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Abstract

In the blind single image super-resolution (SISR) task,
existing works have been successful in restoring image-
level unknown degradations. However, when a single video
frame becomes the input, these works usually fail to ad-
dress degradations caused by video compression, such as
mosquito noise, ringing, blockiness, and staircase noise. In
this work, we for the first time, present a video compression-
based degradation model to synthesize low-resolution im-
age data in the blind SISR task. Our proposed image
synthesizing method is widely applicable to existing image
datasets, so that a single degraded image can contain dis-
tortions caused by the lossy video compression algorithms.
This overcomes the leak of feature diversity in video data
and thus retains the training efficiency. By introducing
video coding artifacts to SISR degradation models, neu-
ral networks can super-resolve images with the ability to
restore video compression degradations, and achieve bet-
ter results on restoring generic distortions caused by im-
age compression as well. Our proposed approach achieves
superior performance in SOTA no-reference Image Qual-
ity Assessment, and shows better visual quality on var-
ious datasets. In addition, we evaluate the SISR neu-
ral network trained with our degradation model on video
super-resolution (VSR) datasets. Compared to architectures
specifically designed for the VSR purpose, our method ex-
hibits similar or better performance, evidencing that the
presented strategy on infusing video-based degradation is
generalizable to address more complicated compression ar-
tifacts even without temporal cues. The code is available at
https://github.com/Kiteretsu77/VCISR-official.

1. Introduction
Single image super-resolution (SISR) aims at recon-

structing a low-resolution (LR) image into a high-resolution
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(HR) one. Traditional image upsampling methods include
interpolation techniques such as bicubic, nearest neighbor,
and bilinear, which calculate sub-pixel values from sur-
rounding pixel values. Since SRCNN [10], super-resolution
(SR) focuses on using convolution neural network tech-
niques to generate HR images [22,29,48,55,67]. They first
collect the HR datasets and then create paired LR datasets
through bicubic downsampling. Nevertheless, the bicubic
degradation method deviates from real-world degradations,
making it difficult for neural networks to restore real-world
LR images.

Real-world images often contain various complex degra-
dations, such as camera out-of-focus blurring, exposure
sensor noise, read noise, analog-to-digital converters noise,
and lossy data compression artifacts [31–33]. This phe-
nomenon raises the field of blind SISR [18, 30, 34, 53, 54,
66,68], where input LR images may contain any real-world
degradation, and neural networks need to learn how to re-
store these artifacts while upscaling the resolution.

Blind SISR works synthesize LR images from HR im-
ages using a degradation model. The closer the synthesized
LR images are to the real-world degradations, the more
effective the network can learn to generate better visual-
quality HR images [68]. Previous works [18,37,54,68] aim
at adopting blurring, noise, and image compression in their
degradation synthesis. However, they overlook some sce-
narios in the real world. For example, part of the LR input
content could be a video frame, and some SR implementa-
tions split a video into frames and super-resolve each frame
individually as SISR. In these scenarios, it is crucial to con-
sider the impact of video compression artifacts, temporal
and spectral distortions (e.g., mosquito noise and blocki-
ness) due to lossy data compression, on images. Yet sim-
ply using frames from compressed video clips for image
network training [7, 59] can be prone to significant train-
ing costs. This is due to the fact that there are much fewer
distinct features the network can learn from video datasets,
where objects and scenes share great similarity between
frames, compared to image datasets (e.g., DIV2K [1]). To
address the aforementioned challenges, we are motivated to
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Figure 1. Qualitative comparisons of the bicubic-upsampled baseline, and RealSR [17], BSRGAN [68], Real-ESRGAN [55], SwinIR [27],
RealBasicVSR [7], and our proposed VCISR super-resolved real-world images. The SR network trained with our proposed data synthesis
and degradation block can produce finer details and more visually appealing results. (Zoom in for best view.)

design a video compression degradation model to synthe-
size LR images with video compression artifacts for image
SR networks under image training datasets. Meanwhile, in-
troducing our model benefits image compression restoration
in SR applications, primarily because we are not likely to
have prior knowledge of the image compression algorithm
used on input. It may not be the most widely-used JPEG
algorithm [51]. Some image compression algorithms, like
WebP [49], may involve intra-prediction techniques that are
widely used in video compression but not in JPEG. Thus,
we argue that video compression artifacts are capable of ap-
proximating a wider variety of distortions caused by image
compression algorithms in the real world.

After reviewing video codecs and compression settings
adopted in existing video SR (VSR) works [5,7,25,59,64],
we find that the video compression based degradation mod-
els they use are too scattered to serve as a proximity to
real-world video coding artifacts. Consequently, networks
trained on these scattered video compression degradations
are hard to restore complicated distortions (e.g., blockiness
with basis patterns), even with the aid of temporal domain
propagation paths across the frames to exploit more cor-
relations. This observation advocates us to evaluate the
same network trained for blind SISR on low-quality video
datasets.

Our experiments confirm that temporal compression ar-
tifacts can be simulated with spatial-only information. This
allows us to synthesize video artifacts on common image
SR datasets (e.g., DIV2K [1]), as a manner to facilitate im-
age SR network training. To intensify these compression
artifacts in images, we present a comprehensive degrada-

tion model, which promotes the qualitative and quantitative
performance of the trained SR network to a new level.

Furthermore, we propose an image dataset that contains
versatile compression artifacts, which broadly exist in real-
world images. This dataset is targeted to become a guideline
for future researchers on how compression distortions may
appear in the real world.

Our contributions can be summarized as follows:

• This work uses image super-resolution network and
image training datasets to restore video and broader
compression quality loss by introducing video artifacts
in the degradation model. As a result, our proposed
method is competitive with SR networks on real-world
image and video restoration.

• We introduce VC-RealLQ, a real-world image dataset
consisting of versatile temporal and spatial compres-
sion artifacts from various contents, resolutions, and
compression algorithms. Our dataset could serve as
a common benchmark for future methods and will be
released for ease of future research.

• The proposed video compression-based degradation
block can be directly adopted by widely used blind
SISR degradation models with minimal effort.

2. Related Works
2.1. Deep Blind Image SR Networks

Blind SISR aims to upscale and restore LR images with
unknown degradations. The study in this field has achieved
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Figure 2. Overview of the proposed video compression degradation model. We use the degradation model introduced in [54] as a backbone
of our method, and our approach comprises a data preprocessing step and a video-based degradation block.

Figure 3. Encode Speed vs. Quantization Control. Under the same
Quantization level (CRF), a faster encode speed leads to more
high-frequency information (margins and details of objects) lost.
This phenomenon becomes more severe for a higher CRF value.
No other noise is introduced in this comparison. The frame comes
from UVG [40] (Zoom in for best view.)

substantial progress in recent years due to the advancement
of deep neural networks [15, 23, 38, 61, 71]. A mainstream
of the existing methods adopts CNN-based [9,15,58,62,63]
building blocks to their network architectures (e.g. RealSR
[17], BSRGAN [68], Real-ESRGAN [54]). In particular,
multiple levels of residual and/or dense blocks are widely
involved to improve the network depth and the restoration
quality. With the Transformer gaining promising perfor-
mance in a variety of vision tasks [11,57], some latest SISR
frameworks (e.g. SwinIR [27], VRT [26], GRL [24]) start
to include Transformer-based blocks, aiming to better cap-
ture the long-range dependencies and enhance the capacity
of representation learning to facilitate image restoration and
super-resolution.

2.2. Degradation Models

Image degradation models. Recent deep blind SISR net-
works [13, 18, 27, 28, 34, 36, 37] are mostly trained with LR
images generated from the HR ones by explicit degradation
model. Their models use similar degradation elements and

follow a fundamental pattern:

LR = [(HR⊗ k) ↓s +n]JPEG. (1)

First, HR images are convolved with kernel k [12,35,69] to
simulate blurring from out-of-focus camera capture. Then,
it is followed by a downsampling operation with scale factor
s. Noises n are then injected into the LR images. Finally,
images will be compressed by the JPEG [51] to introduce
compression artifacts.

From the aforementioned set of degradation elements
(Eq. 1), Wang et al. [54] propose a high-order degradation
model which repeats the steps of blurring, resizing, adding
noise, and JPEG compression a second turn. To better sim-
ulate compression artifacts, sinc filters are adopted to create
pseudo-ringing distortions. Other works [24, 27, 68] em-
ploy a randomly shuffled degradation model to select degra-
dation modules from a pool containing blur, resize, noise,
and JPEG compression modules. After that, there are also
works [70, 72] that combine both randomly shuffled and
high-order degradation together with a skip mechanism to
increase the performance.

Overall, we observe that the existing LR image synthesis
flows are still insufficient to address the intricacy of real-
world images, which limits the generality and practical us-
age of SISR networks. Specifically, previous works only
consider image-level compression artifacts, but some im-
ages may contain temporally correlated artifacts, like con-
tents from video. To mitigate this domain gap, we propose
the video compression degradation element, in the image
degradation pipeline.
Video degradation models. Previous works in video SR
tasks [7, 20, 25, 59, 60, 64] mostly use H.264 [47] and
H.265 [50] in their degradation model. COMSIR [25] pro-
poses a compression-informed model for super-resolving
LR videos. They only adopt H.264 in their experiment with
a CRF value (encoder parameter for QP control) between
15 and 25 for training degradation. Khani et al. [20] adopt
a lightweight SR model to augment H.265, They use a fixed
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slow mode preset to consolidate their ideas. On the con-
trary, our work uses video compression artifacts to serve as
a generic degradation model for SR, not exclusively for im-
ages or videos by adopting broader preset modes and com-
bining preset with QP control to advance toward better-
represented distortions. Quantization control in RealBa-
sicVSR [7] is enforced by selecting bitrate from a prede-
fined range. However, bitrate only constrains the data size
of the compressed video per second, and the influence of
FPS (frames per second) is not considered as a result. With
a higher FPS, the data budget distributed to each frame is
decreased and the image frame quality may be dramatically
degraded. To better simulate real-world video scenarios, we
consider both bitrate and FPS influence as a combination.
To the best of our knowledge, we are the first work that en-
riches the blind SISR degradation model with video coding-
based artifacts, which are simulated on image datasets with-
out the loss of generality. With this technique, we can pro-
duce more realistic compression artifacts in degraded LR
images to facilitate SR network training, which previous SR
works have yet to investigate.

3. Proposed Methods

3.1. Base Degradation Elements

The blind SISR degradation approaches for LR image
synthesis in existing works share a collection of modules in
common as follows.
Blur. Blurring artifact is introduced by convolving the
high-resolution with isotropic or anisotropic Gaussian blur
kernels under the regular-shaped, generalized-shaped, or
plateau-shaped distributions.
Resize. Resizing includes bicubic, bilinear, or area interpo-
lation operations. Both downsampling and upsampling are
considered to cover broader resize scenarios used in the real
world.
Noise. The resized LR images will be added with addi-
tive synthetic noise: Gaussian noise and Poisson noise. For
Gaussian noise, we perform both speckle gray noise (same
synthetic noise for all RGB channels) and color noise (dif-
ferent synthetic noise for each RGB channel). For Poisson
noise, the intensity of each pixel is independent and is pro-
portional to its pixel intensity.
JPEG compression. By the end of a degradation pass,
JPEG compression is introduced. It first converts RGB
images into luma and chroma components (YCbCr color
space). Then, each independent 8 × 8 block is self-encoded
by discrete cosine transform (DCT). To synthesize com-
pression artifacts, the DCT-transformed blocks are quan-
tized by a quality factor q ∈ [0, 100], where a lower q indi-
cates a lower quality. Lastly, the quantized blocks are trans-
formed back by inverse DCT (IDCT) and converted from
YCbCr color space to RGB color space.

3.2. Modeling Lossy Video Compression Artifacts

All conventional video compression standards follow the
same hybrid coding algorithm. In these schemes, there are
a very limited number of macroblocks (a compression pro-
cessing unit usually with sizes of 4x4, 8x8, 16x16, or even
larger for some compression standards) being self-encoded,
and searching algorithms aid most macroblocks to correlate
with a reference that has the closest pixel content similar-
ity. The reference may come from the current frame (intra-
prediction) or frames before or after it (inter-prediction).
Moreover, the search process is constrained by the limited
computation resources to compare with every block in the
scope. Hence, the resulting reference blocks may only be
sub-optimal in most cases.

This mechanism is not used by JPEG, which only incor-
porates self-encoding within fixed-size macroblocks with-
out finding any reference. Our proposed degradation block
is therefore inclusive of a wider variety of real-world
codecs, including JPEG.

With a reference in hand, a pixel-level residual between
the target and reference macroblock is calculated. This
residual will be converted into the frequency domain by
Discrete Cosine Transform [2] or Wavelet Transform [65].
Each value of the transformed matrix will be divided by a
common quantization parameter (QP) to increase the com-
pression rate. However, the higher the QP, the more irre-
versible high-frequency information on the sources will be
lost. Perceptually, the borders of the object become vague,
and more blocking and noise artifacts may occur. Note that
the purpose of macroblock reference prediction is to min-
imize the residual information as small as possible, such
that it will be less influenced by the QP. Thus, under the
same QP, macroblocks with better prediction schemes will
present better visual quality as demonstrated in Figure 3.

In summary, the quality of the compressed video is af-
fected by 1) quantization intensity and 2) how well the
searching algorithm can predict references for macroblocks
in a limited preset time.

3.3. Video Compression Degradation Model

The video compression degradation model includes a
dataset preparation stage and video compression module as
shown in Figure 2.
Dataset preprocessing. In the dataset preparation stage,
images are cropped to non-overlap patches and aligned from
left to right then top to bottom. We desire to synthesize
temporal compression artifacts from spatially-correlated
patches. Our insight comes from the understanding of com-
pression algorithms. In compression, lossy contents (arti-
facts) come from the quantization of residual information
between the ground truth source and the most similar refer-
ence selected by the algorithm. In regular video compres-
sion, the codec algorithm needs to find either a spatially-
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Figure 4. The super-resolution network architecture. Our method adopts a smaller model of GRL [24] for x4 super-resolution.

correlated reference from the same frame or a temporally-
correlated reference from the nearby frames. In this con-
text, when spatially-correlated patches become temporally-
correlated patches, the spatial reference searching func-
tionality of the codec algorithm is now turned to tempo-
ral searching. This change does not affect the fundamental
methodology of compression but helps us to create more
generic and complex compression artifacts to heuristically
simulate distortions in the real world.

To best utilize the gap between the selected cropped
patches and the full image height and width, we apply ran-
dom padding on the left or the top of the image to con-
tain more image zones as a form of augmentation. The
degradation batch size is selected to be 128, which is an
empirical value that can provide a large enough window
for patches to run video compression with the effective-
ness of the video encoder parameters (e.g., preset, CRF).
To avoid the keyframe selection bias, we set the first degra-
dation batch size in the range [32, 128]. In this way, videos
in each degradation batch will have inter-prediction in a dif-
ferent pool compared to the previous epoch.

With the frame patches being encoded into a video, they
will immediately be decoded back with some extent of qual-
ity loss being introduced by the video codec. Note that, in
network training, patches are shuffled as a single identity
with no correlation to other patches.
Diverse video compression codec standards. Though,
based on Section 3.2, all video compression standards
shared a common pattern, the encoder algorithm designs
on how they search for the reference of macroblocks are
massively different. To simulate the encoder from a his-
torical perspective, considering both the modern and earlier
standards helps the model to learn versatile compression ar-
tifacts due to the difference of the video encoder reference
searching and architecture designs. This helps us to simu-
late more real-world video scenarios. As a result, we choose
the most representative and widely used video compression
standards: MPEG-2 [41], MPEG-4 [3], H.264 [47], and
H.265 [50].
Quantization parameter control. Quantization Parame-

ter (QP) is the direct cause of quality loss in compression.
In the real world, people will not explicitly set the QP of
a video, but it is affected by other settings. For instance,
in H.264 and H.265, QP is controlled by a Constant Rate
Factor (CRF) that can be programmed in ffmpeg. CRF pro-
vides an engineered compression rate control for the entire
video instead of single macroblocks. The lower the CRF
is, the less information it would be lost. For MPEG-2 and
MPEG-4, we find that controlling bitrate is a better way to
manipulate QP based on their codec design: to restrict the
code size under a certain bitrate, codecs have to increase
the QP of each macroblock. Hence, we considered CRF for
H.264 and H.265, and bitrate for MPEG-2 and MPEG-4 in
our degradation block implementation.
Encoder speed control. Though quantization is widely re-
garded as the direct source of distortion in compression, and
previous works [7, 20, 25, 59, 60, 64] mainly focus on tun-
ing QP-related encoder parameters. In Figure 3, our study
on video compression standards promotes the finding that
encoder speed is a hidden factor that influences QP to cre-
ate video compression artifacts to frames. To accelerate the
video processing speed, video encoders provide various en-
code speeds (preset) from medium (default mode) to fast,
faster, veryfast, and even ultrafast speed mode. The
faster the encoder speed is, the less time the searching al-
gorithm will have for intra-prediction and inter-prediction.
Consequently, the predicted reference will be hard to match
target macroblocks by pixel comparison, which increases
the residual magnitude.

The QP factor by itself, therefore, is not enough to en-
compass real-world video distortions, and the addition of
encoder speed control is needed. In addition, we introduce
Frame rate (FPS) control and aspect ratio scaling to aug-
ment real-world compression artifact synthesis.

3.4. Network Architecture and Training

Given the prevalent success of Transformer-based net-
works in diverse vision tasks, this work leverages the GRL
[24] architecture as the foundational model. We enhance
this baseline architecture by introducing the video artifact
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degradation pipeline, thereby enabling the network to learn
an extended range of degradation patterns, including those
associated with video coding artifacts.

GRL exploits correlations across multiple levels of im-
age hierarchies via Transformer-based architecture, which
achieves state-of-the-art performance in generic super-
resolution and restoration tasks (e.g., deblurring, JPEG
restoration, demosaic, and classical SR). To forge efficient
training and to reach a reasonable balance between compu-
tation resources and performance, we choose the small vari-
ation of GRL (Figure 4) with 3.49M parameters as opposed
to the base GRL model that totals 20.2M parameters.

Following Real-ESRGAN, BSRGAN, SwinIR, and GRL
[24, 27, 54, 68], we first train the network with a PSNR-
oriented L1 loss. Then we use the trained network pa-
rameters to initialize the generator and train a GAN model
to boost perceptual quality. The loss function during this
phase combines L1 loss, perceptual loss [19], and GAN
loss [4, 14, 22].

4. Experiments

4.1. Experimental Setup

Datasets. We train the proposed model with the DIV2K
dataset [1], which has gained prominence in the field of im-
age super-resolution. To validate the efficacy of the pre-
sented approach, we perform comprehensive evaluations
on both image super-resolution and video super-resolution
tasks. Specifically, for image super-resolution, we employ
the RealSR-Nikon [6] and the DRealSR [56] dataset, cap-
italizing on their distinct characteristics. Additionally, to
enhance the diversity of degradation patterns in our test set,
we bring in a specialized dataset simulating video coding-
introduced degradations. More details are elaborated in
Section 4.3. Furthermore, to assess the versatility of our
proposed method, we subjected it to rigorous testing on
widely used Video Super-Resolution (VSR) datasets, in-
cluding the REDS [45], AVC-RealLQ [59], and VideoLQ
[7]. These datasets are chosen for their relevance and abil-
ity to provide insights into the method’s performance across
varying video content and quality levels. Through this
meticulous evaluation process, we aim to showcase the ro-
bustness and adaptability of our approach across both image
and video super-resolution domains.
Training details. The neural network training is performed
on one Nvidia RTX 4090 GPU. For the first stage, we train
the network with L1 loss for 700K iterations, employing a
batch size of 12. The Adam optimizer [21] is adopted with
a learning rate of 2 × 10−4, which is decayed by half ev-
ery 50K iterations. In the subsequent adversarial training
stage, the model is trained for 280K iterations, employing
a batch size of 6. The learning rate for this stage is set at
1 × 10−4 and decayed to half every 20K iterations. The

adversarial training of our model adhered to a weighted
perceptual loss [19] and employed a U-Net discriminator
with spectral normalization [44]. The perceptual loss uti-
lized the same pre-trained VGG-19 [19], with weight co-
efficients {0.1, 0.1, 1, 1, 1} corresponding to feature maps
{conv1, ...conv5}.

In accordance with the details outlined in the previous
Section 3.3, a preprocessing step is performed before com-
mencing training. Large images are initially cropped into
non-overlapping high-resolution (HR) patches with a reso-
lution of 360× 360. Consequently, for our ×4 scaling task,
the corresponding low-resolution (LR) patch size is estab-
lished at 90× 90, constituting the output size for all degra-
dation models. This choice of patch size is informed by the
characteristics of H.265 [50], where the basic processing
unit reaches dimensions of 64× 64. This selection is based
on the belief that a relatively larger image size is imperative
for optimizing the effectiveness of the video encoder dur-
ing the intra-prediction and inter-prediction stages. In total,
our training dataset is expended to 12,630 HR patches as in-
put during the training phase, all sourced from 800 DIV2K
training images.
Degradation details. The proposed degradation model
runs in every epoch to prepare the LR, HR pair used
for training. The degradation batch size is set to 128.
We referred to [54] for degradation settings in noise,
blur, resize, and JPEG compression blocks. Our video
compression degradation block uses standard codecs from
MPEG-2, MPEG-4, H.264, and H.265 with probability
[0.2, 0.2, 0.4, 0.2]. H.264 and H.265 control quantization
through CRF with range [20, 32] and [25, 37] respectively.
MPEG-2 and MPEG-4 control quantization through bitrate
restriction in the range [4000, 6000] Kbit/s. For all stan-
dard codecs, encoder speed setting preset is chosen from
{slow,medium, fast, faster, superfast} with probabil-
ity {0.1, 0.5, 0.25, 0.12, 0.03} respectively. For aspect ra-
tio scaling, the width scales in [0.85, 1.35] with a probabil-
ity of {0.2, 0.4, 0.4} to shrink, expand, or keep the same.
FPS is chosen from [16, 30]. Since the parameter range that
MPEG-2 can support is limited, we set it to a fixed 25 FPS
without any aspect ratio scaling. Other video compression
parameters for all standards are fixed. For example, pixel
encode format is uniformly set to be YUV420p. We leave
the rest compression parameters to be decided by codec,
like Profile and Levels.

4.2. Results and Analysis

We evaluate our proposed VCISR qualitatively and
quantitatively in comparison with several state-of-the-art
approaches, including RealSR [18], Real-ESRGAN+ [54],
BSRGAN [68], SwinIR [27], and GRL [24]. For the VSR
task, results from RealBasicVSR [7] and DBVSR [46] are
involved additionally.
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Figure 5. Qualitative comparisons of different methods on ×4 super-resolved images in the DRealSR [56], VideoLQ [7], VideoLQ [7],
and AVC [59] datasets from top to bottom respectively. (Zoom in for best view.)
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Table 1. The NIQE [43], BRISQUE [42], NRQM [39], and CLIP-IQA [52] results of different blind SISR methods on the proposed VC-
RealLQ dataset, together with the RealSR [6] and DRealSR [56] dataset. The best and the second best results are remarked in bold font
and underlined respectively. We use pyiqa [8] library to test all datasets.

Method # Params (M) VC-RealLQ RealSR-Nikon DRealSR
NIQE ↓ BRISQUE ↓ NRQM ↑ CLIPIQA ↑ NIQE ↓ BRISQUE ↓ NRQM ↑ CLIPIQA ↑ NIQE ↓ BRISQUE ↓ NRQM ↑ CLIPIQA ↑

RealSR [18] 16.7 5.738 37.04 5.147 0.334 7.435 57.029 3.21 0.275 8.457 56.877 3.507 0.238
Real-ESRGAN+ [54] 16.7 4.967 29.29 5.231 0.438 4.901 31.911 5.668 0.499 4.718 29.872 5.428 0.518

BSRGAN [68] 16.7 5.164 29.394 5.242 0.498 4.772 25.382 5.938 0.564 4.681 27.858 5.461 0.57
SwinIR [27] 11.9 5.095 33.097 4.922 0.438 4.877 34.964 5.408 0.47 6.259 49.546 5.183 0.465

GRL [24] 20.2 5.338 33.769 5.043 0.451 4.981 34.937 5.37 0.456 4.633 29.323 5.389 0.545
VCISR (ours) 3.49 4.542 16.975 5.479 0.58 4.823 29.203 5.445 0.603 3.983 15.303 5.778 0.646

Table 2. The NIQE [43], BRISQUE [42], NRQM [39], and CLIP-IQA [52] results of different ISR, VSR methods on the REDS [45],
AVC-RealLQ [59], and ViedoLQ [7] dataset. The best and the second best results are remarked in bold font and underlined respectively.
Due to high computation intensity, following RealBasicVSR [7], NRQM is computed on the first, middle, and last frames in each sequence.
We use pyiqa [8] library to test all datasets.

Method # Params (M) REDS+Blur+MPEG AVC-RealLQ VideoLQ
NIQE ↓ BRISQUE ↓ NRQM ↑ CLIPIQA ↑ NIQE ↓ BRISQUE ↓ NRQM ↑ CLIPIQA ↑ NIQE ↓ BRISQUE ↓ NRQM ↑ CLIPIQA ↑

Real-ESRGAN+ [54] 16.7 5.192 32.261 5.038 0.331 8.632 36.087 5.054 0.534 4.204 29.844 5.815 0.362
BSRGAN [68] 16.7 5.303 28.498 4.906 0.402 8.281 34.987 5.004 0.61 4.211 25.24 5.825 0.422

SwinIR [27] 11.9 5.214 32.476 4.984 0.34 6.351 41.285 4.739 0.506 4.198 31.492 5.667 0.38
GRL [24] 20.2 5.611 35.256 4.767 0.368 6.457 43.439 5.034 0.575 4.476 32.349 5.523 0.389

RealBasicVSR [7] 6.3 3.765 14.6 5.43 0.41 8.639 26.013 5.07 0.583 3.766 29.03 6.0477 0.376
DBVSR [46] 25.5 - - - - - - - - 6.7866 50.936 3.4097 -
VCISR (ours) 3.49 4.427 12.709 5.207 0.508 5.515 19.529 5.236 0.689 3.725 19.372 5.735 0.488

Qualitative analysis. Figure 5 captures a couple of illus-
trative samples from a collection of image and video test
datasets with diverse scenes and contents. Our work is ca-
pable of restoring textual information without introducing
ringing artifacts and unfaithful reconstructions, which owes
to a more complex degradation model as we proposed in
VCISR. For scenes captured under high motion, our method
demonstrates an even better ability to resolve blurry arti-
facts compared to the VSR method. As for the Anime con-
tent, the HR image super-resolved by VCISR does not in-
clude block artifacts and fringes. Both the edge and color
details are better restored by our scheme.
Quantitative analysis. For quantitative comparisons, since
not all datasets have paired HR ground truth, following
[7, 24, 54, 59, 68], we adopt no-reference quality assess-
ments, instead of PSNR or SSIM, to evaluate the result-
ing HR images. Table 1 and 2 presents our quantitative
measurements based on the no-reference metrics that are
widely used in previous real-world image and video SR
works [7, 17, 54]: NIQE [43], BRISQUE [42], and NRQM
[39]. In addition, we employ a SOTA learning-based CLIP-
IQA metric [52], which gives a score closer to human per-
ceptual assessment.

The proposed method exhibits similar or better quanti-
tative results on the tested data for blind SISR compared to
recently published works with much fewer network parame-
ters. For the VSR task, we showcase that involving a video-
based degradation module can produce effective restora-
tions even without leveraging the temporal correlations by
referring to previous frames, which typically require more
memory and compute complexity during inference.

4.3. VC-RealLQ Dataset

Most of the existing image datasets [6, 16, 56] only con-
sider photography as the input source. This makes them
dismiss compression artifacts in the real world. For the con-
venience of future researchers, we propose an image-based
dataset that contains 35 images each with versatile compres-
sion artifacts (e.g. ringing artifacts, mosquito noise, blocki-
ness, and color bleeding). They come from video sequence
screenshots after H.264 [47], H.265 [50], or WebP [49]
compression on video datasets [7, 40, 50, 59], and unknown
compression degradation from online resources. We select
these images with different resolutions, contents, and dif-
ferent levels of degradation.

5. Conclusion

This work presents a novel and versatile video-codec-
based degradation module to enrich the existing image SR
degradation pipelines and improve its proximity to prac-
tical exercises. The method we propose for LR image
synthesis can simulate distortions from a variety of video
codecs without the presence of video data, which leads to
1) a generic element that could be added to existing SR
degradation pipelines; 2) better-approximated artifacts to
cover more complicated quality loss in real-world images
and videos. We demonstrate the viability of this approach
by evaluating a unified network trained with the proposed
degradation flow on real-world ISR and VSR datasets. In
both tasks, our work exhibits similar or better performance
compared to other state-of-the-art methods with fewer net-
work parameters and compute complexity.

4309



References
[1] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge

on single image super-resolution: Dataset and study. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition workshops, pages 126–135, 2017. 1, 2, 6

[2] Nasir Ahmed, T Natarajan, and Kamisetty R Rao. Dis-
crete cosine transform. IEEE transactions on Computers,
100(1):90–93, 1974. 4

[3] Olivier Avaro, Alexandros Eleftheriadis, Carsten Herpel,
Ganesh Rajan, and Liam Ward. Mpeg-4 systems: overview.
Signal Processing: Image Communication, 15(4-5):281–
298, 2000. 5

[4] Yochai Blau and Tomer Michaeli. The perception-distortion
tradeoff. In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6228–6237, 2018. 6

[5] Jose Caballero, Christian Ledig, Andrew Aitken, Alejandro
Acosta, Johannes Totz, Zehan Wang, and Wenzhe Shi. Real-
time video super-resolution with spatio-temporal networks
and motion compensation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
4778–4787, 2017. 2

[6] Jianrui Cai, Hui Zeng, Hongwei Yong, Zisheng Cao, and Lei
Zhang. Toward real-world single image super-resolution: A
new benchmark and a new model. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 3086–3095, 2019. 6, 8

[7] Kelvin CK Chan, Shangchen Zhou, Xiangyu Xu, and
Chen Change Loy. Investigating tradeoffs in real-world
video super-resolution. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 5962–5971, 2022. 1, 2, 3, 4, 5, 6, 7, 8

[8] Chaofeng Chen and Jiadi Mo. IQA-PyTorch: Pytorch
toolbox for image quality assessment. [Online]. Avail-
able: https://github.com/chaofengc/IQA-
PyTorch, 2022. 8

[9] Yu Chen, Mingyu Yang, and Hun-Seok Kim. Search for
efficient deep visual-inertial odometry through neural ar-
chitecture search. In ICASSP 2023-2023 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 1–5. IEEE, 2023. 3

[10] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou
Tang. Image super-resolution using deep convolutional net-
works. IEEE transactions on pattern analysis and machine
intelligence, 38(2):295–307, 2015. 1

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 3

[12] Netalee Efrat, Daniel Glasner, Alexander Apartsin, Boaz
Nadler, and Anat Levin. Accurate blur models vs. image pri-
ors in single image super-resolution. In Proceedings of the
IEEE International Conference on Computer Vision, pages
2832–2839, 2013. 3

[13] Jiahong Fu, Hong Wang, Qi Xie, Qian Zhao, Deyu Meng,
and Zongben Xu. Kxnet: A model-driven deep neural net-

work for blind super-resolution. In Computer Vision–ECCV
2022: 17th European Conference, Tel Aviv, Israel, Octo-
ber 23–27, 2022, Proceedings, Part XIX, pages 235–253.
Springer, 2022. 3

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. Commu-
nications of the ACM, 63(11):139–144, 2020. 6

[15] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2015. 3

[16] Andrey Ignatov, Nikolay Kobyshev, Radu Timofte, Kenneth
Vanhoey, and Luc Van Gool. Dslr-quality photos on mobile
devices with deep convolutional networks. In Proceedings of
the IEEE international conference on computer vision, pages
3277–3285, 2017. 8

[17] Xiaozhong Ji, Yun Cao, Ying Tai, Chengjie Wang, Jilin
Li, and Feiyue Huang. Real-world super-resolution via
kernel estimation and noise injection. In proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition workshops, pages 466–467, 2020. 2, 3, 8

[18] Xiaozhong Ji, Yun Cao, Ying Tai, Chengjie Wang, Jilin Li,
and Feiyue Huang. Real-world super-resolution via kernel
estimation and noise injection. In The IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR)
Workshops, June 2020. 1, 3, 6, 8

[19] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Percep-
tual losses for real-time style transfer and super-resolution.
In Computer Vision–ECCV 2016: 14th European Confer-
ence, Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part II 14, pages 694–711. Springer, 2016. 6

[20] Mehrdad Khani, Vibhaalakshmi Sivaraman, and Mohammad
Alizadeh. Efficient video compression via content-adaptive
super-resolution. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 4521–4530,
2021. 3, 5

[21] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[22] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,
Andrew Cunningham, Alejandro Acosta, Andrew Aitken,
Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-
realistic single image super-resolution using a generative ad-
versarial network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4681–4690,
2017. 1, 6

[23] Gaotang Li, Marlena Duda, Xiang Zhang, Danai Koutra, and
Yujun Yan. Interpretable sparsification of brain graphs: Bet-
ter practices and effective designs for graph neural networks.
arXiv preprint arXiv:2306.14375, 2023. 3

[24] Yawei Li, Yuchen Fan, Xiaoyu Xiang, Denis Demandolx,
Rakesh Ranjan, Radu Timofte, and Luc Van Gool. Effi-
cient and explicit modelling of image hierarchies for image
restoration. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 18278–
18289, 2023. 3, 5, 6, 8

4310



[25] Yinxiao Li, Pengchong Jin, Feng Yang, Ce Liu, Ming-
Hsuan Yang, and Peyman Milanfar. Comisr: Compression-
informed video super-resolution. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 2543–2552, 2021. 2, 3, 5

[26] Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang,
Rakesh Ranjan, Yawei Li, Radu Timofte, and Luc Van Gool.
Vrt: A video restoration transformer. arXiv preprint
arXiv:2201.12288, 2022. 3

[27] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc
Van Gool, and Radu Timofte. Swinir: Image restoration us-
ing swin transformer. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 1833–1844,
2021. 2, 3, 6, 8

[28] Jingyun Liang, Guolei Sun, Kai Zhang, Luc Van Gool, and
Radu Timofte. Mutual affine network for spatially vari-
ant kernel estimation in blind image super-resolution. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 4096–4105, 2021. 3

[29] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced deep residual networks for single
image super-resolution. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition workshops,
pages 136–144, 2017. 1

[30] Anran Liu, Yihao Liu, Jinjin Gu, Yu Qiao, and Chao Dong.
Blind image super-resolution: A survey and beyond. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
2022. 1

[31] Bowen Liu, Ang Cao, and Hun-Seok Kim. Unified
signal compression using generative adversarial networks.
In ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages
3177–3181. IEEE, 2020. 1

[32] Bowen Liu, Yu Chen, Shiyu Liu, and Hun-Seok Kim. Deep
learning in latent space for video prediction and compres-
sion. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 701–710, 2021.
1

[33] Bowen Liu, Yu Chen, Rakesh Chowdary Machineni, Shiyu
Liu, and Hun-Seok Kim. Mmvc: Learned multi-mode
video compression with block-based prediction mode selec-
tion and density-adaptive entropy coding. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 18487–18496, 2023. 1

[34] Ce Liu and Deqing Sun. On bayesian adaptive video super
resolution. IEEE transactions on pattern analysis and ma-
chine intelligence, 36(2):346–360, 2013. 1, 3

[35] Yu-Qi Liu, Xin Du, Hui-Liang Shen, and Shu-Jie Chen. Es-
timating generalized gaussian blur kernels for out-of-focus
image deblurring. IEEE Transactions on circuits and sys-
tems for video technology, 31(3):829–843, 2020. 3

[36] Ziwei Luo, Haibin Huang, Lei Yu, Youwei Li, Haoqiang Fan,
and Shuaicheng Liu. Deep constrained least squares for blind
image super-resolution. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 17642–17652, 2022. 3

[37] Zhengxiong Luo, Yan Huang, Shang Li, Liang Wang, and
Tieniu Tan. Learning the degradation distribution for blind

image super-resolution. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 6063–6072, 2022. 1, 3

[38] Chenyang Ma, Xinchi Qiu, Daniel J. Beutel, and Nicholas D.
Lane. Gradient-less federated gradient boosting tree with
learnable learning rates. In Proceedings of the 3rd Workshop
on Machine Learning and Systems, EuroMLSys 2023, Rome,
Italy, 8 May 2023, pages 56–63. ACM, 2023. 3

[39] Chao Ma, Chih-Yuan Yang, Xiaokang Yang, and Ming-
Hsuan Yang. Learning a no-reference quality metric for
single-image super-resolution. Computer Vision and Image
Understanding, 158:1–16, 2017. 8

[40] Alexandre Mercat, Marko Viitanen, and Jarno Vanne. Uvg
dataset: 50/120fps 4k sequences for video codec analysis and
development. In Proceedings of the 11th ACM Multimedia
Systems Conference, pages 297–302, 2020. 3, 8

[41] Joan L Mitchell, William B Pennebaker, Chad E Fogg,
Didier J LeGall, Joan L Mitchell, William B Pennebaker,
Chad E Fogg, and Didier J LeGall. Mpeg-2 overview. MPEG
Video Compression Standard, pages 171–186, 1996. 5

[42] Anish Mittal, Anush K Moorthy, and Alan C Bovik.
Blind/referenceless image spatial quality evaluator. In 2011
conference record of the forty fifth asilomar conference on
signals, systems and computers (ASILOMAR), pages 723–
727. IEEE, 2011. 8

[43] Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. Mak-
ing a “completely blind” image quality analyzer. IEEE Sig-
nal processing letters, 20(3):209–212, 2012. 8

[44] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative ad-
versarial networks. arXiv preprint arXiv:1802.05957, 2018.
6

[45] Seungjun Nah, Sungyong Baik, Seokil Hong, Gyeongsik
Moon, Sanghyun Son, Radu Timofte, and Kyoung Mu
Lee. Ntire 2019 challenge on video deblurring and super-
resolution: Dataset and study. In CVPR Workshops, June
2019. 6, 8

[46] Jinshan Pan, Haoran Bai, Jiangxin Dong, Jiawei Zhang, and
Jinhui Tang. Deep blind video super-resolution. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 4811–4820, 2021. 6, 8

[47] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand.
Overview of the scalable video coding extension of the h.
264/avc standard. IEEE Transactions on circuits and sys-
tems for video technology, 17(9):1103–1120, 2007. 3, 5, 8

[48] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,
Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. Real-time single image and video super-resolution
using an efficient sub-pixel convolutional neural network. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1874–1883, 2016. 1

[49] Zhanjun Si and Ke Shen. Research on the webp image for-
mat. In Advanced graphic communications, packaging tech-
nology and materials, pages 271–277. Springer, 2016. 2, 8

[50] Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and
Thomas Wiegand. Overview of the high efficiency video
coding (hevc) standard. IEEE Transactions on circuits and

4311



systems for video technology, 22(12):1649–1668, 2012. 3, 5,
6, 8

[51] Gregory K Wallace. The jpeg still picture compression
standard. IEEE transactions on consumer electronics,
38(1):xviii–xxxiv, 1992. 2, 3

[52] Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Ex-
ploring clip for assessing the look and feel of images. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pages 2555–2563, 2023. 8

[53] Jianyi Wang, Zongsheng Yue, Shangchen Zhou, Kelvin CK
Chan, and Chen Change Loy. Exploiting diffusion prior
for real-world image super-resolution. arXiv preprint
arXiv:2305.07015, 2023. 1

[54] Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan.
Real-esrgan: Training real-world blind super-resolution with
pure synthetic data. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 1905–1914,
2021. 1, 3, 6, 8

[55] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,
Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan: En-
hanced super-resolution generative adversarial networks. In
Proceedings of the European conference on computer vision
(ECCV) workshops, pages 0–0, 2018. 1, 2

[56] Pengxu Wei, Ziwei Xie, Hannan Lu, Zongyuan Zhan, Qixi-
ang Ye, Wangmeng Zuo, and Liang Lin. Component divide-
and-conquer for real-world image super-resolution. In Com-
puter Vision–ECCV 2020: 16th European Conference, Glas-
gow, UK, August 23–28, 2020, Proceedings, Part VIII 16,
pages 101–117. Springer, 2020. 6, 7, 8

[57] Shaokai Wu and Fengyu Yang. Boosting detection in crowd
analysis via underutilized output features. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 15609–15618, June 2023. 3

[58] Xintian Wu, Hanbin Zhao, Liangli Zheng, Shouhong Ding,
and Xi Li. Adma-gan: Attribute-driven memory augmented
gans for text-to-image generation. In Proceedings of the 30th
ACM International Conference on Multimedia, pages 1593–
1602, 2022. 3

[59] Yanze Wu, Xintao Wang, Gen Li, and Ying Shan. Animesr:
Learning real-world super-resolution models for animation
videos. arXiv preprint arXiv:2206.07038, 2022. 1, 2, 3, 5, 6,
7, 8

[60] Xiaoyu Xiang, Qian Lin, and Jan P Allebach. Boosting high-
level vision with joint compression artifacts reduction and
super-resolution. In 2020 25th International Conference on
Pattern Recognition (ICPR), pages 2390–2397. IEEE, 2021.
3, 5

[61] Fengyu Yang and Chenyan Ma. Sparse and complete la-
tent organization for geospatial semantic segmentation. 2022
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1799–1808, 2022. 3

[62] Fengyu Yang, Chenyang Ma, Jiacheng Zhang, Jing Zhu,
Wenzhen Yuan, and Andrew Owens. Touch and go: Learn-
ing from human-collected vision and touch. Neural Infor-
mation Processing Systems (NeurIPS) - Datasets and Bench-
marks Track, 2022. 3

[63] Fengyu Yang, Jiacheng Zhang, and Andrew Owens. Gener-
ating visual scenes from touch. International Conference on
Computer Vision (ICCV), 2023. 3

[64] Jiayu Yang, Chunhui Yang, Fei Xiong, Feng Wang, and
Ronggang Wang. Learned low bitrate video compression
with space-time super-resolution. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1786–1790, 2022. 2, 3, 5

[65] Ren Yang, Radu Timofte, Meisong Zheng, Qunliang Xing,
Minglang Qiao, Mai Xu, Lai Jiang, Huaida Liu, Ying
Chen, Youcheng Ben, et al. Ntire 2022 challenge on
super-resolution and quality enhancement of compressed
video: Dataset, methods and results. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1221–1238, 2022. 4

[66] Zongsheng Yue, Qian Zhao, Jianwen Xie, Lei Zhang, Deyu
Meng, and Kwan-Yee K Wong. Blind image super-resolution
with elaborate degradation modeling on noise and kernel. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 2128–2138, 2022. 1

[67] Huijie Zhang, Jinfan Zhou, Yifu Lu, Minzhe Guo, Liyue
Shen, and Qing Qu. The emergence of reproducibil-
ity and consistency in diffusion models. arXiv preprint
arXiv:2310.05264, 2023. 1

[68] Kai Zhang, Jingyun Liang, Luc Van Gool, and Radu Timo-
fte. Designing a practical degradation model for deep blind
image super-resolution. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 4791–
4800, 2021. 1, 2, 3, 6, 8

[69] Kaihao Zhang, Wenqi Ren, Wenhan Luo, Wei-Sheng Lai,
Björn Stenger, Ming-Hsuan Yang, and Hongdong Li. Deep
image deblurring: A survey. International Journal of Com-
puter Vision, 130(9):2103–2130, 2022. 3

[70] Wenlong Zhang, Guangyuan Shi, Yihao Liu, Chao Dong,
and Xiao-Ming Wu. A closer look at blind super-resolution:
Degradation models, baselines, and performance upper
bounds. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 527–536,
2022. 3

[71] Hanbin Zhao, Fengyu Yang, Xinghe Fu, and Xi Li. Rbc:
Rectifying the biased context in continual semantic segmen-
tation. ArXiv, abs/2203.08404, 2022. 3

[72] Kai Zhao, Kun Yuan, Ming Sun, Mading Li, and Xing Wen.
Quality-aware pre-trained models for blind image quality
assessment. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 22302–
22313, 2023. 3

4312


