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Abstract

Unsupervised domain adaptation (UDA) tries to over-
come the need for a large labeled dataset by transferring
knowledge from a source dataset, with lots of labeled data,
to a target dataset, that has no labeled data. Since there
are no labels in the target domain, early misalignment
might propagate into the later stages and lead to an error
build-up. In order to overcome this problem, we propose
a gradual source domain expansion (GSDE) algorithm.
GSDE trains the UDA task several times from scratch, each
time reinitializing the network weights, but each time ex-
pands the source dataset with target data. In particu-
lar, the highest-scoring target data of the previous run are
employed as pseudo-source samples with their respective
pseudo-label. Using this strategy, the pseudo-source sam-
ples induce knowledge extracted from the previous run di-
rectly from the start of the new training. This helps align the
two domains better, especially in the early training epochs.
In this study, we first introduce a strong baseline network
and apply our GSDE strategy to it. We conduct experiments
and ablation studies on three benchmarks (Office-31, Of-
ficeHome, and DomainNet) and outperform state-of-the-art
methods. We further show that the proposed GSDE strategy
can improve the accuracy of a variety of different state-of-
the-art UDA approaches.

1. Introduction
Deep neural networks have advanced most computer vi-

sion tasks greatly. However, large labeled datasets are re-
quired to train these networks. While there is a variety of
large datasets available online, most times there exists a do-
main shift between the available data and the target data, for
which the network will be employed. This can be overcome
by labeling the target data and finetuning the network on it,
but the labeling process is very tedious and costly. Unsu-
pervised domain adaptation (UDA) overcomes the need to
label the target data by transferring knowledge from a la-
beled source dataset to an unlabeled target dataset.

One problem of UDA is early alignment error build-up.
At the start of the training, the classification network is nei-
ther aligned to the source nor the target domain. Usually,
warm-up training using only the source data or a progres-
sive learning rate for the adaptation task is employed. How-
ever, this mostly ignores the target data, meaning that the
classifier only aligns to the source data. In this work, we
introduce a strong prior in the form of pseudo-source data
that is instilled right from the beginning of the training pro-
cess. In particular, we start the adaptation process N times,
each time reinitializing the network weights. Each time the
training process restarts, we use the most confident predic-
tions with their pseudo-labels of the previous run (i.e. the
class predictions) and introduce them into the source dataset
as pseudo-source data. This mainly gives two advantages.
Firstly, the pseudo-source data allow the classifier to align
to the target data from the beginning of the training, and sec-
ondly, the pseudo-source data act as guidance for the target
data during the domain alignment process.

While it is beneficial to have a strong prior, meaning
a large amount of target data employed as pseudo-source
data, this also increases the chance of misclassified data be-
ing employed as pseudo-source, which would be harmful
to the adaptation. To mitigate this dilemma, the GSDE al-
gorithm is run iteratively, each time increasing the amount
of target data used as pseudo-source data. For the n-th run
we introduce the n−1

N highest scoring target data into the
source dataset as pseudo source data. Therefore, with each
run we introduce a stronger prior to the training, letting the
network early on align to both source and target data.

In this paper, we first introduce a strong baseline net-
work that consists of four different losses: classification
loss of source (and pseudo-source) data, domain adversarial
loss, semantic loss, a semi-supervised loss. We then apply
the proposed Gradual Source Domain Expansion (GSDE)
strategy to it. In addition, we present additional improve-
ments, in particular the use of multiple bottlenecks and an
advanced scoring technique for pseudo-labels. Finally, we
also show that the GSDE strategy works well with other
state-of-the-art domain adaptation methods, based on a va-
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(a) Start of alignment. (b) Finish of alignment.

(c) Start of alignment with pseudo-
source.

(d) Finish of alignment with pseudo-
source.

Figure 1. Concept of our idea for adversarial adaptation. During
the alignment of the source and target domain (a), some samples
might end up misclassified (b). Using the confident target sam-
ples as pseudo-source samples in a new run (c) helps to guide the
adaptation, leading to a better adaptation (d).

riety of adaption principles.
Our main contributions are:

• We introduce a strong baseline network consisting of
four different losses.

• We introduce a gradual source domain expansion strat-
egy (GSDE), that allows the network to overcome the
problem of early misalignment build-up by introduc-
ing a strong prior based on previous runs. Each time
the network weights are reinitialized to counter the
early alignment error build-up.

• We show the effectiveness of our algorithm on three
datasets (Office-31, Office-Home, and DomainNet)
and further evaluate the method in various ablation
studies.

• We validate that our GSDE strategy also works with
a variety of UDA methods, that are based on differ-
ent adaptation strategies, and show that the addition of
GSDE yields significant increases in accuracy.

2. Related Work
One main strategy to solve the problem of unsupervised

domain adaptation (UDA) is to align the feature representa-
tions of source and target domain. Surveys for this task can
be found in [36], [34]. Probably the most common strategy
to achieve this is by using an adversarial approach. Usually,
a domain classifier is employed to distinguish whether the
feature space of an image belongs to the source or target do-
main. Domain-adversarial neural network (DANN) [7] in-
troduced a gradient reversal layer before the domain classi-
fier, so that the feature extractor is trained to extract features

(a) Start of training. (b) Finish of training.

(c) Start of training with pseudo-source. (d) Finish of training with pseudo-
source.

(e) Legend.

Figure 2. Concept of our idea for adaptation using entropy mini-
mization. As the classifier is not aligned to the target samples (a),
samples might end up being misclassified (b). Using the confident
target samples as pseudo-source samples allows the classifier (and
its decision boundary) to adjust to the target samples (c), resulting
in a better adaptation (d).

that are indistinguishable for the domain classifier. Condi-
tional domain adversarial networks (CDAN) [16] extends
this method by multilinear conditioning the domain classi-
fier with the classifier predictions. A lot of researchers have
built up on DANN or CDAN.
[20] introduces a spectral adaptation to CDAN. [9] adds
group- and class-wise domain classifiers to DANN and syn-
chronizes the gradient between the different domain clas-
sifiers. Moving semantic transfer network [27] extends
DANN with a moving semantic loss. The method creates
class representations for both domains and each class in the
feature space, which are updated with each sample during
the training process. The distance between the source and
target feature representation of a class is used as domain
adaptation loss.

Another approach for UDA is information maximiza-
tion or entropy minimization. [13] exploits both informa-
tion maximization and self-supervised pseudo-labeling to
implicitly align the representations of both domains. [19]
employs data augmentation and minimizes the entropy if
the predictions of the different data augmentations are con-
sistent, or maximizes the entropy otherwise.

One problem of UDA is early alignment error build-up.
At the start of the training, the classification network is nei-
ther aligned to the source nor the target domain. Adopting
target to source in this state could introduce a misalignment
that propagates to the later stages of the training. Adversar-
ial methods usually employ a progressive learning rate [7],
[16], [27], other methods often employ warm-up training
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using only the source data [19], source-free UDA methods
even decouple the training of the model with source data
with the adaptation phase using only target data [13], [29],
while still achieving state-of-the-art results.

However, we argue, that this introduces a strong bias to-
wards the source data as the network mostly or only relies
on source data during the early stages of the training, result-
ing in a network that is not well aligned to the target data,
which can lead to an error-build up.

To overcome this problem [3] introduces a progressive
feature alignment network. In particular employing an easy-
to-hard transfer strategy, that adapts easy, or well-aligned,
samples first and progressively introduces harder samples.
[10] employed a clustering method in combination with a
class-aware sampler that excludes hard (ambiguous) sam-
ples and classes from the training during the early stages.

In contrast to this, we introduce pseudo-source data into
the source dataset as a strong prior. This allows to draw on
the knowledge extracted from previous runs to adapt to the
target data even early on in the training.

3. Methodology

In unsupervised domain adaptation, the task is to mit-
igate the domain shift between a source and target do-
main. For the source domain Ds a set of ns labeled sam-
ples Ds = (xi,s, yi,s)

ns

i=1 is given, where xi,s donates a
sample with the corresponding label yi,s. For the target
domain Dt only the samples are given without any labels
Dt = (xi,t)

nt

i=1. The goal is to estimate the labels for the tar-
get domain ŷi,t by exploiting the shared feature space that is
similar, but different. In our work, we tackle the vanilla or
closed-set setting, where the source and target domain have
identical label classes Cs = Ct.

3.1. Gradual Source Domain Expansion

The main contribution of this work is the introduction of
the gradual source domain expansion (GSDE) strategy. The
strategy trains the network several times from scratch, each
time reinitializing the network weights, and increasing the
amount of pseudo-source samples and therefore increasing
the instilled prior knowledge from the previous run. In de-
tail, we train the network N times from scratch, each time
reinitializing the network weights, and for each consecutive
run n we expand the source domain by adding target do-
main samples to it: D′(n)s = Ds ∪D(n)′t, where D(n)′t is
a subset from Dt. The samples from the subset D(n)′t are
assigned pseudo-labels according to the predictions of the
previous run. D′t = (xi,t, ŷi,t)

n′
t

i=1.
While it is beneficial to have a strong prior, meaning

a large amount of target data employed as pseudo-source
data, it also increases the chance of misclassified data being
employed as pseudo-source. This in turn would be harmful

Input: Source and target dataset: Ds,Dt

/* Iteratively train network from
scratch for N runs */

for n = 1;n ≤ N do
/* Create expanded source

dataset */
D′t = Dt ∈ topn−1

N of p̂(yT )
D′s = Ds ∪D′t
/* Train network */
Initialize dataloader D′s and Dt

Initialize feature extractor and classifier Gc,Gf

Train network Gc,Gf

/* Calculate scores for next run

*/
Calculate predictions for target data
p̂(yT ) � Gc(Gf (xT ))

end
Algorithm 1: Algorithm of the proposed gradual source
domain expansion.

for the adaptation. In order to mitigate this dilemma, the
GSDE algorithm is run iteratively. In the first few runs only
a few, high-scoring samples are employed as pseudo-source
data, thus decreasing the possibility of employing misclas-
sified samples. In practice, for the n-th run, we employ
the n−1

N highest scoring target samples with their respective
pseudo-labels. The algorithm can be found in Alg. 1.

3.2. Motivation and Intuitive Explanation

For domain adaptation task, adversarial adaptation and
entropy minimization are two adaptation strategies that are
commonly used. The aim of adversarial adaptation is
to generate domain-invariant features, aligning the feature
space of source and target domain. Entropy minimization
on the other hand tries to minimize the entropy of the tar-
get samples, in effect moving the samples away from the
decision boundary.

The concept of our idea is displayed in Fig. 1 for ad-
versarial adaptation and Fig. 2 for entropy minimization.
In the beginning, the feature distribution of the source and
target dataset are apart. Through adversarial training, the
feature extractor is trained to generate domain invariant fea-
tures, meaning that source domain and target domain are
moved towards each other to encompass the same space in
the feature space. However, this process is class-agnostic.
This means that while the same feature space is occupied,
some samples end up on the wrong side of the classification
boundary as shown in Fig. 1b. Using the confident samples
from the previous run as pseudo-source samples helps to
align the features within the target domain (Fig. 1c). Target
samples are aligned simultaneously to the pseudo-source
and original source data. The pseudo-source data can be
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seen as guidance or anchor for the alignment process (Fig.
1d).

In the case of entropy minimization, one problem is that
the classifier might not be well aligned with the target data
as can be seen in Fig. 2a. This often leads to early align-
ment error build-up, especially for samples that are close to
the decision boundary (Fig. 2b). Introducing a strong prior
in the form of the pseudo-source labels helps to align the
decision boundary for the target data (Fig. 2c), resulting in
a decision boundary that is better aligned to the target data
early on. Thus resulting in a better adaptation (Fig. 2d).

Many adaptation methods also employ a mixture of
both adaptation strategies. The GSDE algorithm is run it-
eratively, employing only a few high-scoring samples as
pseudo-source data first, thus decreasing the possibility of
employing misclassified samples. With each run the amount
of pseudo-source data is increased.

4. Adaptation Network

In this section, we introduce our baseline network which
consists of four losses: classification loss LC , adversarial
loss LAD, semantic loss LMS , and semi-self-supervised
loss LSS .

L = LC + LAD + LMS + LSS (1)

The classification loss is the cross-entropy loss and is used
for the extended source domain D′s. It should be noted that
the other losses also employ the extended source domain as
source data. We chose the three adaptation losses as they
complement each other well. The adversarial loss advo-
cates domain invariant features, the semantic loss creates
compact representations within each class and increases the
distance between representations of different classes, and fi-
nally the semi-self-supervised loss promotes augmentation
invariant features.

Furthermore, we introduce a multiple bottleneck archi-
tecture and an advanced scoring technique for the pseudo-
labels as additional improvements.

4.1. Loss Functions

4.1.1 Adversarial loss: LAD

The first adaptation loss of our method is an adversarial loss.
We employ the CDAN [16] network for it:

LAD = lam · LBCE(Gd((fi ⊗ pi), di)) (2)

where Gd is the domain classification network. fi are the
features of sample i, pi the class probabilities and di the
domain label. Same as for CDAN, we employ a progres-
sive learning rate lam for the adversarial loss. A gradient
reversal layer is employed before the domain classification

network in order to invert the training objective, from dis-
criminating the domains to creating indistinguishable do-
main features.

4.1.2 Semantic loss: LMS

For the second adaptation loss of our method, we use a
moving semantic transfer loss LMS . This loss is based on
MSTN [27]:

LMSTN =

K∑
k=1

Φ(Ck
s , C

k
t ) (3)

where Ck
s and Ck

t are the moving centroids of the classes in
feature space for source and target data respectively. Φ is a
distance measure. LMSTN aligns the class representations
of source and target data within the feature space. Inspired
by current deep-clustering-based methods [10] [24] we ex-
tend the loss to also enlarge the distance between centroids
of different classes:

LMS =

K∑
k=1

lam ·Θ(Ck
s , C

k
t )+

K∑
k=1

K∑
j 6=k

Θ(Ck
s , C

j
s) + lam ·Θ(Ck

s , C
j
t ) + lam ·Θ(Ck

t , C
j
t )

(4)

The cosine similarity between the centroids is used as func-
tion Θ. lam is the progressive learning rate, the same as for
the other adaptation losses. Note that Θ(Ck

s , C
j
s) does not

employ lam as it only relies on source data.

4.1.3 Semi-self-supervised loss: LSS

For the semi-self-supervised loss, we chose the MixMatch
algorithm [1] as it combines consistency regularization,
MixUp regularization, and entropy minimization.

4.2. Additional Improvements

We further introduce multiple bottlenecks and an ad-
vanced scoring of the pseudo labels as additional improve-
ments.

4.2.1 Multiple bottlenecks

Inspired by [5] and [6], we employ a multiple bottleneck
strategy. Our implementation employs k bottleneck layers
in parallel and averages over the output of all bottleneck
layers. The use of multiple bottleneck layers that are all ini-
tialized differently prevents the bottleneck from converging
into a local minima. The output of the multiple bottlenecks
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Table 1. Accuracy results on Office-31 dataset. Best results are displayed in bold and the runner-up results are underlined. We display the
results of the network with and without our proposed Gradual Source Domain Expansion strategy.

Method A�W D�W W�D A�D D�A W�A Avg

ResNet-50 [8] 68.4 96.7 99.3 68.9 62.5 60.7 76.1

MCD [22] 88.6 98.5 100. 92.2 69.5 69.7 86.5
MSTN [27] 91.3 98.9 100. 90.4 72.7 65.6 86.5
CDAN+E [16] 94.1 98.6 100. 92.9 71.0 69.3 87.7
SymNets [33] 90.8 98.8 100. 93.9 74.6 72.5 88.4
MJE [31] 91.9 99.0 100. 93.7 76.1 77.8 89.8
BIWAA-I [26] 95.6 99.0 100. 95.4 75.9 77.3 90.5
CAN [10] 94.5 99.1 99.8 95.0 78.0 77.0 90.6
SRDC [24] 95.7 99.2 100. 95.8 76.7 77.1 90.8
FixBi [17] 96.1 99.3 100. 95.0 78.7 79.4 91.4

Ours 95.8 99.2 100. 95.6 76.0 77.2 90.6
Ours+GSDE 96.9 98.8 100. 96.7 78.3 79.2 91.7

is calculated as:

B(ybb) =
1

k

∑
k

Bk(ybb) (5)

where ybb is the output of the backbone, and Bk is the k-th
bottleneck.

4.2.2 Scoring of pseudo labels

Apart from the probability score of the classifier, we further
employ a neighborhood aggregation score and a score based
on label propagation.

palli =
1

3
(pi + pNA

i + pLP
i ) (6)

The neighborhood aggregation score is motivated by [14]
and finds the m closest target data in the feature space and
aggregates their respective classification probability scores.

pNA
i =

1

m

∑
m

p(k) (7)

The label propagation score function is based on [35] and
follows the same implementation as [32] which is achieved
by minimizing the objective:

n∑
i=1

||pLP
i − pi||+ λ

n∑
i,j

ai,j ||
pLP
i√
dii
−

pLP
j√
djj
||2 (8)

where n is the amount of both source and target data, y is
a one-hot vector with the ground truth label for the source
data, and 0 otherwise, ai,j depicts the cosine similarity be-
tween the samples i and j.

5. Experiments

We evaluate our proposed method on three different do-
main adaptation benchmarks, Office-31, Office-Home, and
DomainNet. We show that we can improve the baselines
significantly. In ablation studies, we further investigate the
contribution of the different parts of our proposed algo-
rithm.

5.1. Setup

Office-31 [21] is the most popular dataset for real-world
domain adaptation. It contains 4,110 images of 31 cate-
gories. The domains are Amazon (A), Webcam (W), and
DSLR (D). We evaluate all six possible adaptation tasks.

Office-Home [25] is a more challenging benchmark than
Office-31. It contains 15,500 images of 65 categories. The
domains are Art (A), Clipart (C), Product (P), and Real-
World (R). We evaluate all twelve possible adaptation tasks.

DomainNet [18] is a large-scale dataset with about
600,000 images from 6 different domains and 345 differ-
ent classes. However, as some domains and classes have
a considerable amount of mislabeled data, we follow [23]
and only use a subset of 40 commonly seen classes from
the four domains of Real World (R), Clipart (C), Painting
(P), and Sketch (S). We evaluate all twelve possible adapta-
tion tasks. Other than for the other two datasets, the target
data for adapting and testing are different, furthermore, the
per-class accuracy is reported for this dataset.

Implementation details: We built up our implementa-
tion on the CDAN implementation of [16]. We use the
ResNet-50 [8] architecture as the backbone for all of our
experiments. We train each run for 5000 iterations and em-
ploy the final network for the predictions, we do not do any
checkpoint selection. We increase the learning rate by a
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Table 2. Accuracy results on Office-Home dataset. Best results are displayed in bold and the runner-up results are underlined. We display
the results of the network with and without our proposed Gradual Source Domain Expansion strategy.

Method A�C A�P A�R C�A C�P C�R P�A P�C P�R R�A R�C R�P Avg

ResNet-50 [8] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

MSTN [27] 49.8 70.3 76.3 60.4 68.5 69.6 61.4 48.9 75.7 70.9 55.0 81.1 65.7
CDAN+E [16] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
GVB-GD [6] 57 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4
DCAN [12] 54.5 75.7 81.2 67.4 74.0 76.3 67.4 52.7 80.6 74.1 59.1 83.5 70.5
BIWAA-I [26] 56.3 78.4 81.2 68.0 74.5 75.7 67.9 56.1 81.2 75.2 60.1 83.8 71.5
SRDC [24] 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3
MJE [31] 60.3 77.8 81.0 66.0 74.4 74.5 66.7 59.3 81.8 74.2 62.7 84.9 72.0
Sentry [19] 61.8 77.4 80.1 66.3 71.6 74.7 66.8 63.0 80.9 74.0 66.3 84.1 72.2
FixBi [17] 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7

Ours 54.8 76.7 80.9 68.0 76.3 77.0 66.0 55.1 81.9 75.7 59.7 83.8 71.3
Ours+GSDE 57.8 80.2 81.9 71.3 78.9 80.5 67.4 57.2 84.0 76.1 62.5 85.7 73.6

(a) Accuracy over max run. (b) Accuracy for different number of bottle-
necks.

(c) Accuracy over runs.

Figure 3. Accuracy for different max runs on a subset of the Of-
fice31 dataset (left). Accuracy for different numbers of bottlenecks
(bottom) over the same subset. Average accuracy for the datasets
for max run of N = 5 for the consecutive runs n. (right).

factor of 10 for all layers that are trained from scratch. We
further adopt the learning rate annealing strategy and the
progressive discriminator learning strategy lam. We employ
k = 5 bottleneck layers in parallel. The GSDE is executed
with a maximum run of N = 5. Each experiment is run for
three different seeds.

5.2. Results

Results for Office-31: The results for the Office-31
dataset are shown in Tab. 1. Our base network already per-
forms quite well, only being outperformed by SRDC and

FixBi. Using the GSDE strategy proposed in this paper, the
accuracy increases by 1.1%pts (percentage points) to an av-
erage accuracy of 91.7%, outperforming the other methods.

Results for Office-Home: The results for the Office-
Home dataset are shown in Tab. 2. Again, our base network
already performs quite well, but with the addition of GSDE,
we further increase the accuracy by 2.3%pts to an average
accuracy of 73.6%. We outperform the existing methods,
with an increase of almost 1%pts over FixBi, the next best-
performing algorithm.

Results for DomainNet: The results for the DomainNet
dataset are shown in Tab. 3. The addition of the GSDE strat-
egy lets us increase the per-class accuracy by almost 2%pts
to an average per-class accuracy of 83.07%. Again we out-
perform the existing methods, with an increase of 1.68%pts
over SENTRY, the next best-performing algorithm.

The increase in accuracy with the addition of the GSDE
strategy as well as outperforming other domain adaptation
methods on all three datasets shows the effectiveness of our
proposed method.

6. Ablation studies
GSDE with other UDA methods:
We implemented our gradual source domain expan-

sion strategy in various UDA methods. Sentry [19] is
based on self-supervised learning using data augmentations,
CDAN(+E) [16] is an adversarial method, AFN [28] is
based on adapting the feature norm between source and
target, and SHOT [13] is a source free domain adaptation
method. We chose these methods as they use vastly dif-
ferent adaptation strategies. Our strategy significantly im-
proves the results for all methods. The improvement for
SHOT is especially interesting since the training on the
source data and adaptation on the target data are done sep-
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Table 3. Per class accuracy results on DomainNet dataset. Best results are displayed in bold and the runner-up results are underlined. We
display the results of the network with and without our proposed Gradual Source Domain Expansion strategy.

Method R�C R�P R�S C�R C�P C�S P�R P�C P�S S�R S�C S�P Avg

ResNet-50 [8] 58.84 67.89 53.08 76.70 53.55 53.06 84.39 55.55 60.19 74.62 54.60 57.78 62.52

BBSE [15] 55.38 63.62 47.44 64.58 42.18 42.36 81.55 49.04 54.10 68.54 48.19 46.07 55.25
MCD [22] 61.97 69.33 56.26 79.78 56.61 53.66 83.38 58.31 60.98 81.74 56.27 66.78 65.42
UAN [30] 71.10 68.90 67.10 83.15 63.30 64.66 83.95 65.35 67.06 82.22 70.64 68.09 72.05
ETN [2] 69.22 72.14 63.63 86.54 65.33 63.34 85.04 65.69 68.78 84.93 72.17 68.99 73.99
BSP [4] 67.29 73.47 69.31 86.50 67.52 70.90 86.83 70.33 68.75 84.34 72.40 71.47 74.09
COAL [23] 73.85 75.37 70.50 89.63 69.98 71.29 89.81 68.01 70.49 87.97 73.21 70.53 75.89
InstaPBM [11] 80.10 75.87 70.84 89.67 70.21 72.76 89.60 74.41 72.19 87.00 79.66 71.75 77.84
BIWAA-I [26] 79.93 75.24 75.35 87.93 72.07 75.71 88.87 77.81 76.66 88.78 80.49 74.49 79.44
Sentry [19] 83.89 76.72 74.43 90.61 76.02 79.47 90.27 82.91 75.60 90.41 82.40 73.98 81.39

Ours 80.72 77.96 79.71 90.19 75.61 76.01 89.26 80.74 76.97 89.27 82.65 74.47 81.13
Ours+GSDE 82.93 79.16 80.76 91.92 78.16 79.98 90.92 84.10 79.16 90.30 83.36 76.07 83.07

Table 4. Improvements of various UDA methods using GSDE on
different datasets. The first row depicts the original accuracy, the
second (+) the results with the addition of GSDE, and the third row
(∆) shows the improvement. We report the average accuracy over
three seeds using the implementation of the respective publication.

Ours Sentry CDAN +E AFN SHOT

Office-31

Orig 90.65 87.26 87.51 88.80 85.35 88.06
+ 91.65 88.73 89.53 90.17 88.06 89.19
∆ +1.01 +1.48 +2.01 +1.37 +2.71 +1.13

Office-Home

Orig 71.33 72.11 66.50 68.65 66.67 71.99
+ 73.63 74.06 70.85 71.90 70.54 73.24
∆ +2.31 +1.95 +4.35 +3.25 +3.87 +1.25

DomainNet

Orig 81.13 81.64 75.79 77.01 74.81 78.81
+ 83.07 82.54 81.16 81.62 78.61 79.14
∆ +1.94 +0.90 +5.37 +4.60 +3.80 +0.33

arately (first trained on source data, and then adapted us-
ing only target data), supporting our assumption that pre-
aligning the classifier with a strong prior from the pseudo-
source data helps in the adaptation process.

Reinitialization and Source Domain Expansion: In
this part, we investigate the benefits of reinitializing the
weights of the network each run. For this, the trained
weights are kept from the previous run instead of reinitial-
izing them. We further investigate the benefit of the source
domain expansion over simply using the pseudo-labels for
a classification loss. While in our proposed method the

Table 5. Improvements of reinitialization and source domain ex-
pansion. Baseline does not use GSDE. No re-init employs the
weights of the previous run. No expansion only employs a classi-
fication loss instead of source domain expansion.

O31 OH DN

Baseline 90.65 71.29 81.13

No re-init 90.89 72.07 81.32

No expansion 91.36 72.96 82.84

Proposed 91.65 73.63 83.07

pseudo-source samples are presented to the adversarial loss
LAD and semantic loss LSM as source data, this is not the
case in this ablation study - solely a classification loss is
added for the subset of target samples that would be added
as pseudo-source data. As can be seen in Tab. 5 the reini-
tializing significantly boosts the performance with a gain
of more than 1.5%pts for OH and DN over keeping the
weights. Using a classification loss over the source ex-
pansion gains good improvements, but still the proposed
method performs significantly better. This shows the bene-
fits of the pseudo-source data for the adversarial adaptation,
helping to guide the domain alignment.

Number of max run N :
We evaluated our algorithm against different maximum
runs. For this evaluation we excluded the two tasks W�D
and D�W since the two domains are very similar (com-
monly done for this dataset). It can be seen in Fig. 3a that
the accuracy steeply increases until around N = 3. After-
ward, the accuracy still increases, but not as steeply, indi-
cating that a high N achieves better results. However, since
the computational costs increase linearly with N , we chose

1952



Figure 4. Accuracy for different runs over the training iterations
for the task OfficeHome C→R.

Figure 5. Domain classifier output for different runs over the train-
ing iterations. Src represents source data and Tgt represents target
data. The number indicates the respective run. The adaptation task
was OfficeHome C→R.

N = 5 for our experiments, since it is a good trade-off be-
tween gain in accuracy and runtime of the algorithm.

Number of bottlenecks k:
We evaluated our algorithm for different numbers of bottle-
necks k. In this experiment, we only trained for a max run
of one, and the same subset of Office31 is used as in the
previous ablation study. The results can be seen in Fig. 3b.
We chose a k = 5 for all other experiments.

Accuracy over runs:
The accuracy after each run forN = 5 for the three datasets
is plotted in Fig. 3c. It can be seen that the accuracy steadily
increases with each run.

Accuracy within runs and domain classifier score:
We plotted the accuracy measured after each 50 iteration
for the adaptation task of C�R in Fig. 4. It can be seen
that the later runs achieve a much higher accuracy early on
in the training, showing the effectiveness of the introduced
pseudo-source data. This higher accuracy also carries over
into the later stages of the training. The averaged output
from the domain classifier is plotted in Fig. 5. An out-
put of 1 represents a discriminator prediction of source do-
main and 0 of target domain, respectively. A score of 0.5
means that source and target are equally likely - the case
for domain invariant features. It can be seen that due to
the pseudo-source data, the distributions are closer together
even early on in the training.

Contribution of each adaptation loss: In Tab. 6 we
show the contribution of the three different losses to our
base network. For this evaluation, the network is only

Table 6. Contribution of each adaptation loss.

Losses O31 OH DN

LAD 87.83 65.86 76.85
LAD + LMS 90.40 70.45 79.28
LAD + LMS + LSS 90.65 71.33 81.13

Table 7. Improvements of multiple bottlenecks (MB) and label
scoring (LS) to our method.

Method O31 OH DN

None 91.12 72.83 82.81
+LS 91.21 (+0.09) 73.00 (+0.17) 82.69 (-0.12)
+MB 91.34 (+0.22) 73.22 (+0.39) 83.03 (+0.22)
+LS+MB 91.65 (+0.53) 73.63 (+0.81) 83.27 (+0.46)

trained for a max run of one.
Other improvements:
In Tab. 7 we examine the benefit of the multiple bottle-

neck (MB) and label scoring (LS) strategy to our algorithm.
Using both of the improvements increases the accuracy by
0.53%pts for O31, 0.81%pts for OH, and 0.46%pts for DN.
Since only using LS showed a decrease in accuracy for DN,
we ran the experiments for DN with 3 additional seeds (to-
tal of 6) to decrease the effect of randomness. We believe
that the decrease in accuracy can be explained as DN uses
the per-class accuracy as reported value (the other datasets
use overall accuracy). When changing the evaluation crite-
ria to overall accuracy, there is actually a gain of 0.19%pts,
indicating that the LS strategy favors high sample classes.
However, it is interesting to note that using both strategies
achieves a higher gain than adding the gains of each strat-
egy, hinting that there is a good synergy between the two.

7. Discussion and Limitations

In this work, we presented a gradual source domain ex-
pansion strategy for the unsupervised domain adaptation
task. The GSDE strategy introduces a strong prior in the
form of pseudo-source data to help align the network early
on to the target domain in order to prevent an early align-
ment build-up error. We show that with our base network,
consisting of an adversarial loss, a semantic loss, and a
semi-supervised loss, we can increase the performance sig-
nificantly using the GSDE strategy. We further showed that
the GSDE strategy can be applied to a wide range of exist-
ing domain adaptation methods significantly increasing the
performance.

While the proposed method is effective, one limitation
of the algorithm is that the computational costs increase lin-
early with the amount of runs N .
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