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Abstract

There has been significant progress in improving the
accuracy and quality of consumer-level dense depth sen-
sors. Nevertheless, there remains a common depth pixel
artifact which we call smeared points. These are points
not on any 3D surface and typically occur as interpo-
lations between foreground and background objects. As
they cause fictitious surfaces, these points have the poten-
tial to harm applications dependent on the depth maps.
Statistical outlier removal methods fare poorly in remov-
ing these points as they tend also to remove actual sur-
face points. Trained network-based point removal faces
difficulty in obtaining sufficient annotated data. To ad-
dress this, we propose a fully self-annotated method to
train a smeared point removal classifier. Our approach
relies on gathering 3D geometric evidence from multiple
perspectives to automatically detect and annotate smeared
points and valid points. To validate the effectiveness of our
method, we present a new benchmark dataset: the Real
Azure-Kinect dataset. Experimental results and ablation
studies show that our method outperforms traditional fil-
ters and other self-annotated methods. Our work is publicly
available at https://github.com/wangmiaowei/
wacv2024_smearedremover.git.

1. Introduction
While dense depth sensors have led to dramatic improve-

ments in 3D computer vision tasks, including alignment [5],
classification [45], and reconstruction [22], they neverthe-
less still suffer from depth artifacts which can harm per-
formance. Factors including scene complexity [39], hard-
ware device conditions [17], and sensor motion [35] can
adversely impact depth. Fortunately, consumer-level depth
sensors have improved over the years [44], with long-
standing problems such as Gaussian noise, shot noise, and
multi-path interference being alleviated. However, there
continues to exist an important class of invalid depth points
at the boundaries of objects, as shown in Fig. 1. These
points often interpolate between objects across depth dis-

Figure 1. Example scene recorded by an Azure Kinect sensor with
smeared points. The cropped color is shown in (a) and a colorized
side view of the 3D point cloud is in (b). Significant smearing can
be seen between the vertical columns in the red circles. In subplot
(c), our method uses multiple viewpoints to automatically annotate
smeared points (red) from valid points (green) and left uncertain
points (blue). Once trained, our method classifies pixels in a single
frame as smeared or valid in subplot (d).

continuities, and so we call them smeared points, in con-
trast to other outliers or random noise. Our primary goal
is to eliminate smeared points without harming other depth
points, especially valid boundary details.

A primary cause of smeared points is multi-path reflec-
tions. Pixels on or adjacent to edge discontinuities can re-
ceive two or more infrared signal reflections; one from the
foreground object and one from the background. Depend-
ing on the sensor circuitry, these multiple returns can re-
sult in a variety of artifacts and typically are interpolated
between the foreground and background object. Common
depth noise has a small bias compared to variance and low
dependence on 3D shapes. In contrast, smeared point noise,
caused by multi-path interference, depends strongly on 3D
scenes with one-sided distributions at object boundaries, see
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Fig. 1. These smeared points can be problematic for appli-
cations that use depth maps as they result in false surfaces in
virtual worlds, blurring of fine 3D structures, and degraded
alignments between point clouds. These harms are com-
pounded when multiple point clouds each having different
artifacts are combined into an overall blurred point cloud.

Now, improvements in sensor processing have given
modern sensors the ability to remove some of these smeared
points, particularly when there is a large gap between the
foreground and background objects. Nevertheless, smear-
ing across smaller depth discontinuities is not solved due to
the difficulty in distinguishing occlusion effects from com-
plex shape effects, and as a consequence smeared points
continue to plague the otherwise high-quality depth images,
shown in Fig. 1. A variety of hand-crafted filters [13,14,43]
can be used to reduce noise in-depth maps, but we find
that they perform poorly in removing smeared points or
else result in overly smoothed surfaces. A data-driven ap-
proach would be preferable, but these face the difficulty
of acquiring sufficient ground truth which is expensive and
time-consuming to obtain. More importantly, it should be
pointed out that smeared points extensively exist in current
famous RGB-D datasets such as LaMAR [37], NYU Depth
V2 [34], and ScanNet [12]. Thus the smeared point is not
a niche problem. And there are still smeared points in their
provided well-reconstructed ground truth 3D models shown
in Fig. 2, which prevents getting clean depth maps from
large-scale off-the-shelf datasets.

Figure 2. A well-reconstructed 3D model example of ScanNet [12]
(left) contains smeared points in the red circles (middle), and the
color image (right) is provided for comparison.

Another approach is to create synthetic datasets [32]
with known ground truth, but these are limited by how well
they model both the sensing and the environment. Unsu-
pervised domain adaption [1, 38] can address this to some
extent. However, approaches using multiple different fre-
quencies [3] from the same position, or using multiple cam-
eras [42] create significant overhead in acquisition.

The goal of this paper is to overcome the difficulty in
acquiring ground truth data for hand-held depth sensors by
developing a novel self-annotated method for eliminating
smeared points. This avoids the need for building com-
plex optical sensing models, and it also eliminates the need
for expensive manual annotations of data. Instead, our ap-
proach leverages the dense depth sensing capabilities of
these sensors, along with a multi-view consistency model
to automatically self-annotate points. In this way, data can

be rapidly acquired without human annotation and used to
train a smeared-point remover.

In order to evaluate this method, fifty different real
scenes both indoors and outdoors have been collected.
Comprehensive experiments on these datasets and ablation
studies further demonstrate the core idea in this paper that
multi-frame self-annotation can effectively train a smeared
point remover. In summary, our contributions are:

• To our knowledge, we propose the first self-annotation
technique for smeared points detection that applies ge-
ometric consistency across multiple frames.

• By combining self-annotated labels with a pixel-level
discriminator, we create a self-annotated smeared
point detector.

• We introduce a new real smeared points dataset
(AzureKinect) using the Azure Kinect sensor as a
benchmark.

• We validate our design choices with several ablations.

2. Related Work
Obtaining noise-free, dense depth from raw, low-quality

measurements has received significant attention. Before
the rise of data-driven techniques, especially deep learning,
numerous hand-crafted filters were designed to alleviate
noise by referencing neighboring pixels, such as median fil-
ter [14], Gaussian filter [13], Bilateral filter [43], etc. Early
work to remove outliers introduced density-based and sta-
tistical methods [9,15,41], while geometric and photometric
consistency between depth maps and color images [26, 46]
was also used to detect outliers. As for time-of-flight multi-
path interference (MPI), multiple different modulation fre-
quency measurements [7,8] of the same scene are collected
to improve depth quality. In contrast to these methods re-
quiring multiple measurements at different frequencies, our
method requires only a single-frequency depth map.

Even before deep learning techniques were widely
adopted, convolution and deconvolution techniques [24]
were proposed to recover time profiles only using one
modulation frequency. DeepToF [32] uses an autoen-
coder to correct measurements based on the observation
that image space can provide most of the sources for MPI.
Continuing the classical multi-frequency method, a multi-
frequency ToF camera [3] is integrated into the network de-
sign to preserve small details based on two sub-networks.
RADU [38] updates depth values iteratively along the
camera rays by projecting depth pixels into a latent 3D
space. These supervised learning methods heavily rely on
synthetic datasets generated by a physically-based, time-
resolved renderer [23] that uses bidirectional ray tracing
which is much more time-consuming to render one realistic
depth map. To shrink the gap between real and synthetic
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Figure 3. Our self-annotated architecture for smeared point removal. Training scenes are recorded with a hand-held sensor. Multi-frame
pose estimation aligns these frames. Then geometric consistency is used to annotate smeared(red), and valid(green) pixels for all frames
with left points as unknown(black). Then a U-Net-based classifier is trained to identify smeared points in each frame.

datasets, DeepToF [32] learns real data’s statistical knowl-
edge by auto-learning encoders while RADU [38] applies
unsupervised domain adaptation by investigating a cyclic
self-training procedure derived from existing self-training
methods for other tasks [27, 29, 30]. Additionally, an ad-
versarial network framework can be used to perform unsu-
pervised domain adaptation from synthetic to real data [2].
All these methods depend on the reliability of the simu-
lated dataset. Moreover, current self-supervised methods
either require a setup of multiple sensors placed in precom-
puted different positions based on photometric consistency
and geometric priors [42] or build noise models by assum-
ing noises follow some random distribution around normal
points [16,21] which leads to low availability when process-
ing real scenes. In contrast to these approaches, our method
operates in a self-annotated manner directly on real scene
data without relying on complex scene formation models or
specific noise models, or synthetic datasets.

3. Method

3.1. Approach Summary

This paper divides the smeared point removal into two
distinct components: (1) a pixel annotator and (2) a pixel
classifier, which are illustrated in Fig. 3. Advances in cor-
recting depth offsets [21, 32, 38, 42] lead to high-quality
depth estimates for the majority of depth pixels, leaving a
typically small fraction of invalid or smeared pixels. With
these pixels often having large errors, our approach is to
identify them for removal rather than correct their depth.
Thus smeared point removal is a classic semantic segmen-
tation problem and if we had sufficient annotated data, then
a supervised classifier could be trained to perform this task.

The challenge is how to obtain sufficient annotated data, as
manual annotation is time-intensive and expensive.

In this section first, we describe two types of evidence
for classifying pixels as either smeared or valid. By accu-
mulating this evidence from multiple scene views, we cre-
ate an automated smeared-pixel and valid-pixel annotation
method. We then use these annotations to train a supervised
single-frame smeared pixel classifier

3.2. Multi-View Annotation

Typically smeared pixels occur between objects along
rays that graze the foreground object. Now, as the viewpoint
changes, these grazing rays change orientation and the re-
sulting location of any interpolated points along these rays
will also change. On the other hand, 3D points on objects
will remain consistent, or at least overlap, between differing
viewpoints. Thus we conclude if a pixel has been observed
from multiple viewpoints with differing rays, the pixel must
be a valid surface pixel and not a smeared point.

An example of multi-viewpoint evidence is shown
in Fig. 4a. Points vA(i) and vA(j) are observed from sep-
arate viewpoints A and B and thus determined to be valid
points. Now if the distance between viewpoints is small or
the distance to the pixels is large, smeared pixels can coin-
cide spatially. To avoid this, we use the angle θ, always less
than 90°, between the viewing rays of coincident points as
a confidence measure in a point that is valid, and the confi-
dence score c can be modeled as Eq. (1)

c = sin2 (θ) (1)

The normalization is applied to the confidence score c to be
in the range between 0 and 1. Tab. 3 validates this design.
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(a) Multi-Viewpoints

(b) See-Through Behind (c) See-Through Empty

Figure 4. Geometric evidence used for annotating our depth maps.
Multi-Viewpoints evidence for valid points (green) is shown in the
top row. Two cases of See-Through evidence for smeared points
(red) are shown in the bottom two rows.

3.3. Space Carving Annotation

The second category of evidence we gather has to do
with space carving. Smeared points, by definition, float off
the surface of objects. Now if a ray measuring a depth pixel
passes through the location of a 3D point, then this is ev-
idence that that pixel is not actually at that location but is
most likely a smeared pixel.

We divide see-through evidence for smeared points into
a case of positive evidence(See-through Behind) in Fig. 4b
and negative evidence(See-through Empty) in Fig. 4c. In
both cases, a point is concluded to be a smeared point if an-
other viewpoint can see through it. In the first case, Fig. 4b,
a ray γB from the camera at location B passes through a
point sA(i), observed from location A, and measures a point
behind sA(i), from which we conclude sA(i) is a smeared
point. In the second case Fig. 4c, a point sA(j) observed
by A should be visible to viewpoint B, and yet there is no
measurement along the ray γB , either closer or farther than
sA(j). To conclude from this negative evidence that sA(j)
is a smeared point we expand the ray γB between the sen-
sor and sA(j) to a conical section with angle φ and require
no points are observed from B within this, which elimi-
nates the case of grazing rays being blocked and incorrectly
inferring a smeared point behind them. The conical sec-
tion angle φ is a regularization term in See-Through Empty
and larger values mean fewer detected smeared points with
higher confidence. A naive quick equivalent implementa-

Multi-Viewpoints See-Through Behind See-Through Empty Inference
vf = 1 bf = 1 ef = 1

! − − Valid
− ! − Smeared
− − ! Smeared
− − − Unknown

Table 1. Find valid and smeared points using the multi-view con-
sistency and ray-tracing model respectively.

tion of φ is applying a sliding window in the depth map.
No reference points around the detected smeared point in a
larger window size mean higher φ. In our experiment, the
sliding window with size 3× 3 is used to filter unconfident
self-annotated smeared labels in See-through Empty.

3.4. Geometric Label Generation

Automated pixel annotation involves combining the ge-
ometric evidence for valid and smeared points to a se-
quence of depth images. We note that pixels for which
none of the two pieces of evidence apply will have an
unknown categorization. To convert geometric evidence
among multiple frames to geometric labels trained for
the network, we assume that a depth sensor is moved
around a rigid scene, typically by hand, and gathers depth
frames {df−m//2, · · · , df+m//2} from totally m + 1 con-
secutive viewpoints, and from which 3D point clouds
{pf−m//2, · · · , pf+m//2} are created. Then the first step
is to align all viewpoints, which is achieved by multi-frame
Iterative Closest Point (ICP) [11]. The result of this align-
ment is an array of sensor viewpoints and a single-point
cloud with each point having a viewing ray to the sensor
from which it was gathered. To determine the point visibil-
ity we use ray-tracing through rendering as described next.

Pixel Rendering Applying our geometric evidence re-
quires visibility reasoning for all pixels, which is performed
using rendering. We denote a pixel observed in frame f as
pf with coordinates (uf , vf ) and depth df . Since we know
all camera poses, the pixel can be projected into any other
frame f ′, represented as p(f

′)
f with coordinates (u(f ′)

f , v
(f ′)
f )

and depth d
(f ′)
f . This defines a mapping from original pixel

coordinates to coordinates in any other camera:

I : (uf , vf ) → (u
(f ′)
f , v

(f ′)
f ) (2)

Additionally, due to different parameter settings and
depth-buffering mechanisms between our renderer and the
actual depth sensor, point cloud pf ′ should also be repro-
jected to the depth map d

(f ′)
f ′ with the same renderer of d(f

′)
f

when applying our geometry evidence.
The geometric evidence can be gathered into three binary

variables for each pixel {vf , bf , ef} with each taking values
[0, 1]. Here vf = 1 indicates valid pixel evidence as it is
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viewed in multiple frames as in Fig. 4a, while bf = 1 in-
dicates smeared pixel evidence due to See-Through Behind
in Fig. 4b, and ef = 1 indicates smeared pixel evidence due
to See-Through Empty as in Fig. 4c. These are summarized
in Tab. 1. Then, our algorithm to use this evidence to label
pixels is shown in Algorithm 1.

Algorithm 1 Algorithm to automatically generate geomet-
ric labels for each pixel. Small constants ϵ and δ are set
according to pixel depth noise.

1: For target frame f , initialize: bf , ef , vf = 0
2: for each (uf , vf ) in df do
3: for each f ′ ∈ [f − m//2, f − 1] and [f + 1, f +

m//2] do
4: Rendering new maps d(f

′)
f and d

(f ′)
f ′

5: Index buffer I : (uf , vf ) → (u
(f ′)
f , v

(f ′)
f )

6: if (u(f ′)
f , v

(f ′)
f ) is inside frame f ′ then

7: k = d
(f ′)
f − df

′

f ′

8: if |k| < ϵ then
9: vf (uf , vf ) = 1 ▷ Valid pixel

10: else if k < −δ then
11: bf (uf , vf ) = 1 ▷ See-Through Behind
12: else if k = d

(f ′)
f then

13: ef (uf , vf ) = 1 ▷ See-Through Empty
14: else
15: continue; ▷ Unknown category

In this algorithm, pixels observed in a target frame f are
labeled as valid or smeared by doing a pairwise compari-
son of rendered depths, (d(f

′)
f , d

(f ′)
f ′ ), in each of the other

reference frames, f ′. The number of used reference frames
per sequence, m, can be varied, although here we used m=4
which enabled good multi-frame alignment.

Why train a model rather than directly applying such
heuristics? We note that while a multi-frame annota-
tion can be used on its own to remove smeared points, it
leaves a significant fraction of points unlabeled (85% in our
AzureKinect training sets). Relying on this also requires
static frames and camera motion, and creates latency. Thus,
we use the annotation to train a single-frame network to do
the eventual smeared point detection.

3.5. Depth Normals

We anticipate that surface normals will provide useful
cues to pixel classification. In particular, smeared pixel nor-
mals are often orthogonal to the viewing ray. Surface nor-
mals can be computed efficiently and directly from depth
maps [33]. We will specify the normal vector n(u, v) at a
pixel location (u, v) in the depth map d. This normal can
be specified as the perpendicular to a facet connecting the
3D pixel p(u, v), and its neighbor pixel location. Follow-

Figure 5. Visualization of the normal view on an indoor scene and
values of the boundary are lower compared to non-boundary areas.
NOTE: Missing values in the corners of the depth map are directly
related to the field-of-view(FoV) [28] of the depth camera.

ing [47], we define ω(u, v) to be the inner product of the
viewing ray unit vector and the normal unit vector:

ω(u, v) = n(u, v)T
p(u, v)

||p(u, v||
(3)

As shown in Fig. 5, an ω of 1 indicates a surface perpendic-
ular to the viewing ray, while an ω of 0 indicates an orthog-
onal surface.

3.6. Smeared Classifier and Loss Function

Some off-the-shelf 2D-based segmentation network is
adapted here as our smeared classifier rather than a 3D
segmentation backbone for three considerations: (1) it is
lightweight and fast, (2) depth maps are directly obtained
by the sensor when processing raw IR map, and (3) the
smeared points generally deviate along the viewing ray, i.e.
z-axis which indicates using a z-buffer is sufficient. Our
smeared classifier Ψ maps an input ϕ = {d, ω} consisting
of a depth map and corresponding ray inner products, to an
output consisting of the smeared probability p as:

Ψ : ϕ → p (4)

We use a binary cross-entropy loss function with the above
self-generated geometric labels:

CE = −(b+ e) · log p − v · log(1− p) (5)

To balance both smeared and valid points, weights based on
geometric label results are used here as Eq. (6)

wk = 1− ∥k∥0
∥v∥0 + ∥b∥0 + ∥e∥0

, k ∈ {b, e, v} (6)

Besides, the confidence score c for the valid label is also
considered to improve robustness as Eq. (7)

L = −α · (wbb+ wee) log p − β · cwvv log (1− p) (7)

In the above final loss equation Eq. (7), α and β are two
hyper-parameters for fine-tuning in experiment sections.
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Dataset Type GT Size Resolution Pose

S1 [3] Syn Yes 54 320× 240 No
S2 [1] Real No 96 320× 239 No
S3 [1] Real Yes 8 320× 239 No
S4 [1] Real Yes 8 320× 239 No
S5 [3] Real Yes 8 320× 239 No

FLAT [19] Syn Yes 1200 424× 512 No

Cornell-Box [38] Syn Yes 21300 600× 600 No

Zaragoza [32] Syn Yes 1050 256× 256 No

AzureKinect Real No 1920 1920× 1080∗ Yes
AzureKinect(GT) Real Yes 11 1920× 1080∗ No

Table 2. Properties comparisons of related datasets. GT refers
to Ground Truth, while the size is the total number of frames.
*AzureKinect dataset provides pairs of color and depth maps shar-
ing the same resolution 1920 × 1080, also with raw depth map
(640× 576 resolution) provided.

4. AzureKinect Dataset
To validate the effectiveness of our methods, the real

scene datasets using Azure Kinect were collected: we cap-
tured a total of 50 indoor and outdoor scenes using the
Azure Kinect sensor, one of the state-of-the-art consumer-
level cameras in the market. For each scene, we shoot 5 to
10 seconds with the hand-held camera moving without any
speed or direction restraint under 5HZ operation frequency.
And then a total of 1936 pairs of depth and color frames
of real scenes are captured. Like some published datasets
such as NYU Depth V2 [34], AVD [4], GMU Kitchen [18],
etc, our dataset provides pairs of color and depth informa-
tion sharing the same resolution(1920 × 1080), as shown
in Tab. 2, by transforming depth image to the color camera
and doesn’t hurt raw frame contents. And we also provide
raw depth maps with resolution 640× 576. Since there are
currently no depth sensors on the market that can effectively
avoid smeared points, we resort to manually annotating 11
typical frames for 11 different scenes respectively to get
ground truth. To ensure the accuracy of the annotation, hu-
man annotators are required to carefully observe the whole
video clip for each test scene and modify GT labels sev-
eral times repeatedly, which results in a single depth frame
costing a human annotator about 6 hours. To our knowl-
edge, our AzureKinect dataset exceeds existing published
real ToF datasets in both size and resolution, see Tab. 2,
and is the only dataset provided with pose information for
different views of the same scene. Therefore, our dataset
lays a good foundation for future work on this new problem
though the test set is admittedly small in size.

5. Experiments
Deep learning models from similar tasks: multi-

path interference removal (DeepToF [32]), image seman-

tic segmentation (UNet [36], DeepLabV3+ [10], Seg-
former [48]), are used as the removal backbones based on
our self-annotated framework. The self-annotated method
DeepDD [42] for removing regular point cloud noises is
adapted to this task by replacing pre-calibrated 4 cameras
with every 4 consecutive frames with known pre-computed
poses. Besides, 5× 5 median filter based on the depth map
and statistical filter [6] based on point cloud are also in-
cluded in our experiments. We evaluate those models and
methods based on the Mean Average Precision where the
smeared class is considered positive and the valid point is
set as negative. For qualitative comparisons different from
others, the predicted results are converted to the point cloud
using an intrinsic matrix where smeared points are colored
red while the valid points are colored green.
Implementation Details: As mentioned, the geometric la-
bels are first built when joining the off-the-shelf seman-
tic segmentation network. A softmax layer is added to
adapt to our segmentation task and we use ResNet-34 [20]
as the backbone for UNet [36], DeepLabV3+ [10], Seg-
former [48]. All codes are implemented by Pytorch and
all input frames and labels are cropped and resampled
to 512 × 512 for computational needs by using nearest-
neighbor interpolation to avoid creating artifacts. Augmen-
tation is performed through random cropping to 128 × 128
with random rotation. We use the mini-batch Adam [25]
optimization algorithm, with a weight decay 1e-7, and run
200 epochs with a batch size 32. The initial learning rate is
set at 1e-4 and reduced by 10 times after every 25 epochs
with a 100-step cosine annealing schedule [31]. We set
α = 0.3, β = 0.7, ϵ = 4mm, δ = 15mm in our experi-
ments. The used adjacent reference frame number is m = 4.

5.1. Quantitative and Qualitative Results

Method Inputs Features mAP

Median Filter d Hand-crafted 0.231
Statistical Filter [6] p Hand-crafted 0.407

DeepDD [42] (d, ω) self-annotated 0.103

DeepToF [32] (d, ω) self-annotated 0.742
DeepLabV3+ [10] (d, ω) self-annotated 0.766

Segformer [48] (d, ω) self-annotated 0.729
UNet [36] (d, ω) self-annotated 0.775
*UNet [36] (d, ω) self-annotated 0.771

Table 3. Results of various methods on our AzureKinect datasets.
Each row reports the mean average precision of the smeared points
with ground truth. * denotes uniform weighting (c = 1) in Eq. (7).

To obtain pose information, multiview ICP [40] with
five-neighboring point clouds automatically aligns points
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Figure 6. Predicted results with AP on our AzureKinect dataset of our self-annotated learning method using UNet and statistical filter.
Smeared points are colored red while valid points are colored green. The areas without any point are masked in white.

and determines camera poses. For the DeepDD [42] model
which is a regression model compared to our segmenta-
tion task, we apply the threshold standard to get eval-
uation scores by computing abstract differences between
the restored depth and raw depth. If the difference is
smaller than the Azure Kinect’s systematic error threshold
(11mm+0.1%d), then the depth pixel location is predicted
valid, otherwise (larger than that threshold) smeared. Five
cases of the test dataset are shown in Fig. 6, where the self-
annotated UNet can detect most of the smeared points than
the statistical filter though more valid points are misclassi-
fied as the distance increase and it is also challenging for a
deep learning remover to detect these smeared points which
share the similar structures as valid points, observed in the
last row of Fig. 6. We evaluate 11 different depth maps from
11 different scenes, where the model using UNet achieves
the highest mAP compared to other methods, see Tab. 3.
Besides, using uniform weighting (c = 1) for multi-view
annotation reduces the mAP by 4% than our confidence
score design in Eq. (1). The failure of the self-supervised
method DeepDD [42] is also noticed in our experiment,
where both the consecutive frames with close viewings, and
similar color information among the same observed struc-
tures impede this method’s effectiveness (please refer to our
supplementary materials for more qualitative analysis).

5.2. Ablation

To identify the optimal number of consecutive reference
frames required, we repeat experiments with different self-
annotated labels for partial points, each derived from dif-
ferent numbers of reference frames. We also generate such
labels for the test set to ascertain the accuracy of our geom-
etry annotation. Both evaluations on multi-frame geometric
classification and our single-frame trained classification are
concluded as in Fig. 7. Geometry labels for partial points
exhibit 12%−15% higher mAP than UNet for all points, af-
firming the precision of our self-annotated labels for partial
points. Moreover, using more frames doesn’t feed better la-
bels back since the pose estimation is less accurate for long-
distance frames and the contradictory information from dif-
ferent frames stands out which further prevents predicted
improvements when using more frames.

To validate our selection for input modality ϕ, we replace
our remover’s input with multiple different combinations of
color, depth, and normal-view map ω and evaluate it after
100 training epochs (all convergence guaranteed). For a fair
comparison, we conduct a hyperparameter search for each
kind of input modality ϕ and report results in Tab. 4 which
show that the ω map helps detect smeared points both for
depth map and color map with a large increase. Besides,
indicated by the drop in performance, we think color im-
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Figure 7. Results of geometric
labels generated from different
numbers of nearby frames. We
report the mean average preci-
sion on the AzureKinect data
both for multi-frame geomet-
ric classification and our single-
frame trained classification.

Depth Color ω AP

! − ! 0.775
! − − 0.670
− ! − 0.567
− ! ! 0.629
! ! − 0.613
! ! ! 0.691

Table 4. Results of UNet (ours)
with different input types. We
report the Average Precision
(AP) on the AzureKinect data
after hyperparameter optimiza-
tion.

ages contain some invalid information from similar visual
features and produce disturbances.

To validate our choice for the sliding window size φ =
3×3 in reducing unconfident self-annotated smeared labels
in See-Through Empty, different kernel sizes are applied
as shown in Fig. 8 for the qualitative comparisons. When
φ = 1 × 1, it is equivalent not to filter any self-annotated
smeared points from See-through Empty. Both 3 × 3 and
5×5 effectively avoid some misclassifications, but the slid-
ing window with size 3×3 can keep more confident smeared
labels than that of 5× 5. With φ > 5× 5, too few smeared
points are expected to be detected. Therefore, our selection
for the sliding window is based on a trade-off assessment of
self-annotated label quality and quantity.

Figure 8. Qualitative comparison among different sliding window
sizes for reducing unconfident labels from See-through Empty.
The remaining smeared points are colored red with left blue. Mis-
classifications are reduced and can be seen in small circles.

5.3. Application: 3D Reconstruction

It is always a major challenge to reconstruct objects with
sophisticated fine-grained structures using consumer-level
cameras. A related experiment in Fig. 9 aligns 15 consec-
utive frames under the 5HZ work frequency of an Azure
Kinect depth sensor and uses down-sampling to make a
number of point clouds consistent with three different pre-
processes: without any filtering, adding a statistic outliers

filter, or using trained UNet model as a preprocessor. Qual-
itative result in Fig. 9 shows that our trained removal better
helps align and keep high-fidelity 3D point clouds relieved
of smeared points when placed as a preprocessor.

Figure 9. Results of multiple frames alignments using the trained
network. From the left column to the right, the second column is
the aligned point cloud without any filtering; the third column is
the aligned point cloud adding an outlier filter; the last column is
using our network as a preprocessor for the raw depth map.

5.4. Limitations

Our pipeline still has several limitations. First, the scenes
for training, although not inference, must be static which re-
duces our data selection especially outside. Second, mech-
anisms encouraging models to connect and attribute pre-
dictions among similar 3D geometry structures need to be
further investigated since self-annotated labels are partial
and not enough. Finally, incorrect pose estimation due to
smeared points can lead to errors. An experiment is per-
formed, where we repeat pose estimation again only using
detected valid points (from our initially trained filter), re-
generate pseudo-labels, and then retrain our remover from
scratch. Results show APs of generated pseudo labels for
partial points and predicted scores for all points are raised
by 1.5% and 0.8% respectively.

6. Conclusion
In this work, we present a new self-annotated architec-

ture to detect smeared points and then remove this harmful
artifact from consumer depth sensors. Visibility-based ev-
idence is automatically gathered from multiple viewpoints
of a hand-held sensor to annotate depth pixels as smeared
valid or unknown. These annotations are used to train our
smeared point detector with no need for manual supervi-
sion. Being self-annotated avoids the need for costly hu-
man annotation while enabling simple data collection and
training of widely varied scenes. As a low-computational
network, it can be used as a preprocessor for every single
raw frame to improve the quality of 3D reconstruction.
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