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Abstract

Trajectory forecasting of multiple agents is a fundamen-
tal task that has applications in various fields, such as
autonomous driving, physical system modeling and smart
cities. It is challenging because agent interactions and
underlying continuous dynamics jointly affect its behavior.
Existing approaches often rely on Graph Neural Networks
(GNNs) or Transformers to extract agent interaction fea-
tures. However, they tend to neglect how the distance and
velocity information between agents impact their interac-
tions dynamically. Moreover, previous methods use RNNs
or first-order Ordinary Differential Equations (ODEs) to
model temporal dynamics, which may lack interpretabil-
ity with respect to how each agent is driven by interac-
tions. To address these challenges, this paper proposes the
Agent Graph ODE, a novel approach that models agent in-
teractions and continuous second-order dynamics explic-
itly. Our method utilizes a variational autoencoder archi-
tecture, incorporating spatial-temporal Transformers with
distance information and dynamic interaction graph con-
struction in the encoder module. In the decoder module,
we employ GNNs with distance information to model agent
interactions, and use coupled second-order ODEs to cap-
ture the underlying continuous dynamics by modeling the
relationship between acceleration and agent interactions.
Experimental results show that our proposed Agent Graph
ODE outperforms state-of-the-art methods in prediction ac-
curacy. Moreover, our method performs well in sudden sit-
uations not seen in the training dataset.

1. Introduction

Multi-agent trajectory forecasting has become increas-
ingly important due to its wide-ranging applications in
fields such as autonomous driving [14], physics system
modeling [15], and sports modeling [3]. To accurately
model multiple interacting agents, we must consider the
coupled and complex spatial and temporal dimensions.
The spatial dimension refers to the nonlinear and time-
dependent agent interactions, while the temporal dimen-
sion describes how these interactions impact agent motion.
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Figure 1. Impact of distance and velocity information. (a)
Agent A has a greater distance from Agent C than from B, so
the interaction between agents A and C may be weaker. (b) Agent
A and C are moving in different directions, so they should not af-
fect each other despite their proximity. (c) Agent A and C have
a higher relative velocity towards each other, so their interaction
should be stronger.

However, accurately modeling multiple interacting agents
poses significant challenges due to the complexity and un-
certainty of agent interactions and underlying temporal dy-
namics.

Recently, data-driven methods have attempted to address
this problem by jointly modeling agent interactions and un-
derlying temporal dynamics. Some methods use graph neu-
ral networks (GNNs) [18] or Transformers [31] to learn
agent interactions. However, these approaches often over-
look how agent interactions evolve with distance and ve-
locity information among agents, which can lead to poor
performance. For example, as shown in Figure 1, when
two agents are far away from each other, their interaction
should be weak. On the other hand, when they are close to
each other but are moving in opposite directions, they may
not affect each other. Moreover, previous methods often use
RNNs [1], Transformers [31] or first-order Ordinary Differ-
ential Equations (ODEs) [12] to model simplified temporal
dynamics. Unfortunately, for temporal dynamics, RNNs or
Transformers are designed for discrete data, while dynamic
under multiple agents are usually continuous. Additionally,
the first-order ODEs do not adequately fit the physical mo-
tion law. According to Newton’s Second Law, the force,
which is regarded as agent interactions in our approach, af-
fects acceleration, while first-order ODEs only consider the
distance information which affects velocity.

To address these limitations, we propose Agent Graph
ODE, a novel approach that models both agent interactions
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and continuous second-order temporal dynamics explicitly.
Our proposed Agent ODE is a variational autoencoder ar-
chitecture that uses spatial-temporal Transformers as the en-
coder to transfer input real-world trajectories to latent vec-
tors as the initial values for ODEs. The decoder first solves
the ODEs based on the initial values to generate latent tra-
jectories and then recovers them to real-world trajectories.
To leverage distance and velocity information explicitly, we
construct dynamic interaction graphs Gt = (Vt, Et) in real-
world space at each time step, where the value of E is 0
or 1 to denote whether two agents affect each other. Ad-
ditionally, we incorporate distance and velocity informa-
tion in the spatial attention module by adding information
from the interaction graphs. To ensure that the temporal dy-
namics follow Newton’s Second Law, we use second-order
Graph ODEs as the decoder, where the acceleration is influ-
enced by the agent interactions. In our Agent Graph ODEs
formulation, the agent interactions also depend on interac-
tion graphs whose structure is dynamic and is based on the
dynamically evolving distance and velocity.

In summary, our contributions can be listed as follows:

• We explicitly incorporate distance and velocity infor-
mation to model agent interactions by constructing dy-
namic interaction graphs in real-world space. In the
encoder, the dynamic interaction graphs contribute to
the spatial attention module, and in the decoder, the
agent interactions in latent space evolve with distance
and velocity information, combining dynamic interac-
tion graphs in real-world space.

• We model continuous temporal dynamics using
second-order ODEs. Following Newton’s Second
Law, we use second-order ODEs where the second-
order derivative of the latent state (acceleration) is in-
fluenced by agent interactions, while agent interactions
are based on their relative distances and velocities.

• We conduct an extensive empirical study, demonstrat-
ing that our proposed Agent Graph ODE outperforms
previous methods on several datasets in terms of fore-
casting accuracy. Furthermore, our method can handle
unexpected events (e.g., sudden obstacles not in the
training dataset) better, indicating that it learns more
accurately interactions among multiple agents.

2. Related Work

We briefly introduce prior work on multi-agent trajectory
forecasting and neural ODEs.

Multi-Agent Trajectory Forecasting. Several recent
works have employed graph-based methods to model mul-
tiple interacting agents. For instance, Sun et al. proposed
Graph-VRNN [25], which used graph networks and RNNs

to model interaction systems. Kipf et al. [15] used a varia-
tional auto-encoder and underlying interaction graphs to in-
fer interactions, while Graber et al. [9] addressed the limita-
tion of static graphs by inferring dynamic relation graphs for
each timestep. Huang et al. [12] used coupled graph ODEs
to learn the dynamics of nodes and edges, while Trajec-
tron++ [22] utilized a graph-structured recurrent model to
account for environmental information. EvolveGraph [18]
recognized the relational structure among multiple hetero-
geneous agents and made predictions via graphs, while
Yildiz et al. [30] combined graph ODEs and Gaussian pro-
cesses to infer both agent interactions and temporal dy-
namics with uncertainty estimates. In addition to these
graph-based models, AgentFormer [31] used Transformers
to jointly model agent interactions and temporal dynamics.
Social ODEs [27] utilize first-order ODEs to capture tem-
poral dynamics and use distance information in the latent
space to model agent interactions. Some work improves the
forecasting accuracy by incorporating environmental infor-
mation [13].

However, some of these previous works used RNNs [9,
15, 18, 22, 28] or CNNs [2], which are discrete models,
to model continuous temporal dynamics. Others used
ODEs [12, 13, 30] to model temporal dynamics, but used
first-order ODEs that do not model accurately the physics
of motion. Some concurrent work [20] uses second-order
ODEs, but they do not learn temporal dynamics and agent
interactions from previous trajectories. Moreover, these
methods did not consider distance and velocity information
jointly when modeling agent interactions. In contrast, our
proposed Agent Graph ODE uses second-order graph ODEs
to model the physics of motion and explicitly incorporate
relative distance and velocity information.

Neural Ordinary Differential Equations. Neural
ODEs [6] were introduced by Chen et al. as a continu-
ous version of residual networks or RNNs, and have been
used to model continuous time series data. Following their
work, Rubanova et al. [21] proposed Latent ODEs to model
irregularly-sampled time series data, and Yildiz et al. [29]
used second-order ODEs and Bayesian neural networks to
model high-dimensional trajectories with complex temporal
dynamics. Augmented Neural ODEs [8] preserve the topol-
ogy of the input space and can generalize better than Neu-
ral ODEs. Brouwer et al. proposed GRU-ODE-Bayes [7]
to handle sporadic observations. Neural Controlled Differ-
ential Equations (CDEs) introduce a general framework to
deal with irregular time series, similar to RNNs. Apart from
time series, Neural ODEs also have many applications. For
instance, Neural ODEs have been used in generative mod-
els, such as Normalizing Flows [5] and Score-Based Gener-
ative Modeling [24]. Furthermore, Shi et al. [23], Liang et
al. [19], and Vorbach et al. [26] have applied Neural ODEs
for trajectory modeling or planning.
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Motivated by these approaches, we propose the Agent
Graph ODE based on Latent ODE, which is a variational
autoencoder framework. However, unlike the Latent ODE,
which models only one agent at a time, Agent Graph ODE
models agent interactions using dynamic graphs to account
for agent interactions.

3. Approach

Our objective is to model multiple interacting agents
by predicting future states Xf = {xi

1, x
i
2, ..., x

i
Tf
, i =

1, 2, .., N} of N agents given their previous states Xp =
{xi

−Tp
, xi

−Tp+1, ..., x
i
0, i = 1, 2, .., N}, considering the dy-

namics of each agent and its interaction with other agents.
Here, Tp denotes the number of previous time steps pro-
vided as input, while Tf denotes the number of future time
steps to forecast. Furthermore, xi

t denotes the state of agent
i at time t, consisting of its position and velocity, i.e.,
xi
t = {pit, ui

t}. We distinguish between real-world-space
variables and latent-space variables. We use pit and ui

t to
denote the position and the velocity in real-world space, re-
spectively. In the latent space, we use hi

t and vit to denote
the latent position and latent velocity, respectively.

3.1. Overview

We propose Agent Graph ODE, which models agent in-
teractions and underlying continuous temporal dynamics
explicitly. Agent Graph ODE model is based on Latent
ODE, a variational autoencoder architecture. It consists of
three components shown in Figure 2:

Interaction graph construction. We first use position
and velocity information in real-world space to construct
dynamic interaction graphs Gt = (Vt, Et) for each time t.
The interaction graphs are used in the encoder and decoder
to extract agent interaction features.

Encoder. We use the spatial-temporal Transformers as
our encoder to transform the real-world trajectories Xp into
latent vectors z, which are used for computing initial values
for ODEs. We utilize the interaction graphs in the spatial
attention module to incorporate distance and velocity infor-
mation.

Decoder. The decoder module includes two parts: (1)
building and solving ODEs in the latent space; and (2) re-
covering real-world trajectories from the latent-space tra-
jectories. We build second-order Graph ODEs combining
interaction graphs. Then we solve ODEs to generate la-
tent trajectories, which are determined by initial values and
ODEs.

As an overview, our model for each agent i can be sum-

marized as follows (more details in later sections):

Gt = fg(pt, ut), (1)

µzi , σzi = genc(x
i
−Tp:Tf

, x−i
−Tp:Tf

, Gt), (2)

zi ∼ N(µzi , σzi), (3)

hi
−Tp

= fh(x
i
−Tp

, zi), vi−Tp
= fv(x

i
−Tp

, zi), (4)

hi
−Tp

, hi
−Tp+1, ..., h

i
Tf

= ODESolve(hi
−Tp

, vi−Tp
, gθ, t−Tp:Tf

, G−Tp:Tf
), (5)

x̂i
t ∼ p(x̂i

t|hi
t) for each time step t, (6)

where Eq 1 denotes dynamic interaction graph construction,
Eq 2 is the encoder module, and Eq 3∼6 are the decoder
module. In Eq 2, xi

−Tp:0
denotes the previous trajectory of

agent i, while x−i
−Tp:0

denotes the previous trajectories of
all agents except i. Eq 3 and Eq 4 are used to sample the
initial values from the encoder. With these sampled initial
values, we then use Eq 5 to solve the ODEs and generate the
predicted latent trajectories. Finally, we recover the latent
trajectories back to real-world trajectories using Eq 6. The
ODESolver is a numerical ODE solver. We solve the ODEs
given the function gθ and the initial values hi

−Tp
, vi−Tp

.

3.2. Interaction Graph Construction

We use distance and velocity information to construct
interaction graphs Gt = (Vt, Et), with eij as the edge
between agent i and j. Intuitively, the influence of other
agents on agent i may change over time. Two agents will
not affect each other if they move away from each other
(eij = 0). Otherwise if they are moving towards each other,
then agent i and agent j are connected (eij = 1). Formally
we have:

etij = 1[
(
(pj − pi) · ui

)
+

(
(pi − pj) · uj

)
], (7)

where p and u denote position and velocity in the real-world
space. 1(·) denotes the unit step function, i.e., 1(x) = 1 if
x > 0 and 1(x) = 0 otherwise. If (pj − pi) · ui is larger
than 0, it means agent i is moving to agent j. Therefore, if
((pj − pi) · ui) + ((pi − pj) · uj) is larger than 0, then two
agents are moving closer and etij is set to 1.

3.3. Encoder

The encoder encodes previous real-world trajectories for
each agent i into latent vectors (features), which are used as
initial values for our ODEs. We use spatial-temporal Trans-
formers to extract features for each agent. Different from
the standard attention module, we incorporate interaction
graphs in spatial Transformers to model agent interactions
more explicitly.

Spatial Transformers. The purpose is to extract agent
interaction features among multiple agents. To model agent
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Figure 2. Overview of the proposed Agent Graph ODE, which is composed of graph construction, encoder, and decoder. First, we construct
interaction graphs based on real-world distance and velocity information. Then, we use the encoder to produce latent vectors by inputting
real-world trajectories. In the latent space, we build and solve ODEs to generate latent trajectories. Finally, the latent trajectories are
recovered to real-world trajectories.

i, we consider the interactions between agent i and all other
agents at time t. The positions of agent i and agent j are
denoted as pi and pj , respectively. The feature of layer l is
denoted as f l

i . The attention mechanism works as follows:

qi = wl
qf

l
i , ki = wl

kf
l
i , (8)

mij =
(pj − pi) · ui + (pi − pj) · uj

||pj − pi||22 + ϵ
eij , (9)

m̄i =
1∑
j eij

∑
j

mij , (10)

attentionij =
eijexp(mijq

T
i kj/

√
dkm̄ij)∑

j eijexp(mijqTi kj/
√
dkm̄ij)

, (11)

where mij denotes the ratio of relative velocity, in the di-
rection along agent i and j, to the respective distance if they
are moving to each other. Eq 11 implies that the attention
should be large if the relative velocity of moving together is
large or the distance is small. Here, ϵ is used to avoid nu-
merical instability leading to large mij . Similar to

√
dk, m̄i

is used to scale and prevent the softmax logits from becom-
ing too large. If eij = 0, the attention between these two
agents is ignored. We set mii = m̄i. Therefore, our pro-
posed attention mechanism explicitly incorporates distance
and velocity information.

Temporal Transformers. Once the data have been pro-
cessed by the Spatial Transformers, we obtain a feature se-
quence for each agent. Each feature represents the embed-
ding of agent interactions at different time steps. We then
utilize the Temporal Transformers to encode temporal in-
formation for the feature sequence. In the Temporal Trans-
formers, we use the timestamp in the positional encoding.

Following the Spatial-Temporal Transformers described
above, we obtain a feature sequence that includes both agent

interactions and temporal information. We use average
pooling to obtain a single vector for each agent.

3.4. Decoder: Build and Solve ODEs

After sampling the latent vectors and computing value,
the decoder builds and solves the ODEs to obtain future la-
tent trajectories.

Second-Order Graph ODEs. We build the second-
order ODEs based on graph message passing with interac-
tion graphs Gl

t = (ht, at, nt) in the latent space, where each
node in the graph corresponds to the latent states ht of an
agent and the edges in the graph corresponds to agent inter-
actions at. Here, nt ∈ {0, 1} denotes the connectivity. The
agent state and interactions evolve in a coupled manner. Our
ODEs and initial values are shown as:

dhi
t

dt
= vit, (12)

dvit
dt

=
∑
j ̸=i

1

||hi
t − hj

t ||
aijt n

ij
t + λ2fv(h

i
t), (13)

daijt
dt

= fa1(h
i
t, h

j
t , v

i
t, v

j
t ) + fa2(a

ij
t ), (14)

hi
−Tp

= fh0
(xi

−Tp
, zi), (15)

vi−Tp
= fv0

(xi
−Tp

, zi), (16)

aij−Tp
= fa0

(hi
−Tp

, hj
−Tp

, vi−Tp
, vj−Tp

), (17)

nij
t = hn(h

i
t, h

j
t , v

i
t, v

j
t ), (18)

where h is the latent state for each agent and v is the latent
velocity. The evolution of latent state h is modeled by our
second-order ODE, governed by Eq 12 (velocity as the first-
order dynamics) and Eq 13 (acceleration as the second-
order dynamics), while the agent interaction in the latent
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space aij is modeled by the first-order ODE in Eq 14. The
agent state h and agent interaction aij evolve in a coupled
manner: the second-order derivative of the agent state, also
seen as the acceleration, depends on agent interaction aij ;
the equations are inspired by Newton’s Second Law. Mean-
while, the derivative of agent interaction also depends on the
agent state h. We compute the initial values of these three
equations using Eq 15, 16 and 17, where z is the output of
the encoder. We also use a classifier in Eq 18 to construct
the interaction graph nij in the latent space, which should
be the same as eij in the real-world space.

We solve the ODEs above to generate latent trajectories
h−Tp:Tf

. Finally, we recover them back to the real-world
trajectories.

3.5. Loss Function

Our method builds upon the Conditional Variational Au-
toencoder (CVAE) model, which aims to approximate the
conditional probability pθ(X1:Tf

|X−Tp:0). We employ the
negative evidence lower bound (ELBO) Lelbo in CVAE as
part of our loss function:

Lelbo =− Eqϕ(h−Tp |X−Tp:0,X1:Tf
)[log pθ(X1:Tf |X−Tp:0, h−Tp)]

+KL(qϕ(h−Tp |X−Tp:0, X1:Tf )||pθ(h−Tp |X−Tp:0)).

(19)

Here, qϕ(h−Tp
|X−Tp:0, X1:Tf

) denotes the approxi-
mate posterior distribution given the whole trajectories,
while pθ(h−Tp

|X−Tp:0) denotes the posterior distri-
bution given only the previous trajectories. We use
qϕ(h−Tp |X−Tp:0, X1:Tf

) as the encoder module during
training to generate the initial value h−Tp

given the
trajectories X−Tp:0, X1:Tf

and use pθ(h−Tp
|X−Tp:0) the

encoder module during inference to generate the initial
value h−Tp

given only the previous trajectories X−Tp:0.
pθ(X1:Tf

|X−Tp:0, h−Tp) denotes the decoder module,
which forecasts the future trajectories X1:Tf

given previous
trajectories X−Tp:0 and the initial value h−Tp

. We compute
the trajectories by solving ODEs (Section 3.4); since this
is determined by the initial values and the equations, the
future trajectories X1:Tf

only depend on the initial value
h−Tp . For the decoder, we have

log pθ(X1:Tf
|X−Tp:0, h−Tp

)] = log pθ(X1:Tf
|h−Tp

)]

= k
∑
i

||x̂i
1:Tf

− xi
1:Tf

||22,

(20)

where x̂i
1:Tf

is the estimated future trajectories, and k
is the constant (details in supplementary). The second
term of Eq 19 means that the encoder should gener-
ate a similar initial value h−Tp whether it uses as input
only previous trajectories X−Tp:0 or the whole trajecto-
ries X−Tp:Tf

, because they belong to the same trajectories.

We assume qϕ(h−Tp |X−Tp:0, X1:Tf
) = N(µq, σq) and

pθ(h−Tp
|X−Tp:0) = N(µp, σp), where µq, σq are the out-

put of the encoder given the whole trajectories and µp, σp

are the output given only previous trajectories. We then
have

KL(qϕ(h−Tp |X−Tp:0, X1:Tf
)||pθ(h−Tp |X−Tp:0))

= −1

2

J∑
j=1

[log
σ2
q,j

σ2
p,j

−
σ2
q,j

σ2
p,j

− (µq,j − µp,j)
2

σ2
p,j

+ 1], (21)

where J is the dimension of the latent initial value h−Tp .
The ELBO in CVAE only considers the future trajecto-

ries. To stabilize training and prevent overfitting, our model
is also trained to reconstruct the previous trajectories xi

−Tp:0

given the initial value in latent space. This leads to an ad-
ditional loss term using the Mean Squared Error (MSE) be-
tween ground-truth previous trajectories xi

−Tp:0
and recon-

structed previous trajectories x̂i
−Tp:0

as follows:

Lmse =
∑
i

||x̂i
−Tp:0 − xi

−Tp:0||
2
2. (22)

Additionally, we should also ensure that the dynamic
graph in the latent space is consistent with the graph in the
real-world space. Denoting as eijt ∈ {0, 1} the edge be-
tween agent i and j in the graph at time t in the real-world
space, we then use the Binary Cross-Entropy (BCE) to en-
force the graph consistency:

Lg =
∑
i,j,t

[eijt log nij
t + (1− eijt ) log(1− nij

t )], (23)

where nij
t ∈ {0, 1} denotes the edge between agent i and j

in the graph at time t in the latent space.
Therefore, the overall loss function is:

L = α1Lelbo + α2Lmse + α3Lg, (24)

where α1, α2 and α3 are the coefficients.

4. Experiments
This section presents results that validate the perfor-

mance of our proposed Agent Graph ODE on the traffic
trajectory datasets and the sport dataset.

4.1. Implementation Details

We conducted experiments on four datasets from two
distinct areas, transportation and sports, to assess the effec-
tiveness of our proposed method. These datasets present di-
verse challenges for motion prediction, such as agent behav-
ior variability, interaction complexities, and environmen-
tal factors impact. For all evaluated methods, we apply
data augmentation techniques, including translation and ro-
tation, and normalize all coordinates to the range of 0 to
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1. This approach ensures that the input data is standardized
and more amenable to analysis.

During the training phase, we input the whole trajecto-
ries X−Tp:Tf

and the previous trajectories X−Tp:0. The out-
put is estimated whole trajectories X̂−Tp:Tf

. Conversely,
during the inference period, we only input the previous tra-
jectories X−Tp:0 to recover the input and forecast the future
trajectories X̂1:Tf

.

4.2. Baselines

We compare our proposed Agent Graph ODE model
against state-of-the-art methods including: 1) Social
LSTM [1], which utilizes social pooling of the hidden
states in an LSTM to model interactions between agents.
2) Social GAN [11], which combines Generative Adver-
sarial Networks (GAN) with LSTM encoder-decoder to de-
termine whether the predicted trajectories are realistic. 3)
DenseTNT [10], which uses a graph to model the relation-
ship among agents, with each node in the graph representing
a trajectory. 4) AgentFormer [31], which is a Transformer-
based model based on Conditional Variational Autoencoder
(CVAE) and utilizes spatial-temporal attention to jointly
extract time and social dimensions. 5) Social ODE [27],
which is based on neural ODEs and model agent interaction
in the latent space.

4.3. Evaluation Metrics

Average Displacement Error. To evaluate the predic-
tion accuracy of our proposed model, we follow common
practice in motion prediction and use Average Displace-
ment Error (ADE) as our metric. ADE is calculated as the
average Euclidean distance between the predicted positions
of the agents and their corresponding ground-truth positions
over the prediction horizon:

ADE =
1

TN

∑
t,i

||xi
t − x̂i

t||, (25)

where xi
t denotes the ground-truth position of agent i at time

t, and x̂i
t denotes the corresponding prediction made by the

model.
Collision Rate. To assess the extent to which our pro-

posed model learns agent interactions explicitly and how it
reacts to sudden situations that were not present in the train-
ing data, we introduce new agents as obstacles to the origi-
nal agent trajectories. We consider it a collision event if the
distance between our agent and the obstacle is less than a
threshold. The collision rate is the ratio of the number of
collision events to the total number of sudden events.

4.4. Traffic Trajectory Data

We use three datasets - inD [4], rounD [17], and
highD [16] - which contain naturalistic road user trajec-
tories collected by a drone. Unlike other datasets, these

datasets feature varying numbers of agents in the recorded
area over time, as some agents may enter or leave the area.
To evaluate our method, we split each dataset into 80% for
training and validation, and 20% for testing. Each trajectory
lasts for 8 seconds with one data point every 0.4 seconds, re-
sulting in 20 points (frames) for agents present throughout
the entire trajectory. The input data for our model com-
prised the trajectories in the first 4 seconds (10 frames),
while the ground truth was based on the trajectories in the
next 4 seconds (10 frames).

Table 1 shows the results. Trajectories are categorized
into two classes: curve and straight. As shown in the table,
our proposed Agent Graph ODE outperforms Social LSTM,
Social GAN and Social ODE, in all time lengths. When
forecasting for longer periods, such as 4 seconds and 8 sec-
onds, our model outperforms all other methods in curve tra-
jectories, indicating its ability to handle more complex sce-
narios.

4.5. Sports Data

We conducted additional experiments on the NBA
SportVU dataset, which consists of player and ball trajec-
tories. In contrast to the naturalistic road user trajectories
dataset, the number of agents in the NBA dataset remains
constant throughout the dataset. However, sports agents ex-
hibit more frequent changes, and the models therefore need
to handle more complex situations. We input a 2-second in-
terval and predict movements for the subsequent 2 to 4 sec-
onds. As seen in Table 2, our proposed Agent Graph ODE
outperforms other methods when forecasting for 4 seconds.
This result verifies the capability of our model to handle
more complex scenarios.

4.6. Sudden Obstacle

In many real-world scenarios, the number of agents
present in a given environment can change over time. Un-
fortunately, most previous methods for motion prediction
assume a constant number of agents; this limits their appli-
cability in certain situations. For example, in the context
of autonomous driving, the sudden appearance of a pedes-
trian or cyclist on the road can significantly impact the be-
havior of other agents, such as vehicles or other pedestri-
ans. To evaluate the effectiveness of our proposed Agent
Graph ODE in such situations, we conduct an experiment
using instances from the test dataset. In this experiment, we
place a static or moving agent in the predicted trajectory and
make the moving agent move directly towards the agent be-
ing modeled, simulating an obstacle. We then measure the
collision rate of each method.

Results in Table 3 show that our proposed Agent Graph
ODE model achieves the lowest collision rate when encoun-
tering both static and moving obstacles. This suggests that
our model is effective in extracting agent interactions and
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Method length inD highD rounD
straight curve straight curve straight curve

Social LSTM

2s

0.2474 0.8537 0.2846 0.8347 0.2367 0.8986
Social GAN 0.2537 0.8236 0.2564 0.8977 0.2679 0.8876
DenseTNT 0.2367 0.8046 0.2465 0.8546 0.2268 0.8464

AgentFomer 0.2346 0.8124 0.2368 0.8263 0.2140 0.8259
Social ODE 0.2408 0.8147 0.2406 0.8135 0.2254 0.8357

Agent Graph ODE 0.2389 0.8101 0.2402 0.8123 0.2225 0.8316
Social LSTM

4s

0.7973 3.1463 0.9525 3.5364 0.7268 2.6473
Social GAN 0.7861 3.1583 0.8367 3.4637 0.7483 2.6940
DenseTNT 0.7794 3.1578 0.7431 3.1778 0.6543 2.4764

AgentFomer 0.7604 3.1483 0.6814 3.1527 0.5924 2.4748
Social ODE 0.7728 3.1417 0.6873 3.1509 0.6005 2.4738

Agent Graph ODE 0.7581 3.1402 0.6831 3.1487 0.6001 2.4733
Social LSTM

8s

2.7536 8.3456 2.4570 9.3365 2.5583 9.1346
Social GAN 2.6573 8.2478 2.3279 9.6437 2.9546 8.9446
DenseTNT 2.6644 8.1475 2.1345 9.3464 2.7854 8.4677

AgentFomer 2.3474 8.1457 2.1167 9.3258 2.5337 8.3464
Social ODE 2.6064 8.1208 2.1384 9.3203 2.6447 8.3384

Agent Graph ODE 2.3412 8.1030 2.1251 9.3116 2.5538 8.3127

Table 1. Evaluation on inD, rounD and highD traffic datasets. The results in bold indicate the best performance.

Method 2s 4s
Social LSTM 0.9738 2.7441
Social GAN 0.9537 2.6318
DenseTNT 0.8442 2.4873

AgentFomer 0.7384 2.3427
Social ODE 0.7393 2.0511

Agent Graph ODE 0.7323 1.9402

Table 2. Evaluation on NBA SportVU dataset. The results in bold
indicate the best performance.

can adapt to sudden situations not seen in the training data.
Furthermore, Figure 3 provides examples of how different
models handle the obstacle avoidance task. It shows that
only the Agent Graph ODE model can successfully avoid
the static obstacle, demonstrating its ability to capture com-
plex agent interactions and make informed decisions in sit-
uations not seen in the training data.

4.7. Ablation Study

In this section, we evaluate the effectiveness of the pro-
posed Agent Graph ODE model by conducting a set of abla-
tion studies. Specifically, we study each component of our
method:

Dynamic Graph. We examine the dynamic graph gener-
ation module by comparing the performance with and with-
out it. In the absence of the dynamic graph generation mod-

ule, we use the complete graph at each time step, which con-
siders the interaction between any two agents. As shown in
Table 4, we observe a decrease in performance without the
dynamic graph generation module, highlighting the impor-
tance of this module in capturing the changing relationships
between agents.

First-Order ODEs. We investigate the impact of us-
ing second-order ODEs for modeling agent interactions.
We compare the performance of our proposed Agent
Graph ODE model using first-order ODEs and second-order
ODEs. Instead of Eq 12 ∼ Eq 14, the equation for the first-
order model is:

dhi
t

dt
=

∑
j ̸=i

1

||hi
t − hj

t ||
aijt + λ2fh(h

i
t), (26)

daijt
dt

= fa1(h
i
t, h

j
t ) + fa2(a

ij
t ), (27)

aij−Tp
= fa0(h

i
−Tp

, hj
−Tp

). (28)

The results in Table 4 show that the second-order ODEs lead
to better performance.

Third-Order ODEs. We extend our model to higher-
order ODEs. Specifically, we upgrade our model to the third
order by modifying Eq 12 to dhi

t

dt = ḣi
t and dḣi

t

dt = vit while
maintaining Eq 13 ∼ Eq 18 unchanged. The results pre-
sented in Table 4 reveal that the performance of the third-
order model is inferior to that of its second-order counter-
parts. This suggests that second-order ODEs more accu-
rately capture temporal dynamics and agent interactions.

5107



Method Social LSTM Social GAN DenseTNT AgentFormer Social ODE Agent Graph ODE
Static obstacle 17.4% 19.2% 15.2% 16.8% 7.6% 7.0%

Moving obstacle 21.2% 23.4% 18.8% 20.6% 8.4% 7.8%

Table 3. The collision rate when introducing a sudden obstacle into the trajectory. Bold text indicates the best performing method.

(b) Social ODE(a) AgentFormer (c) Agent Graph ODE

Figure 3. Visualization of a sudden obstacle scenario. Each image shows the input trajectory in blue and the predicted trajectory in white.
The black point represents the obstacle that suddenly appears. In this scenario, Agent Graph ODE can avoid the obstacle, while the other
methods fail to do so.

Method inD highD rounD
straight curve straight curve straight curve

w/o dynamic graph 0.7735 3.1647 0.7149 3.2357 0.6327 2.5380
w/ first-order ODEs 0.7602 3.1411 0.6852 3.1503 0.6048 2.4863
w/ third-order ODEs 0.7662 3.1516 0.6893 3.1723 0.6072 2.4885

w/o distance information in Transformers 0.7596 3.1409 0.6845 3.1492 0.6002 2.4737
w/o graph consistency in loss function 0.7731 3.1620 0.7018 3.1968 0.6269 2.5024

Agent Graph ODE 0.7581 3.1402 0.6831 3.1487 0.6001 2.4733

Table 4. Assessment of the impact of varying certain components on the inD, rounD, and highD traffic datasets. The prediction horizon is
4 seconds. The best performance is marked in boldface.

Distance Information in Transformers. We also study
the effect of adding distance information into the spatial
Transformer module by comparing the performance with
and without distance information. The results in Table 4
demonstrate that adding distance information improves the
prediction accuracy.

Graph Consistency in the Loss Function. We study the
effect of graph consistency in the loss function by compar-
ing the performance of our proposed model with and with-
out the graph consistency loss. We change the loss function
in Eq 24 to L = α1Lelbo + α2Lmse for the ablated model.
The results in Table 4 show that the graph consistency loss
indeed improves the performance.

5. Conclusion

In this paper, we have identified several limitations in ex-
isting multi-agent trajectory forecasting methods. Specif-
ically, we observed that previous methods often overlook
distance and velocity information to learn agent interac-
tions. We also observed that earlier ODE-based methods

often rely on first-order modeling of temporal dynamics,
which fails to capture the motion physics. To address these
limitations, we then propose Agent Graph ODE, a VAE
architecture that explicitly models agent interactions and
temporal dynamics. We begin by constructing dynamic
interaction graphs based on distance and velocity in real-
world space. These graphs are then incorporated in the
spatial Transformers in the encoder and Graph ODEs in
the decoder. Furthermore, we utilize second-order ODEs
to model temporal dynamics, which adhere to Newton’s
Second Law and also integrate distance and velocity in-
formation. Our experiments on traffic trajectory and sports
datasets demonstrate that the proposed Agent Graph ODE
outperforms other methods in terms of forecasting accuracy,
particularly in complex environments. Additionally, it ex-
hibits superior capability in effectively handling sudden sit-
uations.
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