] can smoothen the
boundary between foreground and background, but the
foreground content is severely distorted (e.g., row 2, 5).
DIB [56] and E2STN [40] preserve the foreground content
well, but the foreground style is not very close to back-
ground style (e.g., E2STN in row 4, DIB in row 2) and the
harmonized foreground may be corrupted (e.g., DIB in row
5). DPH [35] is a competitive baseline, which can achieve
good harmonized results in some cases. However, the con-
tent structure and foreground boundary might be damaged
or blurred (e.g., row 2, 5). In comparison, our method can
preserve the content structure, sharp boundaries, and rich
details (e.g., human face/clothes in row 1, 3 and the pat-
terns on the giraffe body in row 5). In the meanwhile, the
foreground is sufficiently stylized and harmonious with the
background. Interestingly, without suppressing the styliza-
tion effect, our method can also maintain the color distribu-
tion of foreground (e.g., white-and-red car in row 4), while
other methods either understylize the foreground or lose
partial color distribution information.
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Figure 3. From left to right, we show the background image, composite image, foreground mask, the harmonized results of Poisson [41],
E2STN [40], DIB [56], DPH [35], and our PHARNet.

Method SANet [39] AdaAttN [33] StyTr2 [11] E2STN [40] DPH [35] PHARNet
BT-Score -1.8757 -1.0406 -0.3891 0.4677 0.7814 2.0562
Time(s) 0.0097 0.0115 0.0504 0.0078 270.96 0.0223

Table 1. The BT-score and inference time of different methods.

As shown in Figure 4, since the style transfer methods do
not focus on stylizing the foreground region, the foreground
may not be adequately stylized (e.g., AdaIN and StyTr2 in
row 2) and the content structure of foreground may be de-
stroyed (e.g., WCT in row 4, 5). Besides, since style transfer
methods do not consider the location of foreground in the
composite image, the stylized foreground may be incom-
patible with the surrounding background. In contrast, our
method is able to transfer the style and retain the content
structure, leading to more visually appealing results. The
stylized foregrounds are harmonious with backgrounds, as
if they originally exist in the paintings.

4.5. User Study

We randomly select 100 foreground objects and 100
background images to generate 100 composite images for

user study. We compare with 5 representative baselines
SANet [39], AdaAttN [33], StyTr2 [11], E2STN [40], DPH
[35]. Specifically, for each composite image, we can ob-
tain 6 harmonized images produced by 6 methods, based
on which 2 images are selected to construct an image pair.
Provided with 100 composite images, we can construct in
total 1500 image pairs. Then, we ask 50 annotators to ob-
serve one image pair at a time and pick the better one. At
last, we gather 30, 000 pairwise results and calculate the
overall ranking of all methods using Bradley-Terry (B-T)
model [3, 25]. As shown in Table 1, our method achieves
the highest B-T score.

4.6. Efficiency Comparison

We compare the inference time between our method and
baseline methods in Table 1. We test the inference speed of
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Figure 4. From left to right, we show the background image, composite image, foreground mask, the harmonized results of WCT [27],
AdaIN [19], SANet [39], AdaAttN [33], StyTr2 [11], and our PHARNet.

Method Er Dl
f Dm B-T score

V1 -4.4103
V2 ✓ -0.6537
V3 ✓ ✓ 1.4343
V4 ✓ ✓ ✓ 3.6297

Table 2. The B-T score of our different network structure. Er

refers to the residual encoder. Dl
f refers to the pixel-wise feature

discriminators. Dm refers to the pixel-wise image discriminator.

all methods on one GeForce GTX 2080 Ti GPU, with input
image size 256× 256, and average the results over 100 test
images. We observe that DPH is the slowest method be-
cause DPH is an optimization-based method which requires
iterative optimization process. StyTr2 [11] is also very slow
due to the Transformer network structure. Our method is
relatively efficient and the inference speed is acceptable for
real-time applications.

4.7. Ablation Studies

In this section, we investigate the effectiveness of each
component in our method. We first remove all discrimina-
tors and the residual encoder, and obtain a basic network
with multi-scale AdaIN, which is referred to as V1 in Ta-

ble 2. Then, we add pixel-wise image discriminator Dm,
which is referred to as V2. Furthermore, we add the resid-
ual encoder Er to form the dual-encoder generator, which
is referred to as V3. Finally, we apply pixel-wise feature
discriminators and reach our full-fledged method, which is
referred to as V4.

We show the harmonized results of ablated versions in
Figure 5. It can be seen that the harmonized results of
V1 have many strip artifacts, which significantly harms
the quality of harmonized results. After using the pixel-
wise image discriminator Dm in V2, the strip artifacts
can be removed. Nevertheless, the harmonized results of
V2 may still have some other types of artifacts (e.g., row
4, row 5) and unsatisfactory details. After adding the
residual features without the guidance of pixel-wise fea-
ture discriminator, the harmonized foregrounds of V3 may
have distorted content (e.g., row 5) and look incompatible
with the background (e.g., row 4). After applying pixel-
wise feature discriminators to the refined feature map in
V4, the learnt residual features become more reasonable
and the harmonized results become more visually appeal-
ing. Compared with the ablated versions, the results of V4
have fully-transferred style, well-preserved content struc-
ture, and meaningful details (e.g., dog eye in row 1, sus-
pender in row 3).
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Figure 5. From left to right, we show the background image, composite image, foreground mask, the harmonized results of V1, V2, V3,
V4 (full method).

The clear advantage of V4 could be attributed to the
residual features and pixel-wise adversarial learning. The
residual features, which are added to the foreground region
of stylized feature map, could repair the content structure
and enhance the style representations, leading to the refined
feature map with improved quality. Moreover, the pixel-
wise feature discriminator plays against the dual-encoder
generator by telling disharmonious pixels from harmonious
ones. Such pixel-wise adversarial learning encourages the
refined foreground feature map to be indistinguishable from
background feature map, so that the foreground is more har-
monious with the surrounding background.

Similar to Table 1, we also conduct user study to com-
pare different ablated versions. The results are summarized
in Table 2, which again demonstrate the superiority of our
full method.

5. Discussion on Limitation
Although our method can generally produce visually ap-

pealing results, there still exist some challenging cases in
which our method may fail to produce satisfactory results.
For example, as shown in Figure 6, when the foreground
objects are very small, our method may fail in retaining the

composite background mask ours

Figure 6. Example failure cases of our method.

foreground content information and produce poor harmo-
nized results.
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