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Abstract

In medical image segmentation, domain generalization
poses a significant challenge due to domain shifts caused
by variations in data acquisition devices and other factors.
These shifts are particularly pronounced in the most com-
mon scenario, which involves only single-source domain
data due to privacy concerns. To address this, we draw
inspiration from the self-supervised learning paradigm that
effectively discourages overfitting to the source domain. We
propose the Denoising Y-Net (DeY-Net), a novel approach
incorporating an auxiliary denoising decoder into the ba-
sic U-Net architecture. The auxiliary decoder aims to per-
form denoising training, augmenting the domain-invariant
representation that facilitates domain generalization. Fur-
thermore, this paradigm provides the potential to utilize un-
labeled data. Building upon denoising training, we pro-
pose Denoising Test Time Adaptation (DeTTA) that further:
(i) adapts the model to the target domain in a sample-wise
manner, and (ii) adapts to the noise-corrupted input. Ex-
tensive experiments conducted on widely-adopted liver seg-
mentation benchmarks demonstrate significant domain gen-
eralization improvements over our baseline and state-of-
the-art results compared to other methods. Code is avail-
able at https://github.com/WenRuxue/DeTTA.

1. Introduction
In the last decade, deep learning has been extensively

studied for assisting medical image analysis, aiming to
reduce doctors’ workload. Medical image segmentation,
a critical prerequisite for various clinical analyses, has
received significant attention. Many deep neural net-
works [26], represented by U-Net [37], demonstrate re-
markable performance in various medical image segmenta-
tion tasks. However, in clinical practice, medical images of-
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ten display distributional discrepancies due to factors such
as different equipment, diverse imaging parameters, and
fluctuations in signal-to-noise ratio over time. While cross-
modality datasets exhibit greater domain shift (e.g., from
MRI to CT), it is important to note that scenarios involv-
ing the same modality are more prevalent in clinical prac-
tice. Therefore, we restrict our focus solely to discrepancies
in cases involving the same modality. Such discrepancies
challenge deep neural networks to generalize to unseen do-
mains, leading to performance degradation.

To address this problem, domain generalization (DG) has
emerged to enhance the generalization ability of deep neural
networks to unseen domains. Most existing domain gener-
alization methods [23,32,51,56] aim to achieve generaliza-
tion performance in unseen domains by extracting domain-
invariant features from multiple domains [27]. These meth-
ods prove ineffective when dealing with the problem of
medical image segmentation due to the scarcity of available
data and available data annotations [27].

In medical image segmentation, a more realistic yet
challenging setting is single domain generalization (SDG),
where only one single domain is available for training. For
the challenging SDG problem, an intuitive solution is to in-
crease the diversity of training data through adversarial data
augmentation [34,43,52] or data generation [24,35,39,53].
However, synthesizing high-quality medical images with
intricate details is challenging, and these methods often
struggle to perform well in domains that differ significantly
from the source domain due to the challenge in anticipating
the distribution of test data [27]. In addition to data ma-
nipulation, SDG is also studied in general machine learn-
ing paradigms [45], such as dictionary learning [27], con-
trastive learning [9,13,18]. Furthermore, there are also sev-
eral studies embarking on the exploration of leveraging self-
supervised learning, such as predicting the shuffling order
of patch-shuffled images [28] or rotation degrees [11], to
enhance domain generalization performance. An intuitive
explanation is that the self-supervised learning paradigm al-
lows a model to learn generic features and reduces the like-
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lihood of overfitting to the source domain [6].
Inspired by the success of self-supervised learning for

generalization, we aim to address the SDG problem in a
novel way for medical image segmentation. We observe
that medical images often suffer from various types of noise
due to limitations in imaging technology or variations in
imaging protocols, which is one of the key factors contribut-
ing to domain shift [16]. Hence, properly leveraging self-
supervised denoising can disregard the noise in medical im-
ages from different domains, allowing the network to focus
more on clean images. Secondly, self-supervised denois-
ing benefits from all available raw images, thereby enhanc-
ing the feature extraction capabilities of the encoder [5].
Thirdly, the single given test data hints at its distribution,
enabling us to adapt the model to each unlabeled test data at
test time only. This test-time adaptation approach is com-
patible with solving the SDG problem [25].

With these insights, we present Denoising Y-Net (DeY-
Net), a novel approach with a Y-shaped architecture to en-
hance domain generalization for medical image segmenta-
tion. DeY-Net consists of an encoder followed by two de-
coders: a decoder for pixel-wise segmentation and an aux-
iliary decoder for self-supervised denoising, utilizing the
Noise2Void training scheme [20]. Furthermore, the self-
supervised denoising branch provides the potential to utilize
unlabeled data. Building upon denoising training, we pro-
pose Denoising Test Time Adaptation (DeTTA) that further:
(i) adapts the model to the target domain in a sample-wise
manner, and (ii) adapts to the noise-corrupted input, achiev-
ing more stable performance improvements.

Our main contributions are highlighted as follows:

• We present a novel architecture named DeY-Net, to
address the SDG problem by incorporating a self-
supervised denoising decoder into a basic U-Net.

• We propose Denoising Test-Time Adaptation
(DeTTA), which adapts the model to the target
domain and adapts to the noise-corrupted input in
order to preserve more information.

• We conduct extensive experiments on a widely-
adopted liver segmentation task. By training only on a
single domain, our method significantly improves gen-
eralization performance over our baseline and state-of-
the-art results compared to other methods.

2. Related work
2.1. Denoising for segmentation

It is well-known that there is an overlap between denois-
ing and segmentation tasks [49]. Various works have proved
that the self-supervised denoising task can enable the seg-
mentation task, especially in the presence of extreme lev-
els of noise and limited training data [33]. Mangal Prakash

et al. [33] demonstrate that the self-supervised denoising
prior [20] can significantly improve segmentation results,
where denoising and segmentation are realized in two se-
quential steps. Similarly, Sicheng Wang et al. [47] use a
network that incorporates tandem segmentation and denois-
ing tasks. Tim-Oliver Buchholz et al. [5] propose using a
single network to jointly predict the denoised image and the
desired object segmentation. Emmanuel Asiedu Brempong
et al. [4] propose Decoder Denoising Pretraining (DDeP) to
pretrain the segmentation decoder with a well-trained de-
noising network. These approaches utilize self-supervised
denoising to improve segmentation performance via net-
work architecture or training schemes. Building on this in-
spiration, we present a novel Y-shaped architecture integrat-
ing self-supervised denoising as a secondary decoder in the
network.

2.2. Self-supervised learning

Self-supervised learning (SSL) is a learning paradigm
that enables learning semantic features by generating su-
pervisory signals from a pool of unlabeled data [38]. In
the medical field, several works have demonstrated that
SSL can produce a pretrained model to advance supervised
tasks [14], such as image classification [1, 14] and image
segmentation [15, 29]. These approaches learn image rep-
resentations through handcrafted pretext tasks [38] such
as image rotation prediction [11], in-painting [31], Jigsaw
puzzle [28], denoising auto-encoder [42] and so on. Be-
sides, for generalization purposes, some methods utilize
self-supervised learning as an auxiliary task for the main
task [6]. As early as 2016, Muhammad Ghifary et al. [10]
propose to add a reconstruction decoder that shares the en-
coding representation with the classification head, which
can be trained with unlabeled target domain data. Inspired
by this, Joris Roels et al. [36] propose a domain adaptation
(DA) method, named Y-Net, by integrating a reconstruc-
tion decoder for medical image segmentation within the Y-
shaped architecture. Y-Net is also proposed in [46]. The
distinction between DA and DG lies in their utilization of
target domain data during the training phase, which is ex-
clusive to DA and not employed in DG. Kai Zhu et al. [55]
devise a Self-Supervised Module (SSM) to improve the seg-
mentation performance. Yu Sun et al. [40] integrate a self-
supervised image rotation classifier head, allowing for the
utilization of the unlabeled test data at test time. Inspired
by these works, we further explored the effectiveness of in-
corporating a self-supervised branch to enhance the model’s
generalization performance.

2.3. Test-time adaptation

In recent years, there has been significant development in
Test-Time Adaptation (TTA). TTA aims to utilize the distri-
bution information from the test data to quickly adapt mod-
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Fi g ur e 1. O v er vi e w of t h e pr o p os e d D e Y- N et. T h e f u n d a m e nt al b a c k b o n e is U- N et, a n d t h e str u ct ur es of t h e t w o d e c o d ers ar e i d e nti c al a n d
r et ai n t h e s ki p c o n n e cti o ns ( o mitt e d i n t h e fi g ur e). We j oi nt-tr ai n t h e s e g m e nt ati o n a n d t h e s elf-s u p er vis e d d e n oisi n g t as ks b y c o m bi ni n g
t h eir l oss es L s e g a n d L d e . W h e n t esti n g d at a o n a n e w d o m ai n, w e o nl y a d a pt t h e e n c o d er p ar a m et ers t hr o u g h t h e s elf-s u p er vis e d d e n oisi n g
br a n c h wit h L d e t o i m pr o v e g e n er ali z ati o n. B esi d es, e a c h t est i m a g e is r a n d o ml y m as k e d wit h n ei g h b or pi x els s e v er al ti m es t o g et a m or e
st a bl e a v er a g e pr e di cti o n.

els wit h a f e w gr a di e nt st e ps [ 7 , 2 7 , 3 0 ]. T h e m ai n diff er-
e n c es of pri or w or k li e i n h o w t o d e vis e t h e o bj e cti v e t h at
c a n b e o pti mi z e d wit h u nl a b el e d t est d at a a n d w hi c h p art
of n et w or k p ar a m et ers t o b e u p d at e d at t est ti m e [ 2 7 ]. F or
i nst a n c e, T T T [4 0 ] a d a pts t h e e n c o d er of t h e cl assi fi c ati o n
m o d el at t est ti m e vi a a n a u xili ar y br a n c h wit h r ot ati o n pr e-
di cti o n s elf-s u p er visi o n. L at er o n, Te nt [ 4 4 ] o pti mi z es e n-
tr o p y mi ni mi z ati o n l oss of pr e di cti o ns o n t est d at a t o a d a pt
t h e b at c h n or m ali z ati o n l a y er. F or t est-ti m e a d a pt ati o n o n
m e di c al i m a g e s e g m e nt ati o n, H u et al . [1 2 ] pr o p os e usi n g
n e w l oss es li k e R e gi o n al N u cl e ar- n or m ( R N) a n d C o nt o ur
R e g ul ari z ati o n ( C R) l oss es t o i m pr o v e g e n er ali z ati o n p er-
f or m a n c e. N e er a v K ar a ni et al . [1 6 ] pr o p os e t o g e n er at e
ps e u d o-l a b els t hr o u g h a d e n oisi n g a ut o e n c o d er at t est ti m e
t o a d a pt a n i m a g e n or m ali z ati o n m o d ul e. T h e d e n oisi n g
a ut o e n c o d er is a s e p ar at e n et w or k t h at n e e ds t o b e tr ai n e d
i n d e p e n d e ntl y fr o m t h e s e g m e nt ati o n n et w or k. Si mil arl y,
J e y a M ari a J os e Val a n ar as u et al . [4 1 ] als o pr o p os e t o tr ai n
a n a d diti o n al a ut o e n c o d er t o a d a pt t h e A d a pti v e I nst a n c e
N or m ( A d aI N) l a y ers, w hi c h pr of o u n dl y r eli es o n t h e tr ai n-
i n g p erf or m a n c e of t h e a d diti o n al a ut o e n c o d er n et w or k. I n
c o ntr ast, o ur w or k utili z es a si n gl e n et w or k, si m plif yi n g t h e
tr ai ni n g pr o c ess a n d e ns uri n g c o nsist e nt a n d r eli a bl e r es ults.

3. M et h o d ol o g y

I n t his s e cti o n, w e first pr o vi d e a n o v er vi e w of t h e S D G
pr o bl e m a n d o ur pr o p os e d D e Y- N et. We t h e n i ntr o d u c e
t h e b asi c pri n ci pl e of t h e s elf-s u p er vis e d d e n oisi n g s c h e m e
N ois e 2 Voi d [ 2 0 ] as t h e pr eli mi n ar y of D e Y- N et a n d e x pl ai n
d e n oisi n g tr ai ni n g a n d t est-ti m e a d a pt ati o n ( D e T T A) i n d e-
t ail.

3. 1. O v e r vi e w

I n t h e s etti n g of si n gl e d o m ai n g e n er ali z ati o n ( S D G)
[4 5 ], w e ar e gi v e n o nl y o n e tr ai ni n g (s o ur c e) d o m ai n a n d
w e d e n ot e it as S t r a i n = { (x i , yi )}

n
i = 1 ∼ P X Y , w h er e

x ∈ X ⊂ R d d e n ot es t h e i n p ut, y ∈ Y ⊂ R d e n ot es t h e
l a b el, a n d P X Y d e n ot es t h e j oi nt distri b uti o n of t h e i n p ut
s a m pl e a n d o ut p ut l a b el. X a n d Y d e n ot e t h e c orr es p o n d-
i n g r a n d o m v ari a bl es. T h e g o al of S D G is t o l e ar n a r o b ust
a n d g e n er ali z a bl e pr e di cti v e f u n cti o n h : X → Y fr o m t h e
si n gl e s o ur c e d o m ai n t o a c hi e v e a mi ni m u m pr e di cti o n er-
r or o n a n u ns e e n t est d o m ai n S t e s t (i. e., S t e s t c a n n ot b e
a c c ess e d i n tr ai ni n g a n d P t e s t

X Y ≠ P t r a i n
X Y ):

mi n
h

E ( x, y ) ∈ S t e s t
[l(h (x ), y)], ( 1)

w h er e E is t h e e x p e ct ati o n a n d l(·, ·) is t h e l oss f u n cti o n.
O n t his b asis, t est-ti m e a d a pt ati o n ( T T A) utili z es t h e u n-

l a b el e d t est s a m pl e x t e s t
i ∈ S t e s t pr es e nt e d at t est ti m e t o

a d a pt t h e m o d el f or g e n er ali z ati o n p ur p os e.
T o a d dr ess t h e S D G pr o bl e m, a n o v er vi e w of o ur m et h o d

D e Y- N et is ill ustr at e d i n Fi g. 1 . W hil e w e b uil d u p o n t h e
U- N et ar c hit e ct ur e, o ur a p pr o a c h utili z es a Y-s h a p e d d e-
si g n, w h er e t h e e n c o d er is f oll o w e d b y t w o d e c o d ers: t h e
s e g m e nt ati o n d e c o d er f or pi x el- wis e s e g m e nt ati o n a n d t h e
d e n oisi n g d e c o d er f or s elf-s u p er vis e d d e n oisi n g.

3. 2. P r eli mi n a r y of D e Y- N et

T h e c or e i d e a of D e Y- N et r e v ol v es ar o u n d utili zi n g
s elf-s u p er vis e d d e n oisi n g t o e n h a n c e g e n er ali z ati o n p erf or-
m a n c e. B ef or e d el vi n g i nt o t h e d et ails of o ur a p pr o a c h,
t h e pri n ci pl es of t h e s elf-s u p er vis e d d e n oisi n g will b e i n-
tr o d u c e d. We us e t h e N ois e 2 Voi d ( N 2 V) s c h e m e d es cri b e d
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( a) ( b) ( c)

Fi g ur e 2.  T h e tr ai ni n g s c h e m e of N ois e 2 Voi d. ( a) A n ori gi-
n al tr ai ni n g i m a g e. ( b) A m a g ni fi e d i m a g e p at c h e xtr a ct e d fr o m
( a). Si mil ar o p er ati o ns ar e p erf or m e d t hr o u g h o ut t h e e ntir e i m-
a g e. D uri n g N 2 V tr ai ni n g, s e v er al r a n d o m pi x els (r e d a n d stri p e d
s q u ar es) ar e r e pl a c e d b y n ei g h b ori n g pi x els ( bl u e s q u ar es). T his
m o di fi e d i m a g e is t h e n us e d as t h e i n p ut i m a g e. ( c) T h e t ar g et
p at c h c orr es p o n di n g t o ( b). T h e l oss is o nl y c al c ul at e d f or t h e pi x-
els m as k e d i n ( b).

i n [2 0 ] as o ur s elf-s u p er vis e d d e n ois er of c h oi c e. C o n v e-
ni e ntl y, N 2 V us es a d ef a ult U- N et wit h a m o di fi e d i n p ut a n d
l oss f or d e n oisi n g. We r e pli c at e t h e d e c o d er of t h e ori gi n al
U- N et t o s er v e as t h e s e c o n d d e c o d er f or N 2 V.

I n N 2 V, t h e n ois e is ass u m e d pi x el- wis e i n d e p e n d e nt.
T h us t h e n ois e i nf or m ati o n is n ot c arri e d i n t h e n ei g h b or-
i n g pi x els. H e n c e, d e n oisi n g is f e asi bl e b y pr e di cti n g t h e
pi x els’ v al u es r e pl a c e d b y n ei g h b ori n g pi x el v al u es. As t h e
tr ai ni n g s c h e m e s h o w n i n Fi g. 2 , N 2 V r a n d o ml y s el e cts N
pi x els i n e a c h tr ai ni n g i m a g e; t h e n t h es e pi x els ar e r e pl a c e d
wit h n ei g h b ori n g pi x els. T h e tr ai ni n g t ar g ets ar e t h e c orr e-
s p o n di n g ori gi n al pi x el v al u es.

T h e N 2 V n et w or k c a n b e tr ai n e d b y mi ni mi zi n g t h e e m-
piri c al ris k

ar g mi n
f j i

L (f ( x̃ j
R F ( i ) ), xji ), ( 2)

w h er e x̃ j
R F ( i ) is a p at c h ar o u n d pi x el i, e xtr a ct e d fr o m tr ai n-

i n g i n p ut i m a g e x j . I n t his p at c h, t h e v al u e at t h e p ositi o n
i is r e pl a c e d wit h t h e v al u e of a n ei g h b ori n g pi x el. x j

i is
t h e c orr es p o n di n g t ar g et pi x el v al u e. T h e s u m m ati o n of t h e
l oss es of all N pi x els i i n t h e e ntir e tr ai ni n g i m a g e yi el ds
t h e t ot al l oss f or e a c h i m a g e.

F or L , w e c o nsi d er t h e st a n d ar d M S E l oss:

L ( s̃ j
i , sji ) = ( s̃ j

i − s j
i )

2 . ( 3)

3. 3. Tr ai ni n g of D e Y- N et

P r et r ai ni n g. T o utili z e t h e ef fi c a c y of d e n oisi n g, w e p er-
f or m a s e p ar at e pr etr ai ni n g st e p f or t h e s e g m e nt ati o n d e-
c o d er usi n g a w ell-tr ai n e d d e n oisi n g n et w or k [ 4 ]. S p e cif-
i c all y, w e tr ai n e d a U- N et wit h t h e N ois e 2 Voi d tr ai ni n g
s c h e m e, utili zi n g all t h e s o ur c e d o m ai n d at a wit h o ut a n y
s e g m e nt ati o n l a b els. S u bs e q u e ntl y, w e c o p y t h e p ar a m et ers
of t h e tr ai n e d d e c o d er t o t h e s e g m e nt ati o n d e c o d er of D e Y-
N et, w hil e t h e e n c o d er a n d t h e d e n oisi n g d e c o d er of D e Y-
N et ar e r a n d o ml y i niti ali z e d. If w e si m ult a n e o usl y pr etr ai n
ot h er c o m p o n e nts, it m a y r es ult i n o v er fitti n g. I n t h e a b-
l ati o n e x p eri m e nts, w e will d e m o nstr at e t h e eff e cti v e n ess

of t h e pr etr ai ni n g st e p a n d c o m p ar e t h e r es ults o bt ai n e d b y
pr etr ai ni n g diff er e nt c o m p o n e nts s e p ar at el y.

J oi nt-t r ai ni n g. As s h o w n i n Fi g. 1 , o ur Y-s h a p e d ar c hi-
t e ct ur e all o ws t h e si m ult a n e o us e x e c uti o n of t w o t as ks. We
tr ai n b ot h t h e s e g m e nt ati o n a n d t h e d e n oisi n g t as ks b y s u m-
mi n g t h eir r es p e cti v e l oss es. T h e e n c o d er, t h e pr etr ai n e d
s e g m e nt ati o n d e c o d er, a n d t h e d e n oisi n g d e c o d er ar e d e-
n ot e d as f , s 0 , a n d d , r es p e cti v el y.

We r a n d o ml y m as k pi x els of t h e i n p ut i m a g e x j fr o m
t h e tr ai ni n g s et a n d r e pl a c e t h e m wit h t h e n ei g h b ori n g pi x el
v al u es, g etti n g t h e a ct u al i n p ut x̃ j . T h e ori gi n al i n p ut v al-
u es at t h e m as k e d p ositi o ns ar e t h e tr ai ni n g t ar g ets f or t h e
d e n oisi n g t as k.

T h e d e n oisi n g l oss is e v al u at e d f or l a b el e d i m a g es a n d
u nl a b el e d o n es.  We us e t h e st a n d ar d N ois e 2 Voi d l oss,
w hi c h is e x pr ess e d as:

ld e =
j i

L (d ◦ f ( x̃ j
i ), xji ). ( 4)

T o a d dr ess t h e c o m m o n i m b al a n c e i n t h e n u m b er of f or e-
gr o u n d a n d b a c k gr o u n d pi x els pr o c ess e d i n m e di c al i m a g es,
w e c h o os e t h e st a n d ar d Di c e l oss [ 3 ] as t h e s u p er vis e d s e g-
m e nt ati o n l oss, e v al u at e d f or l a b el e d i m a g es o nl y, wit h l a-
b els as y . T h e s e g m e nt ati o n l oss c a n b e e x pr ess e d as:

ls e g =
j

Di c e (s 0 ◦ f ( x̃ j ), yj ). ( 5)

I n c o ntr ast t o t h e str ai g htf or w ar d j oi nt-tr ai ni n g pr o c ess i n
T T T [ 4 0 ], o ur m et h o d i n c or p or at es a n e n h a n c e d j oi nt-
tr ai ni n g pr o c ess b y i ntr o d u ci n g a ti m e- d e p e n d e nt w ei g ht t o
b ett er c o m bi n e s u p er vis e d a n d u ns u p er vis e d l oss [ 2 1 ]. T h e
j oi nt-tr ai ni n g pr o d u c es a tr ai n e d e n c o d er f 0 a n d t w o tr ai n e d
d e c o d ers s 1 a n d d 0 :

f 0 , d0 , s1 = ar g mi n
f, d, s

(ls e g + w (t) ∗ ld e ). ( 6)

I n o ur i m pl e m e nt ati o n, t h e w ei g ht e d f u n cti o n w (t) of u n-
s u p er vis e d l oss sl o p es u p w ar ds fr o m 0 al o n g t h e G a ussi a n
c ur v e f or t h e first 2 0 0 tr ai ni n g p eri o ds. It m e a ns t h at t h e
d e n oisi n g d e c o d er, w hi c h assists t h e e n c o d er i n f e at ur e e x-
tr a cti o n, sl o wl y st arts t o w or k d uri n g t h e tr ai ni n g pr o c ess.
I niti all y, t h e m o d el tr ai ni n g is pri m aril y dri v e n b y t h e s e g-
m e nt ati o n l oss, e ns uri n g t h e m o d el d o es n ot c o n v er g e t o a
d e g e n er at e s ol uti o n w h er e m e a ni n gf ul s e g m e nt ati o n is n ot
a c hi e v e d [ 2 1 ]. T his w ei g ht a dj ust m e nt all o ws t h e m ai n s e g-
m e nt ati o n t as k a n d t h e a u xili ar y d e n oisi n g t as k t o stri k e a
b al a n c e, e ns uri n g pr a cti c al c o m pl eti o n of t h e s e g m e nt ati o n
t as k w hil e pr es er vi n g t h e g e n er ali z ati o n a bilit y off er e d b y
t h e d e n oisi n g t as k.

3. 4. D e T T A

T a r g et d o m ai n a d a pt ati o n. At t est ti m e, c o nsi d eri n g
t h at t h e si n gl e t est v ol u m e c a n gi v e us a hi nt a b o ut its distri-
b uti o n, w e ai m t o o pti mi z e t h e m o d el p ar a m et ers wit h e a c h
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unlabeled test volume. Once each test volume x arrives,
we optimize the denoising loss (Eq. (4)) on the denoising
branch d0 ◦f0, while the segmentation decoder s1 is frozen:

fx, dx = argmin
f,g

L(d0 ◦ f0(x̃), x). (7)

We only perform a one-step gradient descent on each test
volume, a medical volume data from a specific patient. Us-
ing the whole volume of data simultaneously is consistent
with the clinical scenario where test data usually arrives
per patient. To preserve the original discriminability of the
model, we only adapt the parameters in the batch normal-
ization layers for the test-time adaptation. It is motivated
by the fact that modifying all the parameters of the model
is unstable and inefficient when only a single test sample is
available at test time [44].

After test-time adaptation to each test volume, we get
an adapted model for segmentation s1 ◦ fx, and we make
predictions on the test volume x as s1 ◦fx(x̃). Note that we
use x̃ instead of x as the prediction input.

The above adaptation in our method is not performed on-
line, as we do not assume that each medical volume data
comes from the same distribution. After making predic-
tions on each test volume x, we always discard fx and dx,
and reset the weights to d0 and f0 for the next test volume.

Noise-corrupted input adaptation. Indeed, it is appar-
ent that the modified input x̃ leads to the loss of information
of the original test image. As mentioned in Sec. 3.3, the in-
puts during training are modified as x̃ to facilitate the joint-
training of the two tasks. If we directly make predictions on
original x as s1 ◦ fx(x) to preserve all the original informa-
tion, the reliability of the predictions may be compromised.
To further preserve the information, DeY-Net further adapts
to the noise-corrupted input.

Intuitively, for each original test x, we can get several
inputs {x̃, x̃′

, x̃
′′
, · · · } after being randomly masked sepa-

rately. Since the positions of the masked pixels are random,
such a set of inputs minimizes the information loss. Then,
we make predictions on all these masked inputs and merge
the predictions. It is a novel test-time augmentation strategy
designed for our method. The pipeline is shown in Fig. 3.

f s

d

Randomly 
mask

Average
… …

Figure 3. The pipeline of noise-corrupted input adaptation.

4. Experiment
We assess the effectiveness of the proposed DeY-Net and

DeTTA on a typical medical image segmentation: liver seg-
mentation on CT. Experimental details, comparison results
with other methods, and ablation studies are detailed in the
following subsections.

4.1. Experimental settings

Datasets. We use CHAOS-train [17] with 20 CT vol-
umes as the labeled dataset and CHAOS-test [17] with 20
CT volumes as the unlabeled dataset. Both the labeled
and unlabeled data are collected from healthy patients only.
We further randomly split the CHAOS-train dataset into
train and test sets with 16 and 4 volumes, respectively, for
source domain training and in-domain testing. To assess
the out-of-domain generalization, we evaluate three addi-
tional out-of-domain datasets, including LITS2017 [2] and
two datasets from local clinical centers, named Normal and
Ill. LITS2017 is a challenging dataset that contains 130 CT
volumes from healthy patients and patients with liver tu-
mors. Normal contains 30 CT volumes from healthy pa-
tients, while Ill contains 15 from patients with cirrhosis,
both annotated by experts.

These datasets constitute at least 4 data domains, of
which LITS2017 collected by multiple clinical centers, sim-
ply handled as a data domain. Fig. 4 shows the represen-
tation cases and volume number of each dataset, showing
the domain differences (such as the liver’s position, resolu-
tion, and direction). In addition, liver morphology varies
between patients with cirrhosis, tumors, and healthy pa-
tients. Since the thickness of data slices varies greatly be-
tween clinical sites, we validated our method on these data
using a 2D network as the backbone network.

CHAOS
labeled 20 volumes

unlabeled 20 volumes

Normal
35 volumes

Ill
15 volumes

LITS
130 volumes

Figure 4. The representative cases and the volume number of 4
datasets.

Preprocessing. LITS2017 is a collection of liver CTs
with liver and tumor segmentation labels. We only use the
liver class and merge the tumor class into the liver class.
The preprocessing in [22] is used for all the raw CT data.
We first clip the attenuation coefficient in a range between
-200 and 400, highlighting the liver portion, and subse-
quently normalize it by subtracting the minimum and di-
viding by the signal range in a slice-wise manner. To pro-
cess the input, we set the masked ratio at 0.1, meaning that
10% pixels of each input are selected and replaced with the
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Dataset in-domain out-of-domain
CHAOS test Normal Ill LITS average

Dice Coefficient↑ (Dice, mean±std)
U-Net [37] 96.32±0.20 92.71±0.90 88.75±0.51 85.33±0.29 90.78

BigAug [50] 96.34±0.05 93.08±0.18 89.21±0.80 85.28±0.31 90.98
DualNorm [54] 96.20±0.16 94.09±0.03 90.22±0.28 83.54±0.23 91.01

TTT [40] 95.62±0.43 94.57±0.31 90.54±0.40 84.45±0.27 91.61
Tent [44] 96.55±0.04 95.24±0.04 90.79±0.46 85.55±0.31 92.03

RN+CR [12] 96.59±0.08 95.26±0.04 90.76±0.47 85.58±0.33 92.05
TTST [16] 96.71±0.17 95.32±0.33 91.48±0.26 85.67±0.66 92.30
OtF [41] 96.22±0.01 94.45±0.03 88.14±0.08 81.17±0.01 90.00

ReY-Net (w/o ReTTA) 96.57±0.06 95.72±0.04 90.44±0.51 82.35±2.76 91.27
ReY-Net (w/ ReTTA) 96.23±0.95 95.51±0.16 90.93±0.26 86.34±0.36 92.26

DeY-Net (w/o DeTTA) 96.63±0.03 95.74±0.04 91.50±0.18 85.19±0.04 92.27
DeY-Net (w/ DeTTA) 96.71±0.12 95.66±0.08 91.60±0.14 87.14±0.09 92.77

Table 1. Quantitative comparison of domain generalization results.
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Figure 5. DeTTA improvement of LITS.

Dataset LITS Tumor

DeY-Net (w/o DeTTA) 85.19 83.92
DeY-Net (w/ DeTTA) 87.14 88.51

△ 1.95 4.59

Table 2. Quantitative results of DeTTA im-
provement. Tumor datasets consists of im-
ages containing tumors in the LITS dataset.

neighboring pixel values following N2V. We do not do any
cropping, resampling, or alignment but only the slice-wise
preprocessing described above.

Metrics. For evaluation, we use a commonly used met-
ric, the Dice coefficient [%] [8], to quantitatively evaluate
the segmentation results. To ensure the stability and relia-
bility of our experiments, we conduct each experiment three
times utilizing different random seeds. The results are pre-
sented using the average value with the standard deviation.

4.2. Implementation details

In our experiment, the test-time adaptation updates just
a step with a learning rate of 1e-6. For the test-time aug-
mentation, we augment twice and average the two outputs.
We use the U-Net as the backbone for all experiments. No
data augmentation technology is utilized in our methods and
other comparison methods. In our method, the U-Net is also
used for the pretrained denoising model, which is trained
with all the CHAOS data of 200 epochs. Both the pre-
trained denoising U-Net and our proposed model DeY-Net
are trained using Adam optimizers [19] with the momentum
of 0.9 and 0.99, and the learning rate is initialized to 1e-4.
We train the DeY-Net for 200 epochs on the CHAOS dataset
only until convergence. The batch size of the baseline U-
Net and the DeY-Net are consistently set to 8, which means
four labeled data and four unlabeled data in each batch of
DeY-Net. During training, the weighted function w(t) of
unsupervised loss slopes upwards from 0 along the Gaus-
sian curve for the first 200 training periods. The maximum
value of w(t) is α(nl/(nl + nun)), where nl and nun are
numbers of labeled and unlabeled data, respectively. After
conducting exploratory experiments, we set the α to 30 in
our experiments. The framework is implemented via Py-
torch using an NVIDIA P100 GPU.

4.3. Results

Comparison methods. We compare our methods with
current state-of-the-art methods to solve the SDG problem,

including: BigAug (2020) [50], a DG method in medi-
cal image segmentation with extensive data transformations
to promote general representation learning. DualNorm
(2022) [54], an SDG method in medical image segmenta-
tion via style augmentation and dual normalization. TTT
(2020) [40], a test-time training method in image classifier
with an auxiliary self-supervised task of rotation prediction.
Tent (2021) [44], a fully test-time adaptation method in the
image classifier field by minimizing the entropy of predic-
tions. TTST (2021) [16], a test-time adaptation in medical
image segmentation with an additional denoising autoen-
coder. RN+CR (2021) [12], a fully test-time adaptation
method in medical image segmentation by minimizing new
losses, Regional Nuclear-norm (RN) and Contour Regular-
ization (CR). OtF (2022) [41], an on-the-fly test-time adap-
tation method with an additional Domain Prior Generator.

The Baseline setting in domain generalization denotes
learning a model (U-Net [37]) on the source domain with-
out using any generalization technique and directly making
predictions on the target domains.

Quantitative comparison results. Tab. 1 shows the re-
sults on the liver segmentation. For the comparison methods
using TTA, we also perform a one-step gradient descent for
each testing volume. First, we compare our method DeY-
Net (w/ DeTTA) against the baseline U-Net. While the U-
Net achieves satisfactory in-domain performance but strug-
gles with out-of-domain data, our proposed method fur-
ther enhances in-domain performance and significantly im-
proves performance on unseen domains, with an improve-
ment of 1.99% on average.

Most of the methods can improve the generalization per-
formance over baseline. Among all these methods, our
DeY-Net (w/ DeTTA) performs better than other methods.
One noticeable observation is the significant improvement
achieved by our method compared to OtF. Due to remov-
ing the back-propagation, OtF heavily relies on the general-
ization performance of the additional Domain Prior Gener-
ator, highlighting our joint-training approach’s advantage.
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DeY-Net GTU-Net DeY-Net+DeTTADenoised imageImage TTST

(a)

(b)

(c)

(d)

Figure 6. Visualization comparison of segmentation results with
baseline methods, TTST and the proposed method DeY-Net. The
samples represent the following: (a) A liver-free image; (b) A
healthy liver image; (c) An image with liver tumors; (d) An image
with liver cirrhosis.

Compared with BigAug and DualNorm, the DG methods
that rely on data augmentation, and TTT and Tent, the TTA
methods that are not designed for the image segmentation
task, our method has a more significant improvement, espe-
cially on the most challenging LITS dataset. Even though
RN+CR, a method similar to Tent, is designed for im-
age segmentation, only a slight improvement over Tent is
achieved in the liver segmentation experiments.

Notably, our method demonstrates the slightest improve-
ment over TTST. This can be attributed to using an addi-
tional denoising autoencoder trained outside the segmen-
tation network in TTST to refine the segmentation re-
sults. The sequential structure connection between the
two networks consumes computational resources and adds
complexity to the overall process. Instead of the se-
quential structure in TTST, we employ an alternative and
more convenient Y-shaped architecture for leveraging self-
supervised denoising, which has resulted in superior perfor-
mance.

Within these out-of-domain datasets, the results of LITS
are more representative of generalization ability, which con-
tains the largest and most diverse data. These compari-
son methods fail in LITS dataset on average. Meanwhile,
our method still improves performance on the LITS dataset,
demonstrating its effectiveness even in challenging unseen
domains.

Visualization comparison results. Fig. 6 further shows
the segmentation results with four samples from unseen do-
mains for the liver segmentation task. It is observed that
our method demonstrates superior segmentation accuracy in
unseen domains, whereas other methods may fail at times.
Our method accurately segments the regions as non-liver,
which are erroneously segmented as liver by other meth-
ods. Furthermore, for the regions containing the liver, our
approach captures finer details and accurately delineates the
liver’s boundaries. In the case of CT images from patients
with liver cirrhosis and liver tumors, all methods struggle
to completely overcome domain shifts caused by changes

in liver texture and structure. Nonetheless, our method con-
sistently achieves more reliable segmentation results, bene-
fiting from its effective image information utilization. This
improvement illustrates the role of the denoising branch in
capturing intricate details of the images.

Analysis of DeTTA improvement. Overall, DeTTA
increases the average Dice by 0.50% over DeY-Net(w/o
DeTTA), with a notable increase of 1.95% in the LITS
dataset. This observation reflects that DeTTA gains addi-
tional capacity and enables the model to utilize the test data
information to improve model generalizability adaptively.

However, TTA methods are not always work due to
varying degrees of domain shifts [48]. Analyzing sce-
narios in which DeTTA encounters limitations is crucial.
Our detailed analysis, conducted primarily on the challeng-
ing LITS dataset (Fig. 5 and Tab. 2), reveals that for cer-
tain test data with large domain shift and poor segmenta-
tion results, DeTTA can extract information from the test
data and adapt the model according to the test domain
to significantly improve the segmentation results. This is
quantitatively demonstrated by the improvement of Tumor
dataset(4.59%), a subset of the LITS dataset(1.95%) with
more pronounced domain shifts. Conversely, when the ini-
tial segmentation results are already satisfactory, indicating
a slight shift between the test data and the source domain
distribution, employing DeTTA may yield slight improve-
ment or even lead to a decline in performance. We attribute
the observed decline to the potential over-optimization of
the trained model to the tested sampling, leading to perfor-
mance degradation even with a single step of gradient up-
date. We anticipate that this can be decently resolved by an
adaptive DeTTA strategy, which is beyond the scope of this
work and left for future exploration.

4.4. Ablation study

We conduct ablation studies about several key points in
our model: (1) the contribution of DeTTA in our method;
(2) the effect of the weighted function w(t); (3) the effect of
the optimized layers; (4) the effect of denoising pretraining;
(5) the effect of data augmentation times.

Effect of denoising task. Tab. 1 shows the effect of
different self-supervised tasks on the final results. TTT
employs image rotation prediction as the self-supervised
task. ReY-Net extends from our DeY-Net (with consis-
tent network architecture, training techniques, etc.). and
the self-supervised task strategically opts for the reconstruc-
tion most pertinent to denoising. ReTTA, accordingly, em-
ploys the reconstruction loss as its optimization objective.
The outcomes demonstrate that self-supervised denoising
is more conducive than alternative approaches for the main
task of medical image segmentation.

Effect of w(t). As shown in Fig. 7, w(t) is effective for
performance improvement of DeY-Net, which means that
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Figure 7. Ablation analysis of time-dependent weight. We analyze
the effectiveness of the time-dependent weight on models with and
without DeTTA.

Optimized layers Normal Ill LITS
BN 0.9566 0.9160 0.8714
All 0.9566 0.9159 0.8696

Table 3. Ablation analysis of the optimized layers.

gradually increasing the supervision of unsupervised loss
during the training process is beneficial. Notably, no mat-
ter how well the DeY-Net is trained, after the DeTTA, the
overall performance will still be improved.

Effect of the optimized layers. We explore which lay-
ers need to be adapted when a model is transferred to the
unseen domain. In the DeTTA, only the encoder can be
optimized for segmentation, and the segmentation decoder
is frozen. As shown in Tab. 3, adapting all encoder pa-
rameters is worse than adapting BN layers. It is intuitive
that all parameters are adapted easily to damage the orig-
inal performance of the network due to the network being
over-parameterized.

Effect of denoising pretraining. As shown in Tab. 4,
we conduct comprehensive experiments regarding the ini-
tialization methods for DeY-Net. The results represent the
average Dice score across the four datasets. The (3) initial-
ization method performs best when only the segmentation
decoder is pretrained using a denoising U-Net. This par-
ticular pretraining approach outperforms other pretraining
methods since joint-training is one key aspect of our ap-
proach. Exploiting the overlap between segmentation and
denoising tasks, we pretrain the segmentation decoder to
ease the segmentation task’s complexity. Meanwhile, we
refrain from pretraining the denoising branch to prevent pre-
mature convergence, enabling more effective joint-training
of the two tasks. Compared to the random initialization (1),
pretraining the segmentation decoder allows for better uti-
lization of the denoising parameters trained on labeled and
unlabeled data.

Effect of data augmentation times. The choice of data
augmentation times K is important in our method, affecting
both the final performance and the testing efficiency. To in-
vestigate the suitable choice of K, we repeat the experiment
of the DeY-Net by varying N ∈ (0, 1, 2, 3). K = 0 rep-

idx f s d w/o DeTTA w/ DeTTA
(1) ✗ ✗ ✗ 0.9169 0.9246
(2) ✓ ✗ ✗ 0.9154 0.9211
(3) ✗ ✓ ✗ 0.9227 0.9277
(4) ✗ ✗ ✓ 0.9206 0.9215
(5) ✓ ✓ ✗ 0.9177 0.9208
(6) ✓ ✗ ✓ 0.9154 0.9170
(7) ✗ ✓ ✓ 0.9183 0.9233
(8) ✓ ✓ ✓ 0.9084 0.9185

Table 4. Ablation analysis of the pretraining. The encoder, the
segmentation decoder, and the denoising decoder are denoted as f ,
s, and d, respectively. ✓ represents pretraining, while ✗ represents
random initialization. Our pretraining method is (3), while the
baseline is (1).
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Figure 8. Ablation analysis of data augmentation times K.

resents the original input without being randomly masked.
K = 1 represents the scenario without adaptation to the
noise-corrupted input (data augmentation). As shown in
Fig. 8, the models with data augmentation times (K=2) per-
form better than those with smaller or larger times on the
segmentation task. We finally adopt K=2 in our method.

5. Conclusion
This paper proposes Denoising Y-Net (DeY-Net) to ad-

dress the challenging SDG problem in medical image seg-
mentation. The idea is to incorporate an auxiliary denois-
ing decoder into a basic U-Net architecture, that naturally
allows for semi-supervised training and shows strong gen-
eralization capabilities. Further, we propose Denoising Test
Time Adaptation (DeTTA) to adapt the model to the target
domain and adapt to the noise-corrupted input, which can
further promote the model generalization at any unseen data
distributions. We validate our method in the liver segmen-
tation task. Quantitatively, we significantly outperform our
baseline and other methods in- as well as out-of-domain.
DeTTA may over-optimize the test data in some scenarios,
leading to performance degradation even with a single step
of gradient update. Also, the network architecture of our
method is simple and can cope well with the domain gener-
alization problem in the same modality case. Therefore, the
future direction of research lies in developing an adaptive
DeTTA strategy and cross-modality generalization.
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