
TSP-Transformer: Task-Specific Prompts Boosted Transformer

for Holistic Scene Understanding

Shuo Wang1 Jing Li2 Zibo Zhao1 Dongze Lian3

Binbin Huang1 Xiaomei Wang4 Zhengxin Li1 Shenghua Gao1,5,6†

1ShanghaiTech University 2Xiaohongshu Inc. 3National University of Singapore
4Fudan University 5Shanghai Engineering Research Center of Intelligent Vision and Imaging

6Shanghai Engineering Research Center of Energy Efficient and Custom AI IC

{wansghuo2022, zhaozb, liandz, huangbb, lizhx, gaoshh}@shanghaitech.edu.cn
lijing1@alumni.shanghaitech.edu.cn, 17110240025@fudan.edu.cn

Abstract

Holistic scene understanding includes semantic segmen-

tation, surface normal estimation, object boundary detec-

tion, depth estimation, etc. The key aspect of this problem

is to learn representation effectively, as each subtask builds

upon not only correlated but also distinct attributes. In-

spired by visual-prompt tuning, we propose a Task-Specific

Prompts Transformer, dubbed TSP-Transformer, for holis-

tic scene understanding. It features a vanilla transformer

in the early stage and tasks-specific prompts transformer

encoder in the lateral stage, where tasks-specific prompts

are augmented. By doing so, the transformer layer learns

the generic information from the shared parts and is en-

dowed with task-specific capacity. First, the tasks-specific

prompts serve as induced priors for each task effectively.

Moreover, the task-specific prompts can be seen as switches

to favor task-specific representation learning for different

tasks. Extensive experiments on NYUD-v2 and PASCAL-

Context show that our method achieves state-of-the-art per-

formance, validating the effectiveness of our method for

holistic scene understanding. We also provide our code in

the following link 1.

1. Introduction

Understanding a scene [12,15,34] both semantically and

geometrically is promising due to its lots of applications,

such as autonomous driving, virtual reality, robotics, etc.

The holistic understanding of the scene includes a wide va-

riety of tasks, e.g., semantic segmentation, depth estima-

tion, object boundary detection, surface normal estimation,

etc. It is desirable to train a network that can deal with a

1https://github.com/tb2-sy/TSP-Transformer

Task1-

Prompt

Task2-

Prompt

Task3-

Prompt

Task4-

Prompt

Scene Image Data

Task-specific

Prompt

Task Prompt Select Successively

Boundary
Semantic 

segmentation
Depth Normal

Multi-task Transformer
……

Scene Understanding  Tasks

Patch Tokens

Figure 1. Overview of our proposed Task-Specific Prompts Trans-

former Network framework. We develope task-specific prompts

for each task, which successively interact with the encoder to

generate features relevant to the respective tasks. Task-specific

prompts boost Multi-task Transformer with task-specific features

and output the final multi-task predictions.

series of tasks jointly. By leveraging the task association

and task specialty, impressive results on scene understand-

ing are achieved by employing Convolution Neural Net-

works (CNNs) [4, 13, 33, 39]. Recently, transformer mod-

els [1,36,41,43] have been introduced to model the multiple

scene understanding tasks.

Previous works have designed different modules to learn

task-specific and task-unified knowledge and interact with

the information of these various tasks. For example, lots

of works have designed special modules in the encoder

[9,23,26] to learn task-specific representations and incorpo-

rate cross-task information interactions by means of man-

ually designed structures. While the decoder [16, 33, 41]

serves to decouple the characteristics of different tasks and

facilitate cross-task interaction, some parameters are shared

across all tasks. However, these methods are not fine

enough for decoupling task-specific features and require

carefully designed modules for multi-task dense learning.

Recently, building a unified network to perform multi-

ple tasks has received more attention due to its potential for

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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general intelligence. A large number of transformer-based

frameworks [3, 7, 11] have been constructed in the field of

natural language processing to handle many different but re-

lated tasks. In computer vision, some recent approaches [5]

design unified models [2] to obtain the output results based

on the task description by implicitly learning the relevance

of tasks, which show the feasibility of a unified model given

instructions to perform multiple vision tasks. Inspired by

these unified models [5, 27], we propose to utilize multi-

task visual prompts to improve the multi-task scene under-

standing. Each prompt is dedicated to a specific task, which

can be regarded as task-specific. These multi-task visual

prompts are inserted into the input of the transformer layer

along with the image tokens to perform self-attention such

that the transformer layer learns the task-specific informa-

tion. Such a method decouples characteristics of different

tasks in the layer level, which is finer and more flexible.

Different from the previous unified models [5], where the

explicit task description is inserted into the transformer to

specify the task name, e.g., ‘detect’ or ‘segment’ , our task-

specific prompts are learnable and updated independently

for each task during training. Thanks to these learned task-

specific prompts, the proposed model demonstrates the abil-

ity to produce task-specific output, which provides tailored

results for specific requirements and is better adapted to

the data distribution, and largely improves the performance.

Furthermore, we also introduce an efficient task-specific

feature fusion module to aggregate the features from the en-

coder of different tasks and pass them to the decoder.

We conduct extensive experiments on NYUD-v2 and

PASCAL-Context for performance evaluation. Our exper-

iments reveal that when task-specific features are inserted

into the deeper layers of the encoder, then different tasks

tend to have similar low-level features, and as we gradually

introduce more and more task-specific prompts in deeper

encoder layers, features of various tasks become less and

less correlated, which helps task-specific features learning.

Further, although tasks are closely correlated, our exper-

iments show that introducing unified prompts is adverse

to performance. The experiment results demonstrate that

our proposed method is superior to other baseline methods,

which validates the effectiveness of our proposed approach.

In summary, our main contributions are as follows:

• We are introducing a novel approach, Task-Specific

Prompts Transformer, to include task-specific prompts

and various task features in multi-task training of scene

understanding.

• We explore a new task-specific feature decoupling

method; task-specific information can be finely decou-

pled with task-specific prompts. And we also design

an efficient task-specific encoder feature fusion block

to aggregate the encoder features of different tasks.

• We conduct extensive experiments on two bench-

marks: NYUD-v2 and PASCAL-Context. The experi-

ment results demonstrate that our proposed method is

superior to other baseline methods.

2. Related Work

Multi-task learning for dense scene understanding.

Multi-task learning (MTL) is a promising area [12, 18, 34]

of research to improve generalization performance by using

domain knowledge contained in supervised signals of as-

sociated tasks. Many previous works [4, 33, 39, 41] have

explored lots of possibilities in this field. In particular,

PAD-Net [39] proposes a new multi-task-oriented predic-

tive distillation network structure that supplies abundant

multi-modal data for learning the target task. MTI-Net [33]

explicitly considers task interactions at multiple scales by

designing the network structure and utilizing multi-scale

information. Multi-scale processing preserves the original

image’s features across various scales, such as the patch

level. Neural architecture search (NAS) [19, 22, 38] tech-

niques have also been employed in the field of multi-task

learning, such as ATRC [4], with the help of knowledge

distillation techniques to obtain richer information in the

case of multi-task information sharing. The above methods

are almost implemented based on CNNs. Owing to the ex-

ceptional performance of transformers in the visual domain,

many researches [41] are being explored using Transform-

ers [35]. Based on the structure of the Vision Transformer,

InvPT [41] improves the decoder to expand the receptive

field and realizes information interaction at higher resolu-

tions. In this paper, our work explores the role of the Visual

Prompt Transformer in multi-task learning and proposes a

new method to use Visual Prompt Learning [10] in multi-

task learning.

Visual prompt learning. Prompt learning first emerged in

the field of natural language processing [14, 17, 24, 28, 31]

for parameter-efficient tuning, which enables the model to

better understand tasks and improve performance. Some

large models in the field of natural language processing,

such as GPT-3 [3], have demonstrated the ability to trans-

fer under small sample conditions under the blessing of the

prompt. Recent work has extended the prompt learning or

parameter-efficient learning to the field of computer vision

[10,20,29,37,40,45], and the modality of the prompt is not

limited to text. VPT [10] inserts some learnable parameters

into the Vision Transformer Encoder Layer, and these learn-

able token parameters interact with the input image token,

thereby affecting downstream tasks. However, the prompts

method [10] mentioned above in the visual field are limited

to fine-tune classification tasks and have not been tried in

other settings, such as multi-task learning.

Recently, we noticed that there are some other con-

current works with similar ideas yet distinct meth-
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ods, such as [21, 42]. Although both our model and

TaskPrompter [42] enhance model performance for multi-

task scene understanding with the proposed prompts to

guide the learning process, our implementation methods

and TaskPrompter have their own advantages and disadvan-

tages. TaskPrompter uses two prompting paradigms in spa-

tial and channel, called Spatial Task Prompting and Channel

Task Prompting. They design a set of spatial-channel task

prompts and learn their spatial and channel interactions with

the shared image tokens in each transformer layer with at-

tention mechanism. However, our method uses the standard

visual prompt paradigm [10]. The self-attention mechanism

generates task-specific features by sequentially concating

the learnable prompts of different tasks and image patch

tokens. Task-specific features and task fusion features are

used as the input of the decoder stage.

3. Method

3.1. Overview

In this section, we introduce our Task-Specific Prompts

Transformer Network. The overall framework can be shown

in Fig. 2. Our method is implemented on [41], consist-

ing of three core parts, Task-Specific Prompts Transformer

Encoder in Sec. 3.2, Efficient Multi-task Feature Fusion

block in Sec. 3.3 and Multi-head Transformer Decoder in

Sec. 3.4. The details of these parts are introduced as fol-

lows. Task-Specific Prompts Transformer Encoder consists

of vanilla transformer encoder layers [35] in the early stage

and our proposed task-specific prompts transformer encoder

layers in the late stage. A few shared vanilla transformer

encoder layers in the early stage can reduce the number

of parameters and computations and learn general knowl-

edge. Task-specific prompts transformer encoder layers de-

couple different task features and learn task-specific infor-

mation. Task-specific prompts are introduced to the task-

specific prompts transformer encoder layers interacts with

the image feature to learn corresponding task dependencies.

Efficient Multi-task Feature Fusion block aggregates fun-

damental encoder features from different tasks to pass to

the decoder stage, which is vital for some low-level tasks.

Multi-head Transformer decoder learns to produce refined

scene representations within global spatial and task infor-

mation, which are further used to produce the final predic-

tions with task-specific output head.

3.2. Task­Specific Prompts Transformer Encoder

As shown in Fig. 2, our Task-Specific Prompts Trans-

former Encoder mainly consists of three parts, patch em-

bedding, shared vanilla transformer encoder layers in the

early stage, and task-specific prompts transformer encoder

layers in the late stage. A few shared vanilla transformer

layers in the early stage of the encoder, and task-specific

prompts are introduced from particular layers in our de-

fault model. A few shared encoder layers in the early stage

can reduce the number of parameters and computations and

learn general knowledge. Task-specific prompts encoder

layers in the late stage decouple different task features and

learn task-specific information, and this decoupling is finely

performed at the layer level.

Patch embedding. For a vanilla Vision Transformer (ViT)

architecture with N layers, an input image I ∈ RH×W×3 is

divided into m fixed-sized patches I j. Each image patch

I j is then first embedded into a D-dimensional embedding

token with positional encoding:

e
j

0
= Embed

(

I j

)

e
j

0
∈ RD

, j = 1, 2, . . .m (1)

The embeddings of the j-th image patch after embedded

are denoted as e
j

0
(e

j

0
∈ RD, j = 1, 2, . . .m). We use Ei =

Concat
(

e1
i
, . . . , e

j

i

)

as the collection of image patch token

embeddings.

Shared vanilla transformer encoder layer. After image

patch embedding, Ei is then input to the (i + 1)-th Trans-

former encoder layer Li+1:

[xi+1,Ei+1] = Li+1 ([xi,Ei]) i = 0, 1, 2, . . . ,M − 1 (2)

where xi ∈ RD denote learnable [CLS]’s embedding at Li

transformer encoder layer output space.

The shared vanilla transformer encoder layer L consists

of two main blocks of multi-head self-attention (MSA) and

multi-layer perceptron (MLP). Given an input Ei ∈ Rm×D,

where D is the embedding dimension, MSA first maps Ei

to queries Q ∈ Rm×d, keys K ∈ Rm×d and values V ∈ Rm×d

using three projection matrices, Wq ∈ RD×d, Wk ∈ RD×d

and Wv ∈ RD×d, where d denote the hidden layer dimen-

sion. And MSA computes the weighted sums over the val-

ues based on the self-attention between the queries and keys

as follows:

Attention(Q,K,V) = softmax

(

QKT

√
d

)

V (3)

where 1√
d

is a scaling factor.

Task-specific prompts transformer encoder layer. We

concatenate n task-specific prompt tokens p ∈ RD for each

task which are initialized with a fixed value or a random dis-

tribution to the Task-specific prompts transformer encoder

Layer for each task to learn task-specific features. Task-

specific prompts forward separately and interact with the

patch token embedding features through MSA to learn de-

pendencies for different tasks. Task-specific prompts are

introduced at the input space of particular transformer lay-

ers, and distinct layers introduced may yield varying per-

formance. For (M + 1)-th Layer LM+1, we denote the col-

lection of task t input learnable task-specific prompts as
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Figure 2. Pipeline of our proposed Task-Specific Prompts Transformer. It consists of three parts: Task-specific prompts, Encoder, and

Decoder. Given an image and a specific task, the task prompts are adopted to concatenate with the image feature tokens and perform

self-attention in the Encoder. Successively perform the above steps to generate multi-task features from the Encoder. The features output

from the Encoder are fused and fed into the Decoder to perform multi-task prediction.

Pt
0
=

{

pk
0
∈ RD | k ∈ N, 1 ≤ k ≤ n

}

, denoted t = 1, 2, . . . ,T ,

where T is the number of tasks. The task-specific prompts

transform encoder layer is formulated as:

[

xt
M+1,E

t
M+1,

]

= LM+1

([

xM ,EM ,P
t
0

])

. . .
[

xt
N ,E

t
N ,

]

= LN

([

xt
N−1,E

t
N−1,P

t
N−M−1

])

(4)

where ’ ’ means tokens are discarded and replaced by

next-layer task-specific prompt tokens. If we choose to in-

troduce task-specific prompt tokens Pt
0

in the i-th encoder

layer, then Pt
0

concatenate of image patch token embed-

ding Ei−1 and learnable [CLS]’s embedding xi−1. Then,

patch token embeddings after task-specific prompt interac-

tions turn into task-specific features from encoder. In this

way, task-specific prompts encoder layers achieve the de-

coupling of different task features and learn task-specific in-

formation, and this operation is finely performed at the layer

level. Task-specific prompt tokens are learned by the corre-

sponding task ground-truth back-propagation to update in-

dependently for each different task during training. The

forward process of testing is the same as that of training.

Task-specific prompt tokens for each task follow the same

pipeline above, and interact with other shared parameters in

the encoder separately.

3.3. Efficient Multi­task Features Fusion

Features from encoder are vital for some low-level tasks,

such as boundary detection. To address the computa-

tional cost and quadratic complexity of the Transformer, a

common strategy is to downsample the feature map to a

lower resolution and then handle the multi-scale features

from different transformer encoder layers. InvPT [41] de-

coder designs a multi-scale features from encoder aggre-

gation method, but these aggregate features are just multi-

scale instead of multi-task and multi-scale features from en-

coder. In our task-specific prompts transformer encoder,

task-specific prompts encoder corresponding task features.

Multi-task features fusion mechanism is necessary, which

can play the role of information complementation between

different tasks.

In order to better aggregate multi-task features, we apply

aggregation weight matrix W ∈ R4×T (fixed or learnable)

for different T tasks features Ft
i

(t = 1, 2, . . . ,T ) to obtain

i-th scale multi-task aggregation features Fi as follows:

Fi =

T
∑

t=1

(

Wt,i ⊗ Ft
i

)

(5)

where i=1,2,3,4,and ⊗ means element-wise multiplica-

tion after broadcast operation. Our experimental results

show that aggregation weight matrix full of fixed-weight 1
T

achieves a reasonably high level of performance. We carried

out an enumeration experiment focusing on fixed weight

cases and observed that the absence of encoder informa-

tion for any task leads to performance drops. Furthermore,

the complementarity of information between tasks is cru-

cial, and more details can be found in Sec. 4.3.
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3.4. Multi­head Transformer Decoder

Our MTL model uses multi-task features from encoder

as input for Multi-head Transformer Decoder. In the en-

coder stage, we obtain enough task-specific information.

The purpose of the decoder is to interact and refine task-

specific features.

For the decoder part, we adopted the design structure

of Inverted Pyramid Transformer Decoder [41], which is

mainly composed of a multi-task up-transformer block that

is applied to gradually increases the spatial resolution of the

feature map and also perform multi-task features interaction

to refine all tasks.

3.5. Loss Function

After the multi-task decoder heads output the predic-

tion results, we apply task-specific loss functions for each

task to computer loss with ground truth. For pixel-by-

pixel classification tasks: semantic segmentation, human

parsing, saliency detection, and boundary detection, the

cross-entropy loss is uniformly used for optimization. L1-

Loss is used for depth estimation and surface normals es-

timation. The whole model can be end-to-end optimized.

We set λseg=1.0, λdepth=1.0, λnormals= 10.0, λedge=50.0,

λpart seg=2.0, and λsal=5.0. λ represents the weight of the

loss corresponding to each task:

L = λseg Lseg + λdepth Ldepth + λnormals Lnormals

+ λedge Ledge + λpartseg Lpartseg + λsal Lsal

(6)

We use the exact same loss function weights as those in

InvPT [41], without making any adjustments.

4. Experiments

4.1. Experimental Setup

Datasets. Following previous works, we use NYUD-v2

and PASCAL-Context datasets for performance evaluation.

NYUD-v2 [32] contains 795 training images and 654 test-

ing images for indoor scenes, including four tasks: seman-

tic segmentation, monocular depth estimation, surface nor-

mal estimation, and object boundary detection. PASCAL-

Context [8] contains 4998 training images and 5105 testing

images. It labels for five tasks: semantic segmentation, hu-

man parts parsing, monocular depth estimation, surface nor-

mal estimation, and object boundary detection. We conduct

experiments on both datasets for performance evaluation.

Evaluation metric. Semantic segmentation and human

parts parsing tasks both are segmentation tasks and are

evaluated with the mean Intersection over Union (IoU)

and monocular depth estimation task using the Root Mean

Square Error (RMSE) as the evaluation metric. The surface

normal estimation task uses mean angular error (mErr) as

the evaluation metric, saliency detection is evaluated with

the maximum F-measure (maxF), and the boundary detec-

tion task uses the optimal dataset-scale F-measure (odsF)

score as the evaluation metric.

Implementation details. We mainly perform ablation stud-

ies using Vision Transformer(including Vit-L, Vit-B) pre-

trained on ImageNet-21K [6] as the transformer encoder on

the NYUD-v2 dataset. We set the training iterations of the

model to 40k on the NYUD-v2 dataset and the PASCAL-

Context dataset, both with a batch size of 6 using NVIDIA

A40 GPU. For the optimization, Adam optimizer is used,

and the learning rate is set to 2×10−5 with a weight de-

cay rate of 1×10−6. A polynomial learning rate scheduler

is used.

Method
Semseg

(IoU)↑
Depth

(RMSE)↓
Normal

(mErr)↓
Boundary

(odsF)↑
Cross-Stitch [26] 36.34 0.6290 20.88 76.38

PAP [44] 36.72 0.6178 20.82 76.42

PSD [46] 36.69 0.6246 20.87 76.42

PAD-Net [39] 36.61 0.6270 20.85 76.38

MTI-Net [33] 45.97 0.5365 20.27 77.86

ATRC [4] 46.33 0.5363 20.18 77.94

InvPT [41] 53.56 0.5183 19.04 78.10

TaskPrompter [42] 55.30 0.5152 18.47 78.20

Ours 55.39 0.4961 18.44 77.50

(a) State-of-the-art comparison on NYUD-v2.

Method
Semseg

(IoU)↑
Parsing

(IoU)↑
Saliency

(maxF)↑
Normal

(mErr)↓
Boundary

(odsF)↑
ASTMT [25] 68.00 61.10 65.70 14.70 72.40

PAD-Net [39] 53.60 59.60 65.80 15.30 72.50

MTI-Net [33] 61.70 60.18 84.78 14.23 70.80

ATRC [4] 62.69 59.42 84.70 14.20 72.96

ATRC-ASPP [4] 63.60 60.23 83.91 14.30 70.86

ATRC-BMTAS [4] 67.67 62.93 82.29 14.24 72.42

InvPT [41] 79.03 67.61 84.81 14.15 73.00

TaskPrompter [42] 80.89 68.89 84.83 13.72 73.50

Ours 81.48 70.64 84.86 13.69 74.80

(b) State-of-the-art comparison on PASCAL-Context.

Table 1. State-of-the-art comparison on NYUD-v2 (a) and

PASCAL-Context (b). Our method significantly outperforms the

previous state-of-the-arts methods.

4.2. Comparisons With State­of­the­art Methods

We compare our method with the state-of-the-art meth-

ods, including PAD-Net, MTI-Net, ATRC, InvPT and

TaskPrompter. The results on the NYUD-v2 and Pascal-

Context datasets are reported in Table 1 (a) and Table 1 (b),

respectively. On NYUD-v2, the performance improvement

for semantic segmentation, depth estimation, and surface

normal estimation is significant, while for boundary detec-

tion, it is comparable with state-of-the-art methods. All

tasks, except boundary detection, achieve state-of-the-art

results on the NYUD-v2 dataset in our experimental results.

As discussed in previous works [12,30], one possible reason
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Task Prompt
Semseg

(IoU)↑
Depth

(RMSE)↓
Normal

(mErr)↓
Boundary

(odsF)↑
53.56 0.5183 19.04 78.10

✓ 55.39 0.4961 18.44 77.50

(a) Task prompt ablation on NYUD-v2.

Task Prompt
Semseg

(IoU)↑
Parsing

(IoU)↑
Saliency

(maxF)↑
Normal

(mErr)↓
Boundary

(odsF)↑
79.03 67.61 84.81 14.15 73.00

✓ 81.48 70.64 84.86 13.69 74.80

(b) Task prompt ablation on PASCAL-Context.

Table 2. Task prompt ablation on on NYUD-v2 (a) and PASCAL-

Context (b). Our proposed task-specific prompt significantly en-

hances multi-task performance.

for the difference in performance gain is the task competi-

tion problem in training. The reason for task competition is

also confirmed in our supplementary material. When each

task does not share the encoder, the performance of bound-

ary detection is almost the same as that of InvPT [41]. Al-

though the performance of boundary detection in Table 1

has declined, overall, our results are still state-of-the-art.

To enhance the overall performance, we present the perfor-

mance in Table 1. On Pascal-Context, the improvements in

semantic segmentation, human parsing, saliency detection,

surface normal estimation, and boundary detection are all

significant.

4.3. Ablation Studies

The effectiveness of task-specific prompts. To verify

the effectiveness of our proposed task prompt learning

method, we conduct ablation studies on both NYUD-v2

and PASCAL-Context. The introduction of task prompts

significantly enhances multi-task performance, as demon-

strated in Table 2 (a) and Table 2 (b). The performance im-

proves because task-specific prompt tokens facilitate learn-

ing independent embedding spaces for each task. Such a

method decouples the characteristics of different tasks at

the layer level, providing a finer and more flexible repre-

sentation of various tasks. In the following section, we con-

duct comprehensive experiments to evaluate the effective-

ness of task-specific prompts and derive numerous valuable

insights, such as the positions of task-specific prompts hold

greater significance than the number of prompt tokens per

task in each layer and introducing shared prompt tokens re-

sults in unfavorable performance, among other conclusions.

The effectiveness of efficient multi-task features fusion.

As shown in Table 3, we explore a variety of efficient multi-

task encoder features fusion strategies. In theory, employ-

ing learnable weights and utilizing cross-task attention of-

fers a broader latent space than a fixed-weight strategy, po-

tentially leading to better performance through an optimal

solution. However, our experimental results indicate that

S
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Figure 3. Visualizing the attention maps for task-specific prompts

demonstrates their ability to focus on distinct spatial positions

within patch tokens. This observation indicates that task prompts

effectively learn task-specific representations through their inter-

actions with image patch tokens.

more complex fusion strategies tend to yield poorer perfor-

mance, suggesting that the role of this block is both criti-

cal and sensitive. Complex fusion strategies can increase

instability in the model optimization process for our multi-

objective optimization problem [30], leading to suboptimal

performance. Moreover, multi-task features from encoder

are essential, particularly for low-level tasks such as bound-

ary detection. We conducted an enumeration experiment

concentrating on fixed-weight scenarios and observed that

the lack of encoder information for any task results in per-

formance decreasing. Additionally, the complementarity of

information between tasks is vital.

Task-specific prompts vs. task-unified prompts. In

our approach, we propose that task-specific prompts en-

code the induced prior knowledge for each task, promot-

ing task-specific representation learning. Besides using

task-specific prompts, we also design experiments by in-

troducing task-unified prompts, which are the same for all

tasks and do not update independently. The task-specific

prompts and task-unified prompts can be used in the fol-

lowing ways: 1) task-unified prompts only; 2) task-unified

prompts and task-specific prompts are concatenated to-

gether; 3) task-unified prompts and task-specific prompts

are blended with an element-wise summation; 4) task-

specific prompt only. 5) task-unified prompts generated
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Method
Semseg

(IoU)↑
Depth

(RMSE)↓
Normal

(mErr)↓
Boundary

(odsF)↑
w/o fusion 53.47 0.5113 19.59 69.50

fixed weight 55.39 0.4961 18.44 77.50

learnable weight 55.18 0.4998 18.59 77.50

cross-task attention 55.16 0.5066 18.60 77.30

(a) Ablation for efficient multi-task features fusion strategy on NYUD-v2.

Fixed weight
Semseg

(IoU)↑
Depth

(RMSE)↓
Normal

(mErr)↓
Boundary

(odsF)↑
0.25, 0.25, 0.25, 0.25 55.39 0.4961 18.44 77.50

0.00, 0.25, 0.25, 0.25 54.59 0.4993 18.72 77.00

0.25, 0.00, 0.25, 0.25 55.18 0.4980 18.70 77.00

0.25, 0.25, 0.00, 0.25 55.02 0.5019 18.65 77.40

0.25, 0.25, 0.25, 0.00 55.14 0.5031 18.68 77.20

0.25, 0.25, 0.00, 0.00 54.86 0.5000 18.63 77.10

0.25, 0.00, 0.00, 0.00 54.59 0.5012 18.74 77.30

0.00, 0.00, 0.00, 0.00 53.47 0.5113 19.59 69.50

(b) Ablation for efficient multi-task features fusion fixed weight on NYUD-

v2. For the NYUD-v2 dataset consisting of four tasks, using a fixed weight

of 1
T
= 0.25 and arranged in the sequence of semantic segmentation, depth

estimation, surface normal estimation, and boundary detection.

Table 3. Ablation for efficient multi-task features fusion module.

We explore a variety of efficient multi-task encoder features fusion

strategies (a) and achieve the best performance with fixed values.

Concentrating on fixed-weight scenarios (b) and observed that the

lack of encoder information for any task results in performance

decreasing.

by fusing task-specific prompts with cross-prompt atten-

tion operation; task-specific prompts and fused task-unified

prompts are blended with an element-wise summation. It is

worth noting that 3) will also lead to task-specific prompts,

but the optimization in 3) is different from that in 4) be-

cause the task-unified prompts are supervised by four dif-

ferent tasks while the task-specific prompts are supervised

by the corresponding task only. Results in Table 4 show

that task-unified prompts constantly undermine the overall

performance, compared with our method with task-specific

prompts only, where n and m mean the number of task-

unified prompts and task-specific prompts. There are two

possible reasons for the poor performance of task-unified

prompts: i) it may be possible to exist the task-unified

prompts for fewer tasks, but difficult to exist the task-unified

prompts for all four tasks; ii) the encoder aims at explicitly

decoupling the features of different tasks. Introducing the

task-unified prompts in the encoder goes against the feature

decoupling for different tasks.

The positions of task-specific prompts. In our implemen-

tation, the transformer encoder contains 24 layers in total.

We denote the input as layer 1. In Table 5, we report the

results with prompts inserted at multiple layers where i − j

means the task-specific prompts are used from the i-th layer

to the j-th layer. First, we can see that inserting task-specific

prompts into more layers always boosts the performance for

semantic segmentation and depth estimation, but for sur-

face normal estimation and boundary detection, more lay-

m n method
Semseg

(IoU)↑
Depth

(RMSE)↓
Normal

(mErr)↓
Boundary

(odsF)↑
5 0 / 55.39 0.4961 18.44 77.50

5 1 concat 55.23 0.4935 18.65 76.90

5 5 concat 54.45 0.4940 18.63 77.40

5 5 add 54.82 0.5001 18.58 77.40

0 5 / 53.45 0.5042 18.81 77.30

0 20 / 53.43 0.5055 18.72 77.40

5 5 cross-prompt attention 55.38 0.5016 18.56 77.80

Table 4. Performance by different combinations of the task-

unified and task-specific prompts on NYUD-v2. The task-specific

prompts and task-unified prompts can be blended in the above

ways where n and m mean the number of task-unified prompts

and task-specific prompts. Results show that task-unified prompts

always undermine the overall performance, compared with task-

specific prompts only.

ers with visual prompts do not necessarily bring about the

performance gain. Considering the trade-off between per-

formance and computational costs, we use prompts for 12

layers. Further, we propose inserting prompts at different

positions, and it shows that the performance is better by in-

serting the visual prompts at deeper layers of the encoder

on NYUD-v2. Thus we choose to insert the visual prompts

for layers between 13-24 in all our ablation experiments on

NYUD-v2.

Layers with prompts
Semseg

(IoU)↑
Depth

(RMSE)↓
Normal

(mErr)↓
Boundary

(odsF)↑
w/o prompt 53.56 0.5183 19.04 78.10

1-6 54.24 0.4989 18.72 77.40

1-12 54.96 0.4948 18.72 77.40

1-18 55.45 0.4929 18.51 77.60

1-24 55.80 0.4898 18.63 77.60

1-12 54.96 0.4948 18.72 77.40

13-24 55.39 0.4961 18.44 77.50

Table 5. The performance with different prompts inserting posi-

tions on NYUD-v2. Inserting task-specific prompts into more lay-

ers always boosts the performance for semantic segmentation and

depth estimation, but for surface normal estimation and boundary

detection, more layers with prompts do not necessarily bring about

the performance gain.

The number of task-specific prompts per layer. As

shown in Table 6, the performance is not always improved

when the number of prompt tokens increases. Performance

decreases as the number of prompt tokens increases to a

certain threshold, and the computational demand rises sig-

nificantly. Moreover, each task appears to favors a distinct

number of task-specific prompts. Depth, normal and bound-

ary accuracy achieved the best results when token number

N=5. Unlike these tasks, semantic segmentation achieves

the best performance at N=50. However, the change in per-

formance is relatively minor. For all experiments with task-

specific prompts, even with only one prompt for each task,

the performance is always better than without task-specific

prompts.
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Prompt Number
Semseg

(IoU)↑
Depth

(RMSE)↓
Normal

(mErr)↓
Boundary

(odsF)↑
w/o prompt 53.56 0.5183 19.04 78.10

1 55.27 0.4990 18.81 77.00

5 55.39 0.4961 18.44 77.50

10 55.19 0.4961 18.58 77.60

50 55.61 0.4972 18.66 77.10

100 55.18 0.5001 18.61 77.40

200 55.38 0.4971 18.69 77.30

Table 6. Ablation for Prompt Number on NYUD-v2. As the num-

ber of prompt tokens increases, the performance does not always

get better.

Influences of different backbones. To validate the gen-

eralization of our task-specific prompts, we also use dif-

ferent backbones, and the results are shown in Table 7.

We can see that with different backbones, our task-specific

prompts always boost the performance for various scene-

understanding tasks. So our task-specific prompts strategy

can be compatible with other backbones.

Backbone
Semseg

(IoU)↑
Depth

(RMSE)↓
Normal

(mErr)↓
Boundary

(odsF)↑
InvPT(Vit-B) 50.30 0.5367 19.00 77.60

Ours(Vit-B) 51.22 0.5301 18.78 76.90

InvPT(Vit-L) 53.56 0.5183 19.04 78.10

Ours(Vit-L) 55.39 0.4961 18.44 77.50

Table 7. Ablation for Backbone on NYUD-v2. With different

backbones, our task-specific prompts always boost the perfor-

mance for different scene-understanding tasks.

The task specialty of the different task-specific prompts.

To show the specialty of the different task-specific prompts,

we replace the original corresponding task prompt tokens

with the same trained task prompt tokens in inference. Re-

sults in Table 8 show that the performance drops by replac-

ing the task-specific prompts with prompt tokens learned

for the other tasks. The reason is that different task-specific

prompts are pretty different from each other. It is worth

noting that when we replace all prompts with task-specific

prompts, such as those for semantic segmentation, the cor-

responding performance for the given task also changes due

to the cross-task feature fusion module. To show whether

the task prompts learn task-specific representation on patch

tokens more intuitively, we visualize the attention map val-

ues between task prompts and patch tokens in the Encoder

module as shown in Fig. 3. The attention map values are

highly related to each task’s particularity, demonstrating

that the task prompts can effectively encode task-specific

representations.

The correlation of features corresponding to different

tasks. In our experiments, we introduce the task-specific

prompts from the 13th to the 24th layer. We also calculate

the average correlation for features corresponding to differ-

ent tasks. We denote the out space features corresponding

Model
Semseg

(IoU)↑
Depth

(RMSE)↓
Normal

(mErr)↓
Boundary

(odsF)↑
task-specific prompt 55.39 0.4961 18.44 77.50

segmentation prompt 55.35 0.5596 20.58 77.50

depth prompt 48.30 0.4950 18.76 77.00

normal prompt 40.85 0.5533 18.43 76.60

edge prompt 52.88 0.5497 20.15 77.60

Table 8. Ablation for prompt task-specialty. The performance

drops by replacing the task-specific prompts with prompt tokens

learned for other tasks.

Figure 4. Investigating the correlation of features corresponding

to different tasks in {13, 18, 24} − th layers output space. Such as

semseg-depth to indicate the feature correlation between segmen-

tation and depth estimation.

to the k-th layer as FA
k

for task-A and denote the features

of the k-th of the same image as FB
k

, then we calculate the

cosine distance between FA
k

and FB
k

and do the average over

all the test images. The results are shown in Fig. 4. We

can see that as the layer goes deeper, as we introduce more

and more task-specific prompts, the features corresponding

to different tasks become more and more uncorrelated.

5. Conclusion

This paper presents a task-specific prompts-boosted

transformer for holistic scene understanding, where the

task-specific prompts are fed into different input layers of

the transformer encoder for different tasks while the pa-

rameters of the transformer layer are shared across differ-

ent tasks. Then we fuse task-specific features of different

tasks with a task-fusion module and feed the fused feature

into the transformer decoder scene prediction. Extensive

experiments show that our method achieves state-of-the-art

performance, which validates the effectiveness of our ap-

proach.
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