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Abstract

Multiple Object Tracking (MOT) is a rapidly developing
research field that targets precise and reliable tracking of ob-
jects. Unfortunately, most available MOT datasets typically
contain short video clips only, disregarding the indispensable
requirement for adequately capturing substantial long-term
variations in real-world scenarios. Long-term MOT poses
unique challenges due to changes in both the objects and
the environment, which remain relatively unexplored. To fill
the gap, we propose a time-lapse image dataset inspired by
the growth monitoring of strawberries, dubbed The Growing
Strawberries Dataset (GSD). The data was captured hourly
by six cameras, covering a span of 16 months in 2021 and
2022. During this time, it encompassed a total of 24 plants
in two separate greenhouses. The changes in appearance,
weight, and position during the ripening process, along with
variations in the illumination during data collection, distin-
guish the task from previous MOT research. These practical
issues resulted in a drastic performance downgrade in the
track identification and association tasks of state-of-the-art
MOT algorithms. We believe The Growing Strawberries
will provide a platform for evaluating such long-term MOT
tasks and inspire future research. The dataset is available
at https://doi.org/10.4121/e3b31ece-cc88-
4638-be10-8ccdd4c5f2f7.v1.

1. Introduction
Multiple Object Tracking (MOT) is an exciting Com-

puter Vision topic with wide applications in autonomous
driving [25, 37], traffic monitoring [30, 34], video surveil-
lance [32, 41], etc. While these studies mainly focused on
video clips of a few minutes or even shorter [14, 23, 43, 67],
consistent tracking over a longer period also has signifi-
cant implications in real-world contexts. The supervision
of cultivation and livestock [20, 24, 54, 66], the progression
assessment of lesions and wounds [3, 10, 11, 29, 58], and

Figure 1. An example subsequence of image segments from GSD,
depicting the growth over five days. We can notice dramatic ap-
pearance changes and gradual enlargement during the development.
In addition, even though the segments are selected to minimize
lightness variations, slight differences in segment brightness may
still be discernible due to the shifting angles of sunlight.

the microscopic scrutiny of cells [2, 42] serve as intriguing
illustrations of this pragmatic scenario. However, there is a
lack of research on MOT algorithms applied for long-term
purposes, particularly when the intrinsic properties of ob-
jects are also simultaneously developing. Furthermore, using
a lower capture frequency over extended periods [11, 54, 66]
leads to a substantial information loss, thereby heightening
the challenges in accurate object tracking. Therefore, there
is a pronounced need for a realistic dataset to bridge the
gap between current MOT algorithms and their effective
application over prolonged periods, so as to facilitate the
advancement of effective methods.

The tracking of biological development processes exem-
plifies a prominent long-term MOT challenge within this
particular context [38, 39, 65, 68]. For instance, accurate
growth monitoring of fruits and vegetables over time is a
key ingredient to successful horticulture. Recent studies
have demonstrated that images are feasible non-destructive
tools to evaluate the status and quality of fruits [19, 26, 70].
Keeping track of the growth helps in planning harvest sched-
ules, so as to achieve the peak quality and nutritional value
of crops. To follow the growth of individual fruits through
visual observations, automated image processing is required.
We chose strawberries for our research because their 3-7 day
life cycle allows for tracking noticeable appearance changes
while maintaining a reasonable frame rate. In addition, the
natural growth and horticulture activities also introduce ob-
ject movements along frames.

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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In this paper, we introduce the first in-the-wild biological
development monitoring dataset, The Growing Strawberries
Dataset (GSD). The videos of GSD consist of time-lapse
images of strawberry cultivation in six spots at two differ-
ent greenhouses during the growing season in 2021 and
2022 respectively. The longitudinal observations of straw-
berries over their growth are supportive for ripeness assess-
ment, yield prediction, and harvest planning for efficient
supply [9, 50]. Unlike the trajectory tracking of common
moving objects, GSD involves long-term tracking of devel-
oping objects under a low frame rate, which introduces the
two following unique challenges to the MOT task.

Appearance changes result from the biological growth
of strawberries and include changes in color, shape, and size,
as depicted in Fig. 1. These are common properties when a
biological object is developing over time, yet limited MOT
research has taken these issues into concern. Unlike pedes-
trians or vehicles that remain visually consistent throughout
short videos, strawberries undergo continuous changes in ap-
pearance during long-term tracking. Additionally, the visual
appearances of strawberries are more similar to each other
than those of the traffic participants, which are more colorful
and varied. The in-frame discrimination and across-frame
association result in challenges for the appearance descrip-
tors, particularly when also confronting dynamic lighting
situations and overnight intervals.

Irregular movements can be caused by horticulture op-
erations or other human activities. They exhibit occasional
co-occurrence with the strawberries’ incremental movements
from natural weight increase. For example, the natural in-
crease in fruit weight or deliberate repositioning by horti-
culturalists can lead to changes in fruit positions. Human
intervention can introduce unexpected occurrences like sud-
den object movements or camera view occlusions. Addi-
tionally, harvested fruits may permanently vanish from sight.
Since the data is captured hourly, movements could lead
to abrupt changes, e.g. position jumps or switches, which
make many location changes of GSD objects non-linear and
irregular. This characteristic from practice calls for research
of discontinuous or interrupted videos, which has not been
thoroughly investigated, whilst the joint effect with the ap-
pearance change still calls for more effective MOT solutions.

The main contributions of our work are: 1) We established
GSD, a long-term MOT dataset that used six cameras to
track the growth of 12 plants of strawberries in 2021 and
2022 in two different greenhouses. 2) We quantitatively
compared GSD with one popular MOT dataset, MOT20, and
proposed a unique MOT scenario: the temporal tracking of
biologically developing objects in a sparse and long-term
data collection. 3) We benchmarked the performance of
five MOT algorithms to prove the challenges brought by our
proposed scenario. 4) We visualized the importance of GSD
from a realistic perspective. In all, our results evidence the

limitations of state-of-the-art MOT algorithms for such a
long-term MOT task, which highlights the emergence and
necessity of proposing GSD.

2. Related Work
In this section, we briefly review popular object-tracking

and temporal datasets that promote algorithm development
and their limitations on scenarios, in order to highlight the
uniqueness and importance of the GSD. Secondly, we sum-
marize the concepts of state-of-the-art MOT algorithms and
explain our method for evaluating the GSD.

2.1. Image Datasets for Multiple-Object Tracking

Datasets for MOT predominantly focus on trajectory
tracking. Many of the recent tasks of the MOT Challenge
[44] are motivated by surveillance and autonomous driving.
Thus, they mostly focus on the tracking of pedestrians, vehi-
cles, passengers, etc. [18, 23, 43]. For instance, MOT20 [15]
is a widely-used and representative MOT dataset and is ex-
tensively utilized by various algorithms as a benchmark to
assess their performance. The majority of the sequences
are short videos with 10-30 frames per second and lasting
for a few minutes [14]. New challenges mainly originate
from a higher amount and density of objects in emerging
datasets [15, 56, 60]. However, there are limited changes in
the characteristics of research scenarios. For instance, popu-
lar research objects such as pedestrians or vehicles are often
characterized by regular or predictable movement patterns.
As a result, a greater diversity of datasets is required to facil-
itate the generalization of MOT in broader domains [14, 67].

The majority of long-term temporal image datasets are
used for substantial-scale change detection, e.g. the progress
monitoring of construction, deforestation, urbanization, or
animal migrations [17, 45, 47, 57, 64]. One of the shared
goals is to track the temporal changes of large and (mostly-
)static objects or of a comprehensive overview of objects.
Therefore, the main concern in these studies is the pattern
differences across images. On the other hand, these datasets
have limited potential to motivate the development of MOT
algorithms due to the restricted spatial movements of objects.

2.2. Image Datasets for Plant Science

Image datasets are vital for plant science. Sequential im-
ages are a practical data type to accomplish non-destructive
tests and continuous growth monitoring. The majority of
plant science research involving non-destructive testing of
images is carried out within controlled and calibrated labo-
ratory settings [40, 48, 70]. However, for fruits that do not
ripen after harvest, it becomes impractical to rely on lab data
for recording status updates during their growth. Existing
in-field datasets primarily focus on one-shot fruit detection
and lack information on the ripening progress due to limited
object appearance changes over a short period [21,33,49,69].
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Moreover, hyper-spectrum images (HSI) play a valuable role
in plant studies by developing numerical indicators and train-
ing machine-learning models [21, 28, 70]. Yet, integrating
these images into agriculture practices is resource-intensive,
given the already costly nature of HSI data collection. There-
fore, we advocate for a more practical solution: an integrated
temporal dataset merging images in the visual and near-
infrared spectrum. The scarcity of non-visual images further
emphasizes the need for such a comprehensive dataset.

2.3. Algorithms for Multiple-Object Tracking

Online MOT algorithms aim to perform real-time track-
ing of multiple objects in video sequences by continuously
updating object identities and associations. Tracking-by-
detection is the most widely-used strategy in achieving
online MOT [1, 16, 59]. The strategy enhances the algo-
rithms’ adaptability and robustness, enabling them to easily
accommodate and perform well in diverse scenarios. In ad-
dition, it has less reliance on high FPS of data collection
than strategies building end-to-end detector-trackers such
as [4], which exhibits a higher potential for successful adap-
tation and utilization in long-term MOT problems. Offline
MOT solvers are also powerful tools as they utilize batches
of frames [8, 52, 61]. Since the computation effort grows
tremendously on larger datasets 1, it is out of the scope of
the context of our dataset. Thus, online MOT algorithms are
more applicable in GSD.

Algorithms following the tracking-by-detection strategy
consist of two stages: i) applying object detection models
and ii) associating bbox across frames. Research towards
better (near-)real-time performance mainly focuses on en-
forcing the associating algorithm or a better interconnection
between the two stages [59]. Generally, the association step
concerns two criteria [56]: i) The trajectory and motion of
objects. Many MOT algorithms are developed based on the
Simple online and Real-time Tracking (SORT) algorithm, in
which a Kalman filter framework is applied to analyze the
velocity vectors [6, 12, 71]. The utilization of inertia mea-
surement is a widely recognized approach for expeditiously
handling the MOT task. Nevertheless, researchers argue
that trajectories of spatially close objects are difficult to be
distinguished [61]. ii) The appearance of objects. Deep
learning techniques are usually applied to encode the appear-
ance information of targets [13, 59, 61, 62]. Field-specific
object properties are often integrated to enhance associa-
tion performance [11, 52]. Particularly, when the frames
are discontinuous or when the objects are occluded, appear-
ance features are crucial in re-identifying and associating the
tracklets to achieve consistent global tracking [55, 72–75].
Nevertheless, the sparsity of the image collection for GSD in-
dicates a longer interval between frames, which exacerbates
the existing complexity of the task.

1An example on GSD is demonstrated in the supplementary materials.
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Figure 2. Detailed setup in the greenhouse in 2021. The left photo
shows the positions of the white stripes, the planting baskets, and
the heating pipe, which were all placed in parallel. The distance
from the edge of the white stripes to the camera lens was 93cm.
The RGB camera was placed 10 cm to the left of the OCN camera
of each pair, as shown on the top right. The elevation angle of both
cameras is 16.9°. Sample images from RGB-1 and OCN-1 are
shown in the bottom right. Identical strawberries are color-coded.
The setup is similar in 2022 with slightly varied dimensions.

3. The Growing Strawberries Dataset

We aimed to create a dataset about prolonged object track-
ing in a real-world setting for the purpose of long-term MOT.
The growth of strawberries is a good example of a natural
biological development process. Appearance changes and
irregular movements happen during this ripening process.
Such dynamics reveal special characteristics that are also
shared among all kinds of agricultural crops.

To this end, we used six cameras (three RGB + three OCN
2) to track the growth of 12 Favori plants over 30 weeks
in 2021 and 32 weeks in 2022, in two greenhouses with
different cultivation setups in The Netherlands. The cameras
were paired in three sets, denoted as RGB/OCN-1/2/3. They
captured time-lapse images in the greenhouse, such that
videos of the entire ripening process were archived. We
provide human-annotated bboxes for every strawberry, at all
growth stages, and identities for corresponding trajectories.

3.1. Data Collection Setup

Since the ripening lasts around 7-14 days, we used hourly
images for growth monitoring, such that a complete track of
the plant is ensured with circa 100 observations. The straw-
berries were cultivated in planting baskets that hung from
the ceiling. A heating pipe was hung beneath each planting
basket. The cameras were attached to the heating pipe on
the opposite side of the strawberry plant. Fig. 2 illustrates
the detailed setup of the cameras in the greenhouse.

Both cameras faced the plants from parallel perspectives,
where the OCN images were taken with a large view overlap
with the RGB ones to provide hyper-spectral information.

2The channels are: Orange/615nm, Cyan/490nm, Near-Infrared/808nm.
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Figure 3. The upper row lists five image samples taken by RGB-3 . The capture time is indicated in the title. The 1st - 4th images depict the
normal changing pattern of sunlight during the day. We use the 4th image from a different date because the dawn and dusk were not captured
every day. The 5th image shows how the view might be blocked due to human activities. The plot beneath each photo is the corresponding
color spectrum from R/G/B channels respectively. The x-axes indicate the color value (encoded as 0-255). The y-axes are the power of the
color spectrum with a shared amplitude. The color-coded rectangles illustrate the ground-truth (GT) bbox and trajectory annotations.

On average, 28 strawberry fruits from 4 plants were moni-
tored by one RGB camera. We index all three RGB cameras
as RGB-1,2,3. Fig. 3 shows the annotations of an example
image sequence taken by camera RGB-3.

3.2. Ground-Truth Annotation

The trajectory annotations of the strawberries consist of
bboxes with track identifiers (track IDs). Flowers of straw-
berries and paper tags for identifying fruits with further mea-
surement results were annotated into different categories and
were excluded from the benchmark experiments. Hereafter,
we use the word “strawberry” referring to only the fruits.

The annotation was accomplished by drawing and mark-
ing bbox and track IDs. To remain consistent in labels, the
first round of annotation was performed by a single person.
Subsequently, two separate reviewers performed a manual
check on the annotations to ensure accuracy and to mitigate
potential labeling errors or personal biases. In this way, we
guarantee accurate annotations. For an example, please see
Fig. 3 and further in the supplementary materials.

All the images are 4000×3000 pixels. Due to the continu-
ous data collection spanning the entire day, the illumination
conditions exhibited significant and periodic variations. We
therefore set up a brightness threshold and defined a subset
specifically for the following benchmarking experiments.

Day images. The RGB images that were taken under nor-
mal lighting conditions are the majority share of the growth
tracking task. Examples are as depicted in the left three pho-
tos in Fig. 3. We call this subset the “day images". Quantita-
tively, they were defined as the images with luminance (Y) 3

higher than 50. As is illustrated by the first three columns in
Fig. 3, when the zenith angle of the sun changes during the
day, the color spectrum of the photo shifts. This is a practical
challenge brought by the in-the-wild data collection, which
also aggravates the variation of object appearances.

3Luma, calculated according to ITU-R BT.601 standard [7].

Table 1. Statistical overview of the RGB images of GSD. The
2nd column lists the duration of data collection. The 3rd and 4th

columns note the amounts of all images and the images used in the
benchmarking studies respectively. The last two columns present
the total number of bboxes and trajectories. An overview of the
OCN images is presented in the supplementary materials.

Camera Period
Total
img

Anno.
img

Total
bbox

Total
track

RGB-1
Apr 23 -
Nov 9, 2021 4786 2823 67957 492

RGB-2
Apr 23 -
Nov 9, 2021 4785 2638 64434 392

RGB-3
Jun 29 -
Nov 9, 2021 3181 1761 70641 431

RGB-1
Feb 22 -
Oct 3, 2022 5128 3369 93439 540

RGB-2
Feb 22 -
Oct 3, 2022 4699 3062 117291 872

RGB-3
Feb 22 -
Oct 3, 2022 5156 3330 109946 754

Remainder images. The annotations are available for
all frames until most strawberries became invisible when
the view became very dark or when the camera was oc-
cluded by human activities (e.g. the 5th photo Fig. 3). We
defined the subset “darker images" as the photos that were
taken under insufficient daylight (i.e. image brightness ≤
50) but the strawberries were still visible to be annotated, for
example, the 4th photo in Fig. 3. Nevertheless, without addi-
tional brightness normalization, darker images degraded the
performance of the detection models. Considering that the
number of darker images was limited (at most once during
dawn and/or dusk), we excluded them in the benchmarking
experiments to keep a fair performance comparison.
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Figure 4. Quantitative comparisons of GSD-2021-RGB-1 and MOT20-01, using the GT annotations. The 1st spectrum shows the distribution
of object colors, posed by the Hue value averaged from the center 50% area of the bboxes. The 2nd plot illustrates the distribution of overall
object movements, using the IoU as a metric. The 3rd plot presents the standard deviations of the bbox IoU of each trajectory.

Trajectory annotations. Overall, the trajectories of
strawberries have an average length of 152 bboxes, yet it
ranges from 2 to 600+ bboxes. The extra-long tracks resulted
from slower growths under cool temperatures. In fact, there
is still a notable proportion of tracks that last less than 20
segments, which are mostly incompatible with the natural
growth cycle of strawberries. Two major reasons for these
short tracks are: i) the back-layer ones only started to be
visible after re-position practices from humans because the
strawberries grew in dense clusters; ii) the growths were only
partially monitored because the size increases of strawberries
might squeeze the others out or into the frames.

3.3. Data Characterization

Compared to pedestrian-focused datasets such as the
MOT20, GSD objects usually are more similar looking to one
another, whilst they have more evident appearance changes
over frames. In addition, larger and more irregular move-
ments are observed in GSD trajectories.

Fig. 4 presents comparisons of the color and movement
distribution of the sequence GSD-2021-RGB-1 (shorten as
RGB-1 in the following text) and MOT20-01. The 1st subplot
shows the hue value, calculated from the HSV color space
[35], of all bboxes. Here, RGB-1 shows a higher degree of
monotonicity among the observations compared to MOT20-
01, which also indicates larger challenges to the feature
extractors. Nevertheless, for the same GSD object, the color
keeps changing due to its biological development over the
time span, together with the illumination condition. An
example is shown in Fig. 5.

We measured the object movements by the Intersection
of Union (IoU) of observations in adjacent frames because a
large proportion of MOT algorithms consider a sequential
matching of objects by including more and more frames in
analysis. Followingly, larger movements are indicated from
the left of the x-axis in the 2nd subplot. As Fig. 4 shows, the
movements of GSD objects are more spread out, whilst the
MOT20 objects exhibit slower movements, holding a mini-

mum IoU of 0.8. Moreover, there are a few bboxes that have
minimal intersections with its previous observation, which
introduces extraordinary challenges to the inertia measure-
ment and the association algorithms. We also calculated the
standard deviation (std.) of the IoU of each trajectory. The
value indicates the irregularity of how each object moves. As
the 3rd subplot shows, such irregularity in RGB-1 is higher
in magnitude.

4. Benchmark Studies

Since GSD has a large number of high-resolution images,
we primarily restricted our attention to lighter, online solvers.
In addition, we applied GMTracker [27] on a small subset to
exemplify the performance with an offline solver 4.

We assessed the performance of the four MOT algorithms
to demonstrate the challenges presented by GSD: i) Byte-
Track [71] that performs an Intersection of Union (IoU)
analysis after applying the Kalman filter as SORT does;
ii) Observation-Centric SORT (OC-SORT) [12] that is en-
hanced against noised and non-linear movements; iii) Deep-
SORT [62] that introduces appearance descriptions to iden-
tify objects before applying the matching by movements; iv)
StrongSORT [16] that improves the movement measurement
and its balance with the appearance features. On top of the
original settings, we altered the appearance-cost parame-
ter (λ) of StrongSORT to introduce different emphases for
appearance and motion information in the association stage.

Since all the algorithms share the tracking-by-detection
strategy, we present our experiments from three aspects:
the overall MOT performance of the four algorithms (and
variations), detection-stage impact, and tracking-stage influ-
ence. Drawing upon the results, we explore the potential
implications stemming from the distinctive characteristics
of the GSD, which we contend represent challenges within
biological development tracking applications.

4Our justification for using the subset is provided in the appendix.
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4.1. Application of MOT algorithms on GSD
By dividing the subsets by cameras, we first trained three

YOLOX-x models with a “leave-one-camera-out" cross-
validation strategy. We employed the detections on the test
set for the MOT performance evaluation. We conducted
all experiments using the daytime subset of GSD-2021 to
ensure that darkness-related distractions were avoided, thus
enabling a more equitable comparison. We reduced the IoU
threshold to 0.1 in the association stages, due to the different
object movement patterns as indicated in Fig. 4. We indepen-
dently developed autoencoders to serve as the appearance
descriptors for DeepSORT and StrongSORT. Detailed param-
eter settings and searching are noted in the supplementary.

We evaluated the overall performance by the widely-
known MOT criteria: the Higher Order Tracking Accu-
racy (HOTA) [36] and the Multi-Object Tracking Accuracy
(MOTA) [5]. The performance of track identification is
described by accuracy (AssA), recall (AssRe), precision (As-
sPr), and the balanced criterion IDF1 [51]. We counted the
number of identity switches (IDS) and the interruptions of
trajectories (Fragmentation/FM) and divided the values by
the amount of ground-truth (GT) tracks to compare with
other datasets, e.g. MOT20 or MOT17. They are noted as
“IDS/Tr" and “FM/Tr" respectively.

4.2. Assessing Comprehensive MOT Performance

The performance metrics are summarized in Tab. 2. In
general, the algorithms exhibited inferior performances on
GSD-2021 compared to their achievements on MOT20. No-
tably, compared to more comprehensive metrics such as
HOTA and MOTA, all the criteria related to the evaluation
of bbox association and trajectory identifications, e.g. IDF1
and AssA, indicate intense performance drops from their
original benchmarks. The performance downgrade came
with exaggerated frequencies of ID switches and trajectory
interruptions. The numbers suggest that the GSD tracks have
a relatively higher discontinuity as per the MOT algorithms,
which could be caused by the increasing changes during the
prolonged data collection. The results further evidence that
GSD introduces a more challenging task than MOT20 for the
state-of-the-art MOT methods.

As shown in Tab. 2, ByteTrack performed the best in
terms of HOTA, and OC-SORT was better in limiting the
switching of track IDs. When adjusting the parameter λ in
StrongSORT to increase the emphasis on motion over ap-
pearance matching, notable improvements in overall perfor-
mance were observed. Hence, associating bounding boxes
based on inertia measurements is proved to be relatively
more applicable in this case. Nevertheless, we also notice
that, whilst shifting the focus to object movements lessened
the IDS/Tr, it also led to higher FM/Tr. It indicates that the
current appearance-based methods need to be improved to
handle data collected at such a sparse frequency.

Upon a dedicated processing time of 112 hours, GM-
Tracker associated the first 750 frames of RGB-1 . Notably,
apart from the training process that already required substan-
tial time and computational memory resources, it devoted
over 2 hours to processing some of the frames, with a maxi-
mum time of 7498 seconds for a single frame. As evident in
Tab. 2, the end-to-end network’s performance matched the
other benchmarks, yet was achieved by significantly more
intensive use of resources [31, 46]. Hence, we remain our
focus on the lighter solvers in subsequent discussions.

4.3. Analyzing Detection Performance and Impact

To verify the attainable optimal solution of the object-
detection stage, we evaluated two state-of-the-art object de-
tection methods on GSD, the anchor-based detector Faster
R-CNN and the anchor-free detector YOLOX-x, following
the “leave-one-camera-out" strategy. The Average Precision
(AP) obtained by both models is noted in Tab. 3.

Due to limitations from the volume and properties of the
training data, the detection performances were not so compet-
itive as the private models that were specifically trained for
the pedestrian-tracking challenges [16]. However, under a
single-category setting, both detectors’ performances aligned
with the published detections of the MOT20 testing set [15]
and their respective model developers’ benchmarks [22, 63].
Although these performances are not directly comparable
due to the differences in the validating datasets, we argue
that the difficulty level of the object detection task on GSD
is not significantly higher than other datasets. Therefore, the
main challenge brought by GSD lies in the association stage,
which is also the main task of MOT.

Moreover, for a fair comparison of algorithm perfor-
mances on GSD, we also utilized the metrics obtained from
the public MOT20 detection sets (provided on the MOT20
website [31, 46] As shown in Tab. 2, the MOTA scores
achieved using the public MOT20 detections are even lower
than the results obtained on GSD. This divergence can be
attributed to the limited accuracy of the public detection set.
Nevertheless, even when emphasizing track identification
metrics like HOTA and IDF1, substantial differences persist.
Additionally, the algorithms’ IDS/Tr and FM/Tr on GSD are
still significantly higher compared to those on MOT20.

4.4. Decoupling Association from Prior Stages

To compare the specific accuracy of track association
regardless of the detection performance, we benchmarked
StrongSORT on GT bbox from GSD-2021 and MOT20. For
validation, we used RGB-1 and MOT20-01 as examples. As
shown in Tab. 4, both MOTA were boosted due to the perfect-
detection assumption. However, the improvements in HOTA
and IDF1 on RGB-1 experiment were not so significant as
those in the MOT20-01 experiment. Furthermore, noticeable
gaps in performance are observed in IDS/Tr and FM/Tr.
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Table 2. Performance metrics of the four original and two tailored MOT algorithms on the daytime subset of GSD-2021 (*the GMTracker was
only applied on the first 750 frames of GSD-2021-RGB-1 ). The results are compared with the performance metrics of the same algorithms
implemented on the MOT20 test set, using the results with private detections in [12] and [16] and the results with public detections on the
MOT20 challenge website. (**The performance of GMTracker was compared with its results on the MOT17 test set, using the metrics
claimed by [27]). The differences are indicated by red and teal texts that are noted at the top right of each value, representing performance
degrades and improves, respectively. ’Pvt’ and ’Pub’ indicate whether the gap is with benchmarks using the private or public detections (and
encoders if applicable). If one value is shown, it is compared with only the metrics claimed in the paper, obtained from private detections
(and encoders). In terms of StrongSORT, λ is the default weight on the appearance cost, and λ′ indicates an altered value.

MOT Algorithm HOTA MOTA IDF1 AssA AssRe AssPr IDS/Tr FM/Tr

ByteTrack 39.8
Pvt:-21.5
Pub:-16.6 70.7

Pvt:-7.1
Pub:+3.7 39.4

Pvt:-35.8
Pub:-30.8 25.6 29.3 70.0 5.2

Pvt:+4.2
Pub:+4.7 5.4

Pvt:+4.2
Pub:+4.0

OC-SORT 39.7
Pvt:-22.4
Pub:-14.6 68.5

Pvt:-7.0
Pub:+8.6 39.5

Pvt:-36.4
Pub:-27.5 25.9 29.4 72.5 4.5

Pvt:+3.8
Pub:+4.1 5.3

Pvt:+4.4
Pub:+3.4

DeepSORT 34.5-22.6 49.3-22.5 33.0-36.6 22.3 26.4 62.3 8.4 +7.3 5.4
StrongSORT(λ=0.98) 36.1-25.4 49.3-22.9 34.0-41.9 23.9 27.7 64.7 8.8 +7.9 5.1
StrongSORT(λ′=0.5) 38.5 59.9 35.8 25.4 27.9 76.8 6.2 5.8
StrongSORT(λ′=0.02) 38.6 60.4 35.8 25.5 27.9 77.7 6.0 5.9
GMTracker* 37.7 60.2 +4.0** 31.7-32.1** 22.2 23.2 85.0 20.3 +19.6** 3.8

Table 3. The first three rows show the AP of the detections of GSD
and the public MOT20 detections. All values are averaged over the
three test sets split by the “leave-one-camera-out" strategy. The lat-
ter two rows present the original mAP benchmark for comparison.

Model-Dataset Configuration AP

YOLOX-x on GSD 55.7
Faster R-CNN on GSD 55.8
Faster R-CNN on MOT20 [15] 57.6

Faster R-CNN on COCO [63] 40.2 (mAP)
YOLOX-x on COCO [22] 59.2 (mAP)

The influence of the parameter λ follows a similar pat-
tern as previously described – the emphasis on motion or
appearance results in a trade-off between IDS/Tr and FM/Tr.
Referring to the data characterization, the higher similarity
in appearances among the GSD objects and the dynamic
variation of them may contribute to the downgraded IDS/Tr
performance. Considering that the data was collected over
prolonged periods, the incorporation of appearance features
is expected to assist in consolidating the fragmented track-
lets, e.g. after human activity or overnight. Hence, it is
advisable to tailor the utilization of appearance matching in
MOT algorithms for scenarios involving sparse frame rates.

4.5. Evaluating Results from one Downstream
Application: Growth Curve of Strawberries

One contribution of GSD is its provision of valuable in-
formation for agriculture practices, enabling precise antici-
pation of crop growth. Since the natural ripening pattern of
strawberries is growing from green to red, we utilized the

A* channel from the CIELAB color space [53], which es-
sentially represents the levels of green or magenta. In Fig. 5,
the blue curve demonstrates a sample A* variation of the
object across frames. Marking associated observations with
colored dots and un-associated ones with empty dots, the
depicted process is fragmented into five segments by four
tracklets suggested by ByteTrack (due to the best HOTA in
Tab. 2), involving two IDS in tracklet #21 and #40. Notably,
during the crucial period when the strawberry underwent
the transition from green to red, which is a crucial factor in
determining the timing of harvest, ByteTrack was unable to
provide a thorough description of this transformation.

To evaluate the significance of performance deficiency
from the perspective of realistic, downstream applications,
i.e. tracking the biological development of objects, we set up
thresholds to define the “cherry-picked tracks" that record
relatively comprehensive monitoring of growth patterns. We
chose tracks based on more significant variations of the
object’s transition from green to red, determined by the
changes in the A* channel values in the CIELAB color space,
or simply select the tracks with longer lengths. These tracks
were considered “more important" ones as they provide more
complete information about the growing progress of the crop.
We implemented incremental thresholds to perform stricter
filtering of their importance.

Fig. 6 discusses the specific performance of ByteTrack,
the relatively more capable solution for GSD, on the different
filtered subsets of RGB-1 . As is depicted, the recall of track
association declined as the track became more comprehen-
sive about the biological development cycle. Simultaneously,
there were increases in IDS/Tr and FM/Tr. The track length
played a more significant role in the deterioration of perfor-
mance under this particular scenario.
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Table 4. Association-stage performance comparison of StrongSORT, with variations on the appearance-cost parameter λ, applied on the
ground-truth detections. We use G and M to represent GSD-RGB-1 and MOT20-01 respectively in this table. In all experiments, the
ground-truth locations of the bboxs were used, such that the algorithm performance was not influenced by the detection accuracy.

HOTA MOTA IDF1 IDS/Tr FM/Tr

Algorithm G M G M G M G M G M

StrongSORT(λ=0.98) 51.5 98.6 83.5 99.5 43.5 98.6 6.3 0.0 3.7 0.0
StrongSORT(λ′=0.5) 51.4 99.3 83.6 99.5 42.5 99.4 5.9 0.0 4.6 0.0
StrongSORT(λ′=0.02) 52.2 99.2 85.1 99.5 42.7 99.4 5.2 0.0 4.2 0.0
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Figure 5. The color change of an example strawberry under the GT
trajectory and the ByteTrack results. The x-axis indicates the se-
quence of frames. The y-axes are for the average A* values (scales
on the left) and L* values (scales on the right) of the observations.
The blue and gray translucent strokes illustrate the value of the GT
annotations. The lines with filled dots are identified observations
by ByteTrack, which are color-coded to indicate each track ID. If
the object in one frame is not associated with any of the tracks, we
put an empty dot on the A* curve from GT.

Viewing from an application-oriented standpoint, the
growth-tracking task also targets monitoring pivotal stages
when fruits are ripening swiftly. Therefore, it is argued that
there is potential for advancing state-of-the-art MOT algo-
rithms, particularly in accurately identifying and associating
objects within similar biological development processes.

5. Conclusion
With this paper, we propose a fully-annotated dataset that

tracks the growth of in total of 3528 strawberries over 30
weeks in 2021 and 32 weeks in 2022 in two different green-
houses: The Growing Strawberries Dataset (GSD). It reveals
a unique Multiple-Object-Tracking (MOT) challenge – fol-
lowing biologically developing instances over a prolonged
period. In GSD, progressive appearance change and irregular
movements are captured from the longitudinal observations
of cultivation practices. For example, human interference
with the sparse frame rate introduced drastically non-linear
movement, which is challenging for many algorithms.
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Figure 6. MOT performance change by selection criteria of trajec-
tory subsets, demonstrated by recall (1st column), ID switching (2nd

col.), and times of fragments (3rd col.) of tracklets. The first row
illustrates the impact on the performance metrics when the tracks
were filtered by different minimum lengths. Experiments for the
second row selected the tracks by the differences of the average A*
value of the last three and the first three bboxs.

We benchmarked the performance of four online MOT
algorithms on GSD. The obtained result metrics highlight the
need for advancing MOT methods, particularly in associating
the bounding-box association for long-term MOT tasks. The
tracking continuity was affected by both appearance changes
and diverse object motions, which also presented a trade-
off when fine-tuning StrongSORT. Furthermore, an offline
algorithm demonstrated the computational effort required to
handle a large dataset such as GSD, yet achieving similar
metrics. In summary, the results call for algorithms that
could improve track associations while utilizing the features
properly and efficiently.

Essentially, biological development is the principal prop-
erty that makes the GSD challenge unique, but it can also
provide insights for other long-term MOT tasks. For instance,
monitoring other processes with incremental changes, such
as cellular growth and corrosion expansion, etc. The infor-
mation provided by more than the visual spectrum is also
supportive of plant science [9, 50]. The GSD challenge high-
lights the need for reliable methods to handle in-the-wild data
imperfections. The inevitable real-world challenges point
out potential future research for robust data utilization.
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