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Abstract

While the majority of recent Multi-View Stereo Networks

estimates a depth map per reference image, their perfor-

mance is then only evaluated on the fused 3D model ob-

tained from all images. This approach makes a lot of sense

since ultimately the point cloud is the result we are mostly

interested in. On the flip side, it often leads to a burdensome

manual search for the right fusion parameters in order to

score well on the public benchmarks. In this work, we tackle

the aforementioned problem with HAMMER, a Hierarchical

And Memory-efficient MVSNet with Entropy-filtered Recon-

structions. We propose to learn a filtering mask based on

entropy, which, in combination with a simple two-view geo-

metric verification, is sufficient to generate high quality 3D

models of any input scene. Distinct from existing works, a

tedious manual parameter search for the fusion step is not

required. Furthermore, we take several precautions to keep

the memory requirements for our method very low in the

training as well as in the inference phase. Our method only

requires 6 GB of GPU memory during training, while 3.6

GB are enough to process 1920×1024 images during infer-

ence. Experiments show that HAMMER ranks amongst the

top published methods on the DTU and Tanks and Temples

benchmarks in the official metrics, especially when keeping

the fusion parameters fixed.

1. Introduction

The goal of Multi-View Stereo (MVS) is to obtain a 3D

reconstruction of an observed scene from multiple overlap-

ping images. As a prerequisite MVS requires known cam-

era parameters which can be obtained via Structure from

Motion (SfM). The idea is then to match pixels across views

to obtain a depth estimate. Traditional methods [5, 6, 16],

that use hand-crafted similarity metrics for this task have

been replaced by learning-based methods over the recent

years [12,13,18,23,24,27]. Amidst the plethora of new ap-

(a) Input (b) Ours

(c) GBiNet (d) UniMVSNet

Figure 1. The illustration shows a comparison of network outputs

for different methods. We can see that our network is able to pro-

duce very smooth depth maps with low noise.

proaches, a considerable number adheres to a similar con-

cept: At first, dense features are generated through a feature

extraction network. Subsequently, these features are aggre-

gated into a cost volume following the plane sweep algo-

rithm [4]. Lastly, the cost volume undergoes regularization

to derive the final output in the form of a depth map.

Despite the fact that the output is first a depth map, the

most common benchmarks today [1, 9] only evaluate point

clouds, i.e. 3D models instead of depth maps. While the

depth map creation is handled by a neural network, point

cloud are still produced in a classical manner by check-

ing for geometric and photo-metric consistency. A photo-

metric mask is often obtained by evaluating the probabil-

ity weights of the network output, which is not explicitly

learned [7, 19, 23]. For the geometric filtering, different fu-

sion frameworks exist that project pixels into 3D space and

have several similar parameters which can be tuned: 1) In-

terval scale. A parameter to influence the depth range in

every view. 2) Consistent number of views. The number

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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of source images that have to confirm the depth estimate to

guarantee geometric consistency. 3) Back-projection error

in pixels. The distance error when projecting one pixel into

another view and back. 4) Relative depth error. The relative

error of the back-projection in depth direction.

Almost every MVS-Method needs to manually tweak

these parameters - often for every individual scene - which

can be a tedious task. Additionally, fusion is a separate,

non-learning step that makes it hard to evaluate the true per-

formance of a network. In contrast to the previously men-

tioned methods, we are able to apply a single set of fusion

parameters that only relies on a geometric two-view consis-

tency check.

In this work, we are introducing our Hierarchical And

Memory-efficient MVSNet with Entropy-filtered Recon-

structions (HAMMER) solution to efficiently obtain 3D

models from 2D images without the need for a tedious fu-

sion parameter search. Our framework has very low GPU

requirements for training (about 6 GB) and is able to pro-

duce very clean depth maps (see Fig. 1). Our main contri-

butions can be summarized as follows:

• A training method to produce a filter mask in addition

to the required depth map. In contrast to many other

methods, we directly learn these filter masks by ap-

plying our novel entropy-based loss at the output of a

dedicated convolutional network block. This alleviates

the problem of searching for the best parameters in the

fusion step.

• We introduce randomized matched patches for the

training phase. This allows us to use the full resolution

of any available dataset without removing information

by resizing images.

• We extend the multi-stage network design introduced

by GBi-Net [12] by an adjustable interval parameter ψ

which enables the network to be trained on any arbi-

trary depth resolution without affecting the network’s

memory requirements.

• Additional to the traditional benchmark evaluations,

we provide comparisons between network perfor-

mances when the fusion parameters are kept at a fixed

setting. We also conduct extensive evaluations to show

that HAMMER ranks amongst the top methods on the

DTU [1] and the more challenging Tanks and Tem-

ples [9] benchmarks when compared to the officially

reported scores.

2. Related Work

Multi-View Stereo has been an integral part of the 3D

computer vision field for decades. Traditional approaches

like COLMAP [15, 16] or Gipuma [6] match handcrafted

features between images to estimate a dense 3D structure of

the observed scene. While these methods performed well

in terms of accuracy, they were clearly lacking in complete-

ness, often struggling with reconstructing low-textured re-

gions, non-Lambertian surfaces or matching noise.

In recent times, learning-based MVS methods have

greatly outperformed the traditional approaches and still

keep improving every year. The conventional approach in

these deep learning-based techniques employs Deep CNNs

to predict 2D depth maps. A novel development involves

the widespread application of 3D cost volumes from im-

age features [18, 23, 26]. Pioneered by MVSNet [23], these

methods construct a 3D cost volume through feature warp-

ing and then employ 3D CNNs to regularize it for depth

regression or classification. However, an issue inherent in

the vanilla MVSNet is the substantial memory consump-

tion tied to the 3D cost volume which, in turn, depends on

image size and depth resolution. In response, various meth-

ods have been proposed in recent years to overcome this

problem. Recurrent network architectures [21, 24] sequen-

tially regularize the 2D cost maps along the depth direction

to reduce the memory consumption. Cascading architec-

tures [7] adhere to a gradual refinement strategy, moving

from coarse-to-fine over multiple stages of different scales.

As an alternative approach, PatchmatchNet [18] improves

the Patchmatch [2] core algorithm with a novel and learned

adaptive propagation and evaluation scheme for each itera-

tion. It deliberately reduces the heavy regularization present

in 3D cost volumes to create an efficient model, although

this entails a trade-off between efficiency and accuracy. Re-

cently, GBiNet [12] formulates MVS as a binary search

problem, reducing the depth hypothesis requirement per

stage to 4. To ensure a fine enough depth resolution, each

feature scale is regularized by the same 3D CNN two times

with a subsequently smaller resolution. The authors also

propose to randomly crop the input images for training on

the DTU dataset. This reduces memory consumption with-

out the need to downscale images, thus keeping the full in-

formation content of the dataset. In our work we build on

several of these insights and design a deep neural network

that is able to handle images on a very adaptable memory

requirement, enabling training and evaluation on most con-

sumer grade GPUs.

While a lot of progress has been made for depth map

estimation networks, basically only 3 approaches have been

used for creating a 3D model from those depth maps: 1) The

fusion method ’fusible’ of Gipuma [6] written in C++. 2)

A similar version of 1 but for Python proposed by MVS-

Net [23]. 3) The dynamic consistency checking variant of 2

proposed by D2HC-RMVSNET [21].

As mentioned in 1, all of these have similar parameters

that can be adjusted. To the best of our knowledge, all of

the mentioned works have to manually adapt the fusion pa-
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Figure 2. Overview of the proposed HAMMER architecture: We first extract features at multiple scales by applying a UNet to a given

set of images. The obtained feature maps are then aggregated into a cost volume through a variance based cost metric and homography

warping. We use a 3D CNN consisting of 10 layers to regularize the cost volume at each scale. Finally, we can estimate the depth from

the cost volume via regression. Each depth estimate at a lower stage is used to initialize the depth hypothesis of the next stage. In order to

save memory, we pass the aggregated feature maps through the same 3D CNN twice, but apply a different homography warping each time,

which yields a finer depth resolution.

rameters or even switch the fusion framework completely

when applying their method to a different dataset or scene.

With HAMMER we want to propose a method that works

well across different scenes and datasets without the need

to adjust any screws.

3. Method

This section introduces the detailed architecture of

HAMMER that is depicted in Figure 2. Before actually

training the network, we introduce a pre-processing tech-

nique that allows for a more memory-flexible training of

MVS networks which we refer to as randomized matched

patches. For the network itself, we adapt several com-

ponents from previous networks that showed great perfor-

mance: Firstly, we perform feature extraction on the ref-

erence image and its n source images with a hierarchical

UNet [14], also known as Multi-scale Feature Net, sim-

ilar to previous networks like GBi-Net [12] or ATLAS-

MVSNet [20]. We design our network in such a way that

the output resolution of the highest layer in the hierarchy is
1
2 of the input image size. We then upscale the final cost vol-

ume after regularization to achieve the same resolution for

the depth map as the input image. Secondly, homography-

warping and depth initialization is done with the cascading

cost volume formulation [7], as is practice in most modern

MVS methods. However, we extend this algorithm and pro-

cess each feature stage twice, similar to GBi-Net. Thirdly,

we regularize the 2 cost volumes of each feature stage with

2 different depth resolutions defined by the adjustable inter-

val parameter ψ which allows us to set an arbitrary depth

resolution that is independent of memory requirements.

3.1. Preprocessing: Randomized Matched Patches

An issue with current available data is that, while rel-

atively high resolution images (e.g. DTU [1] has 1600 ×
1200) are available, it is often too memory intensive to use

the full resolution in the training phase. GBiNet [12] pro-

poses to crop random patches for training to learn better fea-

tures without increasing the training overhead and simulta-

neously keeping the memory consumption in check. While

this works good enough for a well defined dataset like DTU,

it fails to get overlapping patches in datasets with heavily

varying viewpoints like BlendedMVS [25]. Hence, we in-

troduced randomized matched patches: From any given ref-

erence image, we randomly crop a part of the image during

training to an arbitrary size that fits the network (in our case

512× 512). As the ground-truth depth map and camera pa-

rameters are known, we can project the pixels of the refer-

ence patch into the source images. To find a corresponding
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Figure 3. Randomized matched patches. If the viewpoint changes

significantly between reference (left) and source (right) image,

randomly cropping the same patch in both images might have lit-

tle to no overlap (red square). Our RMP method selects a random

patch only in the reference image and projects several points (red

crosses) into the source image to find a patch with guaranteed over-

lap (green square).

patch, we first project p pixels around the center pixel and

check if at least 25% are valid, i.e. are not outside the source

image or contain an invalid depth value. We then calculate

the centroid of the valid point to obtain the center pixel of

the source patch (see Fig. 3). This process can be done on-

line and is repeated for all source images and guarantees a

significant overlap between the patches (see Fig. 3). If no

valid matches can be found, a new random patch is chosen

in the reference image. In the rare case that this process fails

20 times, we skip the image.

3.2. Feature Extraction

We run each image patch through a U-Net [14] to hierar-

chically extract features at 5 stages of different resolutions.

We first apply 4 convolutional layers that sequentially in-

crease the number of channels from 3 (RGB image) to 32.

For down-scaling the features we use a residual block con-

sisting of 2 convolutional layers with stride set to 2 in the

first layer. It follows that our finest grained feature map has
1
2 the size of the full resolution input image. As can be seen

in Figure 2, the features from the lowest scale are up-scaled

and concatenated to obtain the feature map of each stage.

This design ensures that our largest cost volume will only

need to cover half of the input image resolution before reg-

ularization, which helps keeping the memory requirements

for the 3D CNN low.

3.3. Cost Volume Assembly

Following previous approaches [3, 7, 22, 24], we warp

features into a single cost volume utilizing the differential

homography and aggregate them via variance-based cost

metric to allow for an arbitrary number of input images. The

differential homography is defined as:

Hi(d) = Ki ·Ri ·

(

I −
(t0 − ti) · n

⊤

0

d

)

·R⊤

0 ·K⊤

0 , (1)

whereHi(d) is the homography between the ith source fea-

ture map and the reference feature map (index 0) at depth

d. The camera intrinsics and extrinsics are defined by the

parameters Ki, Ri, ti while n0 is the principle axis of the

reference camera and I is the identity matrix.

To keep the cost volume size in check, we adapt the

strategy of GBiNet [12] that uses two cascading cost vol-

umes with only 4 depth hypothesis for each feature stage.

However, their approach halves the depth interval after ev-

ery pass through the regularization network which results

in a stiff network architecture with a fixed depth resolu-

tion. We introduce an interval parameter ψ that allows us

to freely select the depth resolution without changing the

memory requirements of the network. After the first depth

interval is found by dividing the full depth range by 4 (from

the 4 depth hypothesis that we have for each cost volume),

we can simply multiply this parameter with the previous

depth interval to get the new one. To achieve our goal of

refining the depth interval in every stage, it follows that

0 < ψ < 1. We found that a value of ψ = 0.55 works well

for our network design with 5 stages (each stage applies

the parameter twice), which results in a depth resolution of

0.25 · 0.55(10−1) ≈ 0.001 times the full depth range.

3.4. Network Outputs

In order to remove noise from the cost volume, we pass

it through a regularization network that consists of 5 resid-

ual blocks, each containing 2 convolutional layers. The

network outputs 2 depth maps which are obtained via re-

gression and the soft argmin operation [8] for every feature

stage:

soft argmin :=

dmax
∑

d=1

d× σ(−cd), (2)

where dmax is the maximum depth value of the current

depth range, cd is the predicted cost and σ(·) is the softmax

operation.

These depth maps are used to initialize the depth hypoth-

esis for each subsequent stage and to calculate the loss. In

the final stage, we also calculate an entropy map through 2

separate residual blocks. The idea is that a high value of

entropy signals that the network applies equal probability

to all depth hypothesis, indicating a high uncertainty. In

the training stage, we enforce this behavior by applying an

additional loss.

3.5. Loss Function

At first, we calculate the loss for each depth map. Be-

cause of the two different depth ranges for each feature map

scale, we obtain 10 depth maps from 5 stages. Since the

initialization of the finer cost volume has to be done with an

up-scaled version of the depth map we also apply the loss

to the up-scaled version. The loss is then accumulated over
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(a) Input + GT (b) Output (c) Depth (d) Entropy (e) Mask

Figure 4. Comparison between training the network with and without the entropy loss. The input and ground-truth for both networks is

depicted in (a). Top: Output from the proposed architecture (b), but without applying the entropy loss in the training. To calculate the

mask (e), we use the naturally obtained entropy (d) from the regression of the depth map (c). Bottom: Our HAMMER method is able to

produce very clean masks for valid values in the obtained depth map. The entropy map is taken from the separate output branch.

our 5 feature stages as:

Ld =

5
∑

k=1

lk, (3)

with

lk = λk ·(∥Dk −Dk,gt∥1 + 2∥Dk,up2
−Dk+1,gt∥1) , (4)

where λk is a weight factor that we increase by a factor of 2
every stage,Dk is the output depth map of the current stage,

Dk,up2
is its up-scaled version andDk,gt is the ground-truth

depth map.

As previously mentioned, for the final output we also cal-

culate an entropy map. However, as our network is trained

via regression rather than classification, there is no guar-

antee that entropy is low for good depth estimates. This

is due to the fact that a good depth estimate could also be

achieved by an equal distribution of probabilities, which is

just treated as a different weighting in regression. However,

we want to encourage the network to apply a single strong

probability to the correct depth estimate bringing this ap-

proach closer to a classification task.

In order to enforce a low entropy on a correct depth esti-

mate, we apply an additional loss between entropy and the

depth error map ME = |Dk −Dk,gt| that we can obtain by

calculating:

Le(x, y) =

{

ϵmax − ϵ(x, y) if ME(x, y) > δt

ϵ(x, y) else
(5)

where Le(x, y) is the loss at pixel position (x, y), ϵ(x, y) is

the entropy value and δt is a threshold value for the error in

the depth map. The entropy at each pixel position ϵ(x, y) is

defined as:

ϵ(x, y) =
h−1
∑

j=0

−pj(x, y) · log(pj(x, y)), (6)

where h is the number of plane hypothesis and pj(x, y)
is the probability the network attributes to each hypothesis

plane j. We can obtain the theoretical ϵmax by setting the

same probability to all hypothesis. The loss for the entropy

over the whole image is the mean value over all positions.

Finally, the total loss L is calculated as:

L = Ld + Le · δt, (7)

where the threshold δt acts as a weighting factor to balance

the losses. We calculate the threshold value δt in such a way

that it is close to the finest depth resolution in each view.

3.6. PostProcessing

As most networks, the final output of our network is a

depth map. However, benchmarks usually only evaluate

point clouds, i.e. fused 3D models. We can obtain a point

cloud by projecting the pixels of the depth maps into 3D

space and fusing them together. This is a very crucial step in

MVS and benchmark results depend heavily on the correct

choice of fusion parameters. Most methods find these pa-

rameters empirically by trying different settings, which can

often take a lot of time and is infeasible if many different

scenes have to be evaluated. We propose a fair comparison

by only using our entropy masks and a simple two view con-

sistency check with fixed parameters which directly evalu-

ates the quality of depth maps. In contrast to the majority

of State-of-the-Art MVS networks, we are able obtain high

quality point clouds by using the same settings for every

dataset and scene (see Fig. 5).
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Figure 5. Point cloud comparison. Top: The obtained point cloud

when applying the non-learned entropy mask. Bottom: By apply-

ing our learned entropy mask we can almost completely remove

noisy points.

4. Implementation

We set the number of views during training toN = 5 and

train for 18 epochs on the DTU training data. By setting the

input patches to 512x512, the training of our method only

requires about 6 GB of memory. As is common practice

for a better generalization, we fine-tune our model from the

10th epoch DTU [1] training for another 12 epochs on the

BlendedMVS dataset [25]. The network is optimized via

Adam optimizer in Pytorch with β1 = 0.9, β2 = 0.999 and

an initial learning rate of 0.0005, which is down-scaled by

a factor of 2 after epochs 10, 12 and 14. We are able to train

the network on a single Nvidia GeForce GTX 1080 Ti.

We tried several values for the depth interval parameter

ψ, but found that it will not influence the final results too

much as long as it is not too high (resulting in a very coarse

depth resolution) or too low (will not cover enough depth

when going from one stage to the other). We keep ψ = 0.55
for all our results presented here.

For testing we need 3.1 GB for the DTU images (1600×
1152) and 3.6 GB for the Tanks and Temples images

(1920 × 1024). We use N = 5 for the evaluation on DTU,

but noticed an increase in performance when using N = 10
for Tanks and Temples. This can mainly be attributed to

Figure 6. Example point cloud reconstructions of our method.

Top: DTU dataset. Bottom: Tanks and Temples dataset.

the increased number of images per scene and the smaller

changes in viewpoints between those images.

For the fusion we use the implementation of MVS-

Net [23] and keep the parameters fixed for all scenes. We

use an interval scale of 1.0 to cover the full depth range of

the scene. Consistent number of views is set to 2 which

means we are only checking if a single source image pixel

confirms the depth estimate in the reference image. Note

that this is quite an uncommon choice especially for the

Tanks and Temples dataset where other methods often use

6+ views for geometric verification to avoid outlier points

in the 3D model. We believe that this is a strong point for

our filter masks obtained from the learned entropy. By be-

ing able to keep this parameter low we can reconstruct 3D

points in many different scenes even when there is very little

overlap between images. Back-projection error and relative

depth error are fixed at 0.2 pixels and 0.001 respectively.

5. Results

All results are obtained by using the same fusion param-

eters. The only parameter that is adjusted is the number

of input images for the network. As discussed in the pre-

vious section, the results tend to get slightly better when

using more neighboring views for datasets that only show

small changes in different views. Qualitative results of our

method are shown in Figure 6.

5.1. Evaluation on DTU

For this evaluation we use the model trained purely on

the DTU training set for 18 epochs. We compare our re-

sults on the DTU benchmark quantitatively to traditional

and recent learning-based methods in Table 1. The aver-

age distance for every estimated 3D point from a ground

truth point is reflected in the Acc. (accuracy) score. If we
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Method Acc. Comp. Overall

Gipuma [6] 0.283 0.873 0.578

COLMAP [15, 16] 0.400 0.664 0.532

MVSNet [23] 0.396 0.527 0.462

R-MVSNet [24] 0.383 0.452 0.417

CasMVSNet [7] 0.346 0.351 0.348

PatchmatchNet [18] 0.427 0.277 0.352

EPP-MVSNet [10] 0.413 0.296 0.355

ATLAS-MVSNet [20] 0.278 0.377 0.327

DELS-MVS [17] 0.342 0.284 0.313

UniMVSNet [13] 0.352 0.278 0.315

GBiNet* [12] 0.312 0.293 0.303

GeoMVSNet [27] 0.331 0.259 0.295

CER-MVS [11] 0.359 0.305 0.332

HAMMER (Ours) 0.326 0.270 0.298

Table 1. Quantitative results on the DTU test dataset. All scores

are in mm and represent the mean average distance (lower is bet-

ter). Best results are shown in bold and the runner-ups are under-

lined. GBiNet has been adjusted to use the same fusion parameters

for all scenes for a fair comparison with all other methods.
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Figure 7. Qualitative comparison between GeoMVSNet [27] and

our method on the Horse scene of Tanks and Temples. The color

indicates the distance to the ground truth with τ = 9mm. Our

method shows significantly less outliers in terms of precision.

go into the other direction, i.e. the average distance for ev-

ery ground truth 3D point from a generated point, we can

obtain the Comp. (completeness) score. The overall score

displays the mean between the two. Our approach demon-

strates great performance, only being surpassed by the re-

cently released GeoMVSNet [27].

5.2. Evaluation on Tanks and Temples

While it is widely accepted and common practice that

the same fusion parameter settings are used for the whole

dataset on DTU, this is not applied for the Tanks and Tem-

ples data.

At first, we compare the results published in the respec-

tive papers in Table 2. While our method does not reach

the F-scores of GeoMVSNet [27], it produces significantly

less outliers when compared qualitatively in Figure 7. We

found that most methods use greatly varying parameters:

While this is not an exhaustive list, we investigated the 4

main parameters mentioned in Section 1: 1) Interval Scale.

2) Consistent number of views. 3) Back-projection error in

pixels. 4) Relative depth error.

Most of the time, the interval scale is set to 1.0 but many

methods also use 1.06 to increase the performance on the

benchmark. We have found that for the consistent number

of views in the DTU dataset, usually a low number (often

3) is chosen, while for Tanks and Temples 6 or more might

be applied. For the pixel distance most methods use 0.25 -

0.5 pixels for DTU, but to 2 - 3 pixels for Tanks and Tem-

ples. The relative depth error is often set several magnitudes

lower in Tanks and Temples. Some methods, e.g. UniMVS-

Net [13], even use different filtering methods for different

datasets, which may take several hours to complete.

We argue that for a fair network comparison, fusion pa-

rameters should stay at a constant setting. Therefore we

compare HAMMER to high performing methods on the

benchmark when settings are kept consistent throughout

the dataset in Table 3. We can see that our approach per-

forms exceptionally well without the need to change the fu-

sion settings from the DTU evaluation. Note that we ap-

ply the average setting as suggested by the authors for the

Tanks and Temples dataset alone without taking the settings

from DTU into account, which usually differ greatly. How-

ever, we had to limit the selection due to code availabil-

ity and hardware requirements. For example the code for

GeoMVSNet [27] has not been made public yet and CER-

MVS [11] needs a GPU with at least 24 GB of memory.

Regarding the Tanks and Temples advanced dataset,

HAMMER performs reasonably well without adjusting the

fusion parameters despite the fact that this dataset is very

challenging. For most methods fusion parameters have to

be set with a very large variation between scenes: Consis-

tency checks can range from a single image up to 8 or more.

Thresholds for the depth error are magnitudes apart. Confi-

dence thresholds get dropped to a very low value to ensure

higher completeness.

5.3. Ablations

In Figure 4 we can see the effects of the entropy training

and filtering. We establish a baseline by training HAMMER

without the entropy loss and compare it to several selected
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Intermediate Advanced

Method Mean Fam Fra Hor Lig M60 Pan Pla Tra Mean Aud Bal Cou Mus Pal Tem

COLMAP [15, 16] 42.41 50.41 22.25 25.63 56.43 44.83 46.97 48.53 42.04 27.24 16.02 25.23 34.70 41.51 18.05 27.94

MVSNet [23] 43.48 55.99 28.55 25.07 50.79 53.96 50.86 47.90 34.69 - - - - - - -

R-MVSNet [24] 48.40 69.96 46.65 32.59 42.95 51.88 48.80 52.00 42.38 24.91 12.55 29.09 25.06 38.68 19.14 24.96

CasMVSNet [7] 56.42 76.36 58.45 46.20 55.53 56.11 54.02 58.17 46.56 31.12 19.81 38.46 29.10 43.87 27.36 28.11

PatchmatchNet [18] 53.15 66.99 52.64 43.24 54.87 52.87 49.54 54.21 50.81 32.31 23.69 37.73 30.04 41.80 28.31 32.29

EPP-MVSNet [10] 61.68 77.86 60.54 52.96 62.33 61.69 60.34 62.44 55.30 35.72 21.28 39.74 35.34 49.21 30.00 38.75

ATLAS-MVSNet [20] 60.71 77.62 61.96 49.55 61.63 60.04 58.69 63.58 52.59 - - - - - - -

DELS-MVS [17] 63.08 79.45 68.79 55.80 61.36 62.23 57.97 61.71 57.30 37.81 26.28 42.68 35.65 47.58 33.13 41.53

GeoMVSNet [27] 65.89 81.64 67.53 55.78 68.02 65.49 67.19 63.27 58.22 41.52 30.23 46.53 39.98 53.05 35.98 43.34

CER-MVS [11] 64.82 81.16 64.21 50.43 70.73 63.85 63.99 65.90 58.25 40.19 25.95 45.75 39.65 51.75 35.08 42.97

UniMVSNet [13] 64.36 81.20 66.43 53.11 63.46 66.09 64.84 62.23 57.53 38.96 28.33 44.36 39.74 52.89 33.80 34.63

GBiNet [12] 61.42 79.77 67.69 51.81 61.25 60.37 55.87 60.67 53.89 37.32 29.77 42.12 46.30 47.69 31.11 36.93

HAMMER (Ours) 61.70 78.45 59.25 54.33 62.80 63.20 59.57 61.72 54.23 36.13 24.17 40.07 38.14 49.56 31.54 33.31

Table 2. Results on the Tanks and Temples dataset of state-of-the-art MVS and our method. This table reflects the official Tanks and

Temples benchmark where fusion parameters are free to be set individually for each scene. Nevertheless, we kept the parameters fixed for

our method. Precision and recall is combined as f-score (higher is better). Best results are shown in bold and the runner-ups are underlined.

Method Mean Fam Fra Hor Lig M60 Pan Pla Tra Mean Aud Bal Cou Mus Pal Tem

UniMVSNet [13] 60.39 79.28 65.59 41.67 63.71 61.58 58.77 60.33 52.18 28.05 13.77 29.95 26.70 46.12 28.40 23.36

GBiNet [12] 60.32 79.29 65.07 49.35 60.41 59.79 55.30 59.52 53.80 33.93 22.69 37.30 32.96 46.37 29.23 35.03

HAMMER (Ours) 61.70 78.45 59.25 54.33 62.80 63.20 59.57 61.72 54.23 36.13 24.17 40.07 38.14 49.56 31.54 33.31

Table 3. Results on the Tanks and Temples dataset when using the same fusion parameter setting for all scenes. Methods were chosen due

to their performance, code availability and hardware requirements. We apply the average parameter setting that the corresponding authors

suggested for the Tanks and Temples evaluation. Precision and recall is combined as f-score (higher is better).

Entropy threshold Acc. Comp. Overall

baseline 0.400 0.235 0.318

no mask 0.390 0.234 0.312

1.3 0.384 0.239 0.311

0.8 0.334 0.262 0.298

0.7 0.326 0.270 0.298

0.6 0.320 0.280 0.300

0.1 0.283 0.447 0.365

Table 4. Ablations regarding entropy training and filtering on the

DTU test dataset. The baseline is established from our network

trained without entropy loss.

thresholds. By setting the threshold to the maximum en-

tropy, which is equal to not applying any mask, we expected

and confirmed a similar result to the baseline. However, it

seems that just applying the loss in the training phase will

already enhance the performance of the network.

Moreover, we found that using 5 instead of 4 feature

stages can improve the result. Additional details are listed

in the supplementary material.

6. Conclusion

We proposed HAMMER a deep neural network that

is able to produce precise filter masks alongside accurate

depth maps. Our novel entropy loss improves the depth map

output of the network while also providing the required en-

tropy map to filter out points before the fusion stage. HAM-

MER can be trained on an almost arbitrary depth resolution

that is independent of GPU memory. Moreover, by using

randomized matched patches in the training phase, we are

able to train our network on 512x512 patches which leads

to a very low memory requirement for training. Beside that,

the main advantage of our method is that it does not require

the adaption of fusion parameters to create a 3D model from

its depth maps. We confirm the strong performance by eval-

uating with fixed fusion parameters on the very different

benchmark scenes of DTU, Tanks and Temples intermedi-

ate and Tanks and Temples advanced.
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