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Abstract

We introduce Sketch-based Video Object Localization
(SVOL), a new task aimed at localizing spatio-temporal ob-
ject boxes in video queried by the input sketch. We first
outline the challenges in the SVOL task and build the Sketch-
Video Attention Network (SVANet) with the following design
principles: (i) to consider temporal information of video
and bridge the domain gap between sketch and video; (ii)
to accurately identify and localize multiple objects simul-
taneously; (iii) to handle various styles of sketches; (iv)
to be classification-free. In particular, SVANet is equipped
with a Cross-modal Transformer that models the interaction
between learnable object tokens, query sketch, and video
through attention operations, and learns upon a per-frame
set matching strategy that enables frame-wise prediction
while utilizing global video context. We evaluate SVANet
on a newly curated SVOL dataset. By design, SVANet suc-
cessfully learns the mapping between the query sketches
and video objects, achieving state-of-the-art results on the
SVOL benchmark. We further confirm the effectiveness of
SVANet via extensive ablation studies and visualizations.
Lastly, we demonstrate its transfer capability on unseen
datasets and novel categories, suggesting its high scala-
bility in real-world applications. Codes are available at
https://github.com/sangminwoo/SVOL.

1. Introduction
A sketch is worth a thousand words. It can even con-

vey ideas that are hard to explain in words. Due to the
concise and abstract nature of the sketch, it can be illus-
trative, making it an excellent tool for a variety of appli-
cations [2, 4, 9, 13, 19, 29, 32, 34]. Meanwhile, query-based
localization is one of the long-sought goals for visual un-
derstanding. The literature has been studied at a variety of
query types (e.g., image, language, sketch) and domains (e.g.,
image, video) [1, 5, 8, 11, 14, 17, 21, 25, 27, 30, 33]. While
numerous studies have shown remarkable results using im-
age or language as query, both have their own limitations.
Images containing a specific object of interest may be dif-
ficult to collect due to privacy or copyright issues [2], and
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Figure 1. Illustration of the SVOL task. Given a query sketch, the
goal is to find all object boxes (colored in yellow) spatio-temporally
that match the sketch object in a video. Query sample is randomly
drawn from Sketchy dataset.

the utility of language is limited as it varies per country. As
an alternative, using sketch as a query brings several advan-
tages. It allows for immense expressive flexibility and can
transcend language barriers [16]. Moreover, due to the recent
spread of touchscreen devices (e.g., smartphones, tablets),
sketches have become easier to obtain than ever [26]. Amid
the explosive growth of video data, sketch has emerged as
an appealing candidate for user interface in online video
platforms thanks to these properties. Despite its promise, the
use of sketch as query for object localization in the video
domain has not yet been explored.

In this work, we propose a new task called Sketch-based
Video Object Localization (SVOL) that aims to localize ob-
jects in videos with the query sketch (see Fig. 1). We first
identify several challenges in SVOL, including but not lim-
ited to: (i) As objects move, they can generate motion blurs
or occlude parts of other objects, thus distorting their ap-
pearances [15]. Moreover, objects in the scene may suddenly
disappear, or objects that were not in the scene may suddenly
appear. These dynamic changes over time complicate the
matching of sketch to its corresponding objects. (ii) Multiple
objects can appear in a video. Therefore, it is important not
only to accurately differentiate between the target objects
from multiple objects belonging to different categories, but
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also to find all objects that match the sketch query simul-
taneously. (iii) As for sketch, a single object can be drawn
in various ways [23]. Unlike natural videos, sketches lack
color, texture, and background information, resulting in a
high degree of freedom. This allows sketches to be drawn
in a variety of styles (i.e., different abstraction levels). (iv)
There should be no explicit category prediction (i.e., no fixed
classes) in the SVOL system. As with all query-based lo-
calization tasks, SVOL requires finding the best matching
objects given a query sketch (not the category itself).

Driven by this analysis, we propose SVANet that serves as
a strong baseline for the SVOL task. SVANet takes extracted
video and sketch representations as inputs and predicts box
coordinates and objectness scores end-to-end. Our SVANet
is built on several design principles: First, we propose a
novel Cross-modal Transformer (CMT) that not only closes
the domain discrepancy between sketch and video but also
models video temporal context. We equip CMT with four
attention operations [28] to leverage their strong relational
modeling capability. By design, CMT emphasizes impor-
tant content by learning the correlation between sketch and
video representations, and incorporates temporal context by
modeling intra-content relationships. Also, CMT takes ob-
ject tokens as inputs and transforms them into predictions
of box coordinates and objectness scores by learning their
internal interactions and by referring to joint sketch-video
representations. Second, we formulate the SVOL task as a
set prediction problem [3] and employ a per-frame set match-
ing strategy. We predict all bounding boxes across the video
frames, and find the best matching between predicted and
ground truth boxes that minimizes the matching cost. The
overall training loss is then defined based on the matching
results. Instead of matching whole video-level results with
video-level ground truths, we perform set matching frame-
by-frame. This enables the prediction of multiple objects
in parallel while utilizing the global video context. Third,
SVANet is designed to be compatible with various sketch
styles. SVANet learns to embed the sketch objects of the
same category into a similar subspace of a high-dimensional
latent space, regardless of differences in sketch styles (e.g.,
shape, pose, line thickness, etc.). This style-agnostic property
enables SVANet to generalize well on unseen sketch datasets
with varying degrees of abstraction. Last, SVANet has no
explicit classification in the pipeline. This allows SVANet to
learn the mapping between sketch and video objects based
on implicit similarity (e.g., symbolic meaning, appearance,
etc.). This classification-free property of SVANet extends its
applicability to any kind of free-form sketches, allowing us
to query over novel object classes.

To benchmark our approach and show the potential of us-
ing sketch as query, we present a new SVOL dataset curated
from the video dataset, ImageNet-VID [22], and three sketch
datasets with varying degrees of abstraction (see Fig. 2):
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Figure 2. Sketch datasets comparison. Sketchy [24] is the most re-
alistic since it is drawn after photographic objects, QuickDraw [10]
has the highest level of abstraction due to limited drawing time (<
20 secs), and TU-Berlin [6] lies halfway between them.

Sketchy [24], TU-Berlin [6], and QuickDraw [10]. We
show that SVANet outperforms the strong image-level base-
line (Sketch-DETR) [21] by a significant margin: ∼29.4%,
17.7%, and 16.8% improvement of mIoU using Sketchy, TU-
Berlin, and QuickDraw sketch datasets, respectively. This
implies that SVANet effectively resolves the limitation of
image-level baselines with temporal video context. More-
over, we verify the effectiveness of several design choices
of SVANet through extensive ablation studies and analyze
its behavior with several visualizations. Finally, we eval-
uate transfer performances of SVANet on unseen datasets
(with different abstraction levels or sketch styles) and novel
categories that are unseen during training. The results demon-
strate that SVANet is robust to style variations and that the
learned sketch-video mapping function generalizes well to
novel classes of sketches. These appealing properties are
ideal for several query-based applications in practice, such
as large-scale video platforms, in that the system can flexibly
respond to diverse inputs from users.

2. Method
We begin by describing the SVOL task and present an end-

to-end trainable SVANet that predicts a set of objects based
on dense pair-wise relation modeling. Next, we introduce a
per-frame set matching strategy that imposes a unique match
between predicted and ground truth boxes at each frame;
then, define an overall training loss. An overview of SVANet
is depicted in Fig. 3.

SVOL task definition. Given a query sketch S and a video
V , the goal of SVOL is to find all spatio-temporal boxes Y
that match the sketch object in the video. We consider the
video as a sequence of L frames, V = [Vi]

L
i=1, and aim to

find all boxes Y = [Bi]
L
i=1 over the video frames, where

Bi ∈ RKi×4 is a set of bounding boxes at video frame Vi,
Bi = {bji}

Ki
j=1. The number of boxes Ki at frame Vi can

vary throughout the video, since objects can be occluded,
disappear or appear in the scene. We predict a total of N
bounding boxes across L frames, B̂ = [B̂i]

L
i=1, M boxes per

frame, B̂i = {bji}Mj=1, where N = L×M . The predictions
are considered as correct if IoU between the predicted box b̂
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Figure 3. Overview of SVANet. Given a video V and a query sketch S, SVANet processes them in a separate encoding pipeline, yielding
a sequence of frame representations fv and a sketch representation fs. The Cross-modal Transformer (CMT) then takes fv , fs, and a
set of learnable object tokens as inputs. Through the CMT layers, object tokens learn interactions between themselves and attend to
sketch-video joint representation to produce accurate predictions. Per-frame set matching: During training, SVANet finds the best matching
that minimizes the matching cost (see Eq. (9)) between the prediction set and the ground truth set for each frame. To assign a unique
matching between the two sets, the ground truth set is padded with additional No object (ϕ) elements. The overall loss is defined based
on the matching results (see Eq. (11)). As a result, SVANet outputs the spatio-temporal object boxes. Cross-modal Transformer: In CMT,
sequences of representations are added with positional encoding before every attention operation. CMT first highlights important contents by
learning the correspondence between sketch fs and video fv representations, and models intra-content relationships. CMT then transforms
the object token set into a set of predictions (box coordinates and objectness scores) by learning token-token interactions and referring to
joint sketch-video representations. More details are in Sec. 2. Best viewed in color.

and the ground truth box b is higher than the threshold µ. The
bounding box is defined as a 4D vector normalized w.r.t. the
frame resolution: b ∈ [0, 1]4. We also predict the likelihoods
that the predicted boxes contain the target object, referred
to as objectness scores Ô, where each element ô ∈ [0, 1]. In
short, the predictions are a set of bounding boxes and their
corresponding objectness scores: Ŷ = {B̂, Ô}. As we view
SVOL as a set prediction problem, we find the best matching
between the ground truth set Y and the prediction set Ŷ .

As we set the SVOL problem as category-level localiza-
tion, the system is trained to perform the consistent bounding
box localization for sketches belonging to the same category,
regardless of variations in shape or pose. This allows the
system to operate robustly, even in the presence of differ-
ent levels of abstraction or diverse styles in the sketches.
However, it is worth noting that there is no explicit category
prediction inside the system, instead it relies on implicit sim-
ilarity (e.g., symbolic meaning, appearance, etc.) to learn
sketch-video object matching.

2.1. SVANet Architecture

SVANet is designed to address the challenge of bridging
the gap between two distinct modalities, sketch and natural
video, in order to perform object localization. The system
incorporates attention operations that consider a wide range
of contexts and inter-dependencies between elements within
the input sequences. This leads our system to acquire the

capability to learn powerful representations of the input se-
quences and delivers accurate video object localization using
sketches as queries.
Video & sketch backbones. A video, represented by a
sequence of frames, V ∈ RL×C0×H0×W0 , where L =
32, C0 = 3, H0 = W0 = 224, is initially processed using
the ResNet-50 architecture [7], generating high-dimensional
feature maps fv ∈ RL×C×H×W , where C = 512, H =
W = 7. Likewise, a sketch S is processed using ResNet-
18 [7], followed by a spatial pooling operation that com-
presses it into 1D representation fs ∈ RC . Finally, the out-
puts fv and fs are passed through the Cross-modal Trans-
former. To address the sparse nature of sketch information,
we use a lighter CNN backbone (ResNet-18) compared to
the video (ResNet-50).
Cross-modal Transformer & prediction head. In addition
to fv and fs, the Cross-modal Transformer (CMT) takes
a set of N learnable embeddings initialized with random
weights, which we refer to as object tokens, and transforms
them into a set of N predictions.

CMT consists of l layers, and each layer contains four at-
tention operations: (i) Sketch-Video Cross-Attention (SVCA)
assigns higher attention weights to the important elements
of the input sequence (video patches), that are relevant for
accurate bounding box localization based on the input sketch
query. This is achieved by modeling the inter-modality re-
lationship between video fv and sketch fs representations.
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SVCA bridges the gap between sketches and videos by effec-
tively integrating the information from both modalities. (ii)
Content Self-Attention (CSA) is responsible for modeling
the temporal relationship between the elements in the input
sequence (i.e., output of SVCA). By considering the pair-
wise relationship of these elements, CSA enables a more
comprehensive understanding of the broader video context.
(iii) Token Self-Attention (TSA) receives object tokens as in-
put and models interactions between them, enabling them to
globally reason about all objects. (iv) Content-Token Cross-
Attention (CTCA) transforms object tokens to meaningful
outputs by relating them with contextual representation of
content (i.e., output of CSA). Since the attention operations
are permutation-invariant (i.e., produce the same output re-
gardless of the order of elements in the input sequence), we
supplement the input sequence with temporal order informa-
tion by adding absolute positional encoding prior to every
attention operation (except for TSA; we instead add object
tokens to the input sequence of each TSA operation).

All attention operations in CMT are in the form of Multi-
Head Attention with 8 heads (i.e., k = 8). Let a video repre-
sentation fv ∈ RL×C×H×W as v(0) and a sketch represen-
tation fs ∈ R1×C as s. Given v(0) and s the i-th CMT layer
calculates:

x(i) = LN(SVCA(i)(v(i), s, s) + v(i)), (1)

y(i) = LN(CSA(i)(x(i),x(i),x(i)) + x(i)), (2)

v(i+1) = LN(FFN
(i)
1 (y(i)) + y(i)), (3)

p(i) = LN(TSA(i)(r(i), r(i), r(i)) + r(i)), (4)

q(i) = LN(CTCA(i)(p(i),v(i+1),v(i+1)) + p(i)), (5)

r(i+1) = LN(FFN
(i)
2 (q(i)) + q(i)), (6)

where LN is layer normalization and FFN is 2-layer feed-
forward network. Here, r(0) = ON×C (N × C-sized zero
matrix), thus TSA operation Eq. (4) can be omitted in the
first CMT layer.

TSA (Eq. (4)) and CTCA operations (Eq. (5)) slightly
differ with the standard QKV attention in that they consider
the object tokens tkn as learnable positional encoding for
the query (q) inputs, i.e., q is added with tkn instead of
fixed positional encoding.

Q = (q+ tkn)Wq. (7)

In addition, since TSA is Self-Attention operation (q = k =
v = r(i)), tkn is also used as positional encoding for the key

(k) input in TSA.

K = (k+ tkn)Wk. (8)

The subsequent processes are the same as standard QKV
attention.

We go through l CMT layers, and the final CMT output
r(l) is fed into two separate linear layers (i.e., prediction
heads) to obtain a set of bounding box coordinates B̂ and
objectness scores Ô, respectively.

2.2. SVOL as a Set Prediction
In this work, we formulate SVOL as a set prediction

problem. In practice, we adopt a Hungarian algorithm [12]
to find an optimal matching between predictions and ground
truths in a way that minimizes the matching cost. The overall
loss function is defined based on the matching results.

Per-frame set matching. SVANet transforms N object
tokens to N predictions (bounding boxes and objectness
scores). Here, we make each of the N/L (hereafter M ) to-
kens to be responsible for predicting the results of each
frame Vi by performing per-frame set matching. This al-
lows SVANet to predict results per frame while being able
to access global context information across the video. We
formally describe the process in the following.

A set of ground truth bounding boxes Y can be seen as a
sequence of L subsets, where i-th subset has Ki elements:
[{bji}

Ki
j=1]

L
i=1. Likewise, we evenly divide a prediction set

Ŷ = {B̂, Ô} of size N into L subsets having M elements
each: [{ŷji }Mj=1]

L
i=1, where ŷji = (b̂ji , ô

j
i ). Hereafter, we de-

note the i-th subset of ground truths as Yi and that of predic-
tions as Ŷi for conciseness. The size of Ŷi is assumed to be
larger than the size of Yi: M > Ki. Since the Hungarian al-
gorithm pairs the elements of two sets one by one, we pad Yi

with No object (∅) to match the size of M . For every sin-
gle i (from i = 1 to i = L), we seek for the best one-to-one
matching between Yi and Ŷi using a Hungarian algorithm.
Formally, in the i-th prediction subset, let ŷσi(j)

i be the j-th
element under a permutation of M elements σi ∈ Si(M).
We now define the pair-wise matching cost C as:

C(bji , ŷ
σi(j)
i ) = −1{bji ̸=∅}ô

σi(j)
i +1{bji ̸=∅}Lbox(b

j
i , b̂

σi(j)
i ) .

(9)
Note that the No object paddings in the ground truth are
not considered when calculating the matching cost. For every
i, we aim to find the optimal assignment σ∗

i ∈ Si(M) that
pairs the predictions and ground truths at the lowest cost:

σ∗
i = argmin

σi∈Si(M)

M∑
j=1

C(bji , ŷ
σi(j)
i ) . (10)
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Overall loss. Based on the matching results, our set predic-
tion loss Lset(Y, Ŷ) is defined as:

L∑
i=1

M∑
j=1

[
−λobj log ô

σ∗
i (j)

i + 1{bji ̸=∅}Lbox(b
j
i , b̂

σ∗
i (j)

i )
]
,

(11)
where λobj ∈ R is a loss coefficient for objectness scores.
Here, the log-probability of the No object paddings (∅)
is scaled down by a factor of 10 to strike a balance between
object and no-object.

The box loss Lbox is defined as a linear combination of
ℓ1 loss and the generalized IoU (gIoU) loss [20]:

Lbox(b
j
i , b̂

σi(j)
i ) = λℓ1Lℓ1(b

j
i , b̂

σi(j)
i )+λiouLiou(b

j
i , b̂

σi(j)
i ) ,

(12)
where λℓ1 ∈ R and λiou ∈ R are balancing hyperparameters.
While both losses have the same goal, object localization, the
ℓ1 loss will have different scales for small and large boxes
even if their relative errors are similar, whereas the gIoU loss
is scale-invariant.

We calculate the ℓ1 loss as:

Lℓ1(b
j
i , b̂

σ(j)
i ) = ||bji − b̂

σ(i)
i ||1 . (13)

The gIoU loss is calculated as (we denote the area with set
operations for the sake of argument):

Liou(b
j
i , b̂

σ(j)
i ) =

1−
(
|bji | ∩ |b̂σ(j)i |
|bji | ∪ |b̂σ(j)i |

− |B(bji , b̂
σ(j)
i )| \ |bji | ∪ |b̂σ(j)i |
|B(bji , b̂

σ(j)
i )|

)
,

(14)
where |.| represents the bounding box area, and the sym-
bols ∪, ∩, and \ calculate the area of union, intersection,
and subtraction of the two bounding box areas, respectively.
B(bi, b̂σ(i)) denotes the smallest box enclosing bi and b̂σ(i).
The areas are computed by taking the minimum or maximum
value of the linear functions of the box coordinates.

3. Experiments
The SVOL dataset is curated upon the ImageNet-VID

dataset [22] and three different sketch datasets with vary-
ing levels of abstraction: Sketchy [6] (least abstract), TU-
Berlin [10], and QuickDraw [24] (most abstract) (see Fig. 2).

3.1. Implementation Details
We uniformly sample 32 frames from a video (L = 32),

scaled them to 224×224 dimensions, and use them as an
input V ∈ R32×3×224×224 (3 for RGB channels). Likewise,
a sketch is rescaled to 224× 224 size, and used as an input
S ∈ R224×224. The number of CMT layers is set to two (i.e.,
l = 2), and we use 10 object tokens per frame (M = 10), a
total of 320 object tokens (N = 320). We adopt ResNet-50

: 𝒇𝒇𝒗𝒗 : 𝒇𝒇𝒔𝒔 : Object tokens

(c) SVCA Fusion

SVCA TSA

CTCACSA

(b) Step-wise Fusion

Concatenate

TSA

CTCACSA

FusionFusion

(a) Joint Fusion

Concatenate

TSA

CTCACSA

Figure 4. Three instantiations of sketch-video fusion contextual-
ize video and sketch information in different ways: (a) joint fusion:
copy fs by the size of fv , concatenate, and fuse them via MLP. (b)
step-wise fusion: copy fs by the number of object tokens, concate-
nate, and fuse them via MLP. The sketch and video representations
are later fused through CTCA. (c) SVCA fusion (ours): fuse fs
and fv with SVCA.

and ResNet-18 [7] pre-trained on ImageNet [22] as our video
and sketch backbone, respectively.

Due to excessive number of video-sketch pairs, we use
an iteration-based batch sampler and randomly sampled a
subset from all possible pairings for training. SVANet is
trained using AdamW optimizer [18] with an initial learning
rate of 10−4 and weight decay of 10−4 for a batch size of 16.
The overall loss weights λL1 : λgiou : λcls are set to 5 : 1 :
2 throughout training. We set different learning schedules
(number of iterations and learning rate decay steps) for each
sketch dataset as below since their sizes are different.

Settings Sketchy TU-Berlin QuickDraw
# pairs (train) 1,545,801 215,040 2,958,400

Iterations 50,000 20,000 100,000
LR decay step∗ 30,000 6,000 30,000
*LR is linearly decayed by a factor of 10 at every LR decay step.

3.2. Experimental Setups
Evaluation metrics. We adopt two evaluation metrics for
SVOL: 1) Rk

µ denotes the percentage of samples that have
at least one correct result in top-k retrieved results, i.e., Re-
call@k, where the correct results indicate that IoU with
ground truth is larger than the threshold µ. (we specifically
use k = 1, 5 and µ = 0.5, 0.7); 2) mIoU averages the IoU
between predicted boxes and ground truth boxes over all
testing samples to compare the overall performance.
Baselines. We set image-level sketch object localization ap-
proaches [21, 27] as the SVOL baselines. We find significant
room for improvement as they were designed to be condi-
tioned on a single frame rather than an entire video sequence.
In addition, we present several instantiations of sketch-video
fusion on SVANet, as shown in Fig. 4, and compare them
with our final model.

3.3. Comparative Study
We benchmark the model performance on the SVOL

task using three different sketch datasets. The results are
shown in Table 1. Since image-level baselines (CMA, Sketch-
DETR) make predictions at each frame, they neglect the
global video context. In contrast, SVANet not only considers
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Sketchy TU-Berlin QuickDraw ALL (S ∪ T ∪ Q)
Method (backbone) R1

0.5 R1
0.7 R5

0.5 R5
0.7 mIoU R1

0.5 R1
0.7 R5

0.5 R5
0.7 mIoU R1

0.5 R1
0.7 R5

0.5 R5
0.7 mIoU R1

0.5 R1
0.7 R5

0.5 R5
0.7 mIoU

CMA† [27] (R50) 23.18 14.89 39.76 21.29 19.76 20.25 14.55 36.87 20.80 18.64 22.69 15.53 39.86 20.80 21.52 18.89 11.41 33.53 17.23 16.14
Sketch-DETR† [21] (R50) 28.78 18.56 46.65 26.50 26.09 30.75 18.97 47.76 27.54 26.24 31.10 19.47 49.39 31.05 28.59 28.23 16.74 44.21 25.54 24.30
SVANet/joint (R50) 33.86 22.56 52.84 30.57 31.46 31.14 19.48 50.17 28.21 29.38 33.95 20.12 54.77 34.11 31.89 29.53 16.50 47.90 27.18 28.59
SVANet/step-wise (R50) 33.31 22.81 53.00 31.07 30.29 30.23 18.19 50.66 27.20 30.41 32.05 21.17 56.34 35.39 31.98 29.64 17.61 48.21 26.29 27.99
SVANet (S3D [31]) 32.89 21.11 48.08 27.07 30.83 29.43 18.25 45.72 24.34 28.00 30.86 19.24 46.80 25.48 29.37 27.88 17.26 43.33 22.86 27.87
SVANet (R50 [7]) 35.60 23.19 54.06 32.95 33.76 32.10 19.60 51.61 30.94 30.89 34.47 22.30 58.13 37.88 33.40 31.80 18.52 51.44 29.90 30.64

Table 1. Comparison of SVANet with baselines. SVANet significantly outperforms baselines on three sketch datasets and on combined
dataset (ALL), where we use only overlapping categories between three datasets. † indicates the re-implementation based on our settings.

Method
Sketchy→TU-Berlin Sketchy→QuickDraw

R1
0.5 R1

0.7 R5
0.5 R5

0.7 mIoU R1
0.5 R1

0.7 R5
0.5 R5

0.7 mIoU
CMA† [27] 38.03 26.20 49.70 39.07 30.97 40.06 29.89 49.83 37.69 32.45
Sketch-DETR† [21] 43.49 32.25 51.71 44.39 36.76 46.02 37.87 59.50 45.34 40.21
SVANet (Ours) 54.74 46.67 69.90 56.57 49.01 55.03 47.56 72.04 58.87 49.74

(a) The models are trained with Sketchy dataset and evaluated on QuickDraw or TU-Berlin
dataset. To solely see the effect of sketch style differences, we use the same video samples
in both training and evaluation, and overlapping categories between the two sketch datasets.

Method
Seen →Unseen categories

R1
0.5 R1

0.7 R5
0.5 R5

0.7 mIoU
CMA† [27] 18.16 6.89 25.52 9.78 13.37
Sketch-DETR† [21] 25.13 13.20 34.87 18.45 22.51
SVANet (Ours) 30.13 18.58 41.18 25.51 29.89

(b) The models are trained on 14 categories of the Sketchy
dataset and evaluated on the remaining 5 categories: aircraft,
bear, cat, cow, and dog.

Table 2. Transfer evaluation on (a) unseen datasets and (b) unseen categories.

spatial context but also effectively models temporal informa-
tion of video, thereby outperforming them by a significant
margin in all metrics across three sketch datasets. Especially,
SVANet improves mIoU by 29.4%, 17.7%, and 16.8% over
Sketch-DETR on Sketchy, TU-Berlin, and QuickDraw. Also,
our final SVANet yields the best results among the several
model variants (joint, step-wise), implying the effectiveness
of our attention-based fusion. Moreover, we use all three
sketch datasets as a single set of query sketches (denoted as
ALL in Table 1) to see how the model performs when the
same category contains sketches of different styles. Overall,
model performances are diminished as a result of a greater
diversity of sketch samples. However, SVANet shows only
0.25%p mIoU drop compared to the results on TU-Berlin,
which means that SVANet is quite robust to sketch style
variations. Lastly, we compare two backbones for video en-
coding: 3D CNN (S3D [31]) vs. 2D CNN (ResNet50 [7]).
We expect the more sophisticated 3D CNN to work better,
but 2D CNN outperformed 3D CNN. This shows that CMT
can supplant the temporal modeling capability of 3D CNN.

3.4. Transfer Evaluation
The prediction space of our SVANet is not limited to a

fixed set of categories. By design, it is possible to match
even an unseen sketch to the most similar object by compar-
ing feature-level similarity. For SVOL system to be more
practical in real-world applications, they should be able to
operate well even with sketches of various shapes and styles.
In addition, there should be no constraint that operate only
for limited categories, such as object detectors. To this end,
we devise two transfer tasks to evaluate the generalization ca-
pability of the SVOL systems in two aspects: (i) dataset-level
transfer and (ii) category-level transfer.

Formally, we define the transfer evaluation setup as fol-

lows. Let V , {SA,SB}, and {CA,CB} be a video dataset,
sketch datasets, and sets of categories in which SA and SB

overlap with V , respectively. For dataset-level transfer task,
we train the SVOL model on V and SA, and evaluate on V
and SB , only for categories CA ∩ CB . For category-level
transfer task, we first split a sketch dataset SA into two sub-
sets: S1

A and S2
A, where they are mutually exclusive w.r.t.

categories, i.e., C1
A ∩ C2

A = ∅. Then, we train the SVOL
model on V and S1

A, and evaluate on V and S2
A. We note that

there can be more variations to evaluate the transferability
of the SVOL system.

Transfer to unseen dataset. We study the transferability
of the SVOL models across the sketch datasets with style
differences (e.g., line thickness, abstraction degree, etc.).
The models are trained with Sketchy dataset and evaluated
on QuickDraw or TU-Berlin dataset. To solely examine the
transferability on unseen datasets, we use the same video
samples in both training and evaluation, and overlapping
categories between the two sketch datasets. The results are
shown in Table 2a. The overall transfer performances across
the datasets is much higher than the performance of mod-
els that are solely trained on dataset itself (Table 1), since
transfer settings use the same video set as in training. We
observe that SVANet significantly outperforms baselines
in dataset-level transfer, indicating that it effectively learns
class-discriminative features independent of sketch style dif-
ferences. Meanwhile, we expected transfer to TU-Berlin to
show better results than transfer to QuickDraw as TU-Berlin
appears to be closer to Sketchy than QuickDraw in terms
of visual similarity. Contrary to our expectation, transfer to
QuickDraw shows better results than transfer to TU-Berlin.
We understand this is because the system constructs cate-
gorical embedding space by matching the query sketch and
video objects based on the key features (e.g., cat’s whiskers,
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def. CSA TSA R1
0.5 R1

0.7 R5
0.5 R5

0.7 mIoU

✓ 32.98 19.76 51.74 31.19 30.72
✓ ✓ 34.39 21.85 53.69 32.28 32.52
✓ ✓ 33.83 20.89 52.29 31.73 31.69
✓ ✓ ✓ 35.60 23.19 54.06 32.95 33.76

(a) CMT attention operations. default: SVCA + CTCA.

layers R1
0.5 R1

0.7 R5
0.5 R5

0.7 mIoU

1 33.53 19.95 47.05 24.17 32.30
2 35.60 23.19 54.06 32.95 33.76
3 35.14 20.18 56.29 32.99 32.77
4 35.20 22.77 58.34 37.39 33.28

(b) CMT depth.

pfsm R1
0.5 R1

0.7 R5
0.5 R5

0.7 mIoU

✗ 18.36 6.78 33.54 13.64 22.34
✓ 35.60 23.19 54.06 32.95 33.76
△ +17.24 +16.41 +20.52 +19.31 +11.42

△: performance gain.

(c) Per-frame set matching (pfsm).

tokens R1
0.5 R1

0.7 R5
0.5 R5

0.7 mIoU

5 34.53 20.50 47.61 25.21 32.34
10 35.60 23.19 54.06 32.95 33.76
15 33.89 22.98 54.98 32.64 32.69

(d) Object tokens per frame.

obj ℓ1 gIoU R1
0.5 R1

0.7 R5
0.5 R5

0.7 mIoU

✓ ✓ 33.64 20.75 46.40 24.37 32.44
✓ ✓ 32.13 18.16 42.32 23.21 31.72
✓ ✓ ✓ 35.60 23.19 54.06 32.95 33.76

(e) Loss. obj loss is set as default as it is essential.

frames R1
0.5 R1

0.7 R5
0.5 R5

0.7 mIoU

16 32.66 18.79 54.24 31.85 31.25
32 35.60 23.19 54.06 32.95 33.76
64 34.91 22.83 53.72 31.23 32.48

(f) Input video density.
Table 3. Ablative experiments. Our settings are marked in gray . All experiments are conducted on the Sketchy dataset.

rabbit’s ears, etc.), rather than merely comparing their overall
visual appearance. The results suggest that implicit similarity
such as symbolic representation of sketches are more impor-
tant for accurate object localization than explicit similarity
such as line thickness or proportion.
Transfer to unseen categories. In Table 2b, we evaluate
transferability of SVOL models at the category-level. We
use 14 categories of the Sketchy dataset for training, and
the remaining 5 categories (aircraft, bear, cat, cow, dog)
for evaluation. Compared to the results in Table 1, we ob-
serve that SVANet degrades 3.87%p in mIoU since it has
never learned which video objects to match the query sketch
with. Despite this, SVANet outperforms the baselines when
evaluated on unseen categories, implying that SVANet has
learned more generalizable representations that can reason
about the implicit similarities between sketches and video
objects. This enables SVANet to closely embed sketches of
the same category in the feature space.

3.5. Ablative Study
CMT attention operations. We study the effect of four
attention operations of CMT in Table 3a. Here, SVCA and
CTCA are set as default since they are indispensable for
making predictions in our design. Each is responsible for
modeling interaction between sketch and video, and trans-
forming object tokens into predictions conditioned on the
sketch-video joint representations. CSA models the global
context of the input sequence and TSA models relation-
ships between object tokens. The default setting work fairly
well (mIoU=30.72%), yet SVANet shows better performance
with the addition of CSA (+2.33%p) or TSA (+0.97%p). In
particular, CSA plays a crucial role in object localization in
video since it is in charge of temporal modeling, thus leading
to a substantial performance increase. We confirm that all
CMT components operate collaboratively on the SVOL task,
as they achieve the best performance when used together.
CMT depth. We examine the effect of varying the CMT
depth (i.e., number of layers) in Table 3b. A single layer of
CMT does not provide sufficient contextualization, resulting
in poor R5 performance. The overall performance seems

balanced between two to four layers. For R5 metric, the
deeper the layer, the better the performance, and the best
performance is achieved with four CMT layers. However,
for more strict R1 and mIoU metrics, two layers perform the
best. Therefore, we make two layers as our default setting.

Per-frame set matching. A straightforward way for train-
ing SVANet is to match all predictions with all ground truths
as a whole. Although simple, it requires learning all N ob-
ject tokens simultaneously, regardless of frame order. On the
contrary, our per-frame set matching strategy divides N ob-
ject tokens into L subsets of M object tokens, then matches
only a subset to ground truths of its corresponding frame. Al-
though set matching is performed frame-by-frame, SVANet
can still make predictions in parallel. We compare our strat-
egy to the straightforward approach in Table 3c. Overall,
using per-frame set matching resulted in a significant per-
formance improvement. We see this is because our strategy
not only eases optimization by reducing the set matching
complexity, but also brings a strong positional inductive bias
for object tokens (see empirical evidence in Fig. 6c).

Number of object tokens. In order to see the effect of the
number of object tokens used in the CMT layers, we varied
their number in Table 3d. Too few tokens (=5) limit sufficient
interactions between foregrounds and backgrounds (i.e., No
Object), resulting in poor performance, especially for R5

metric. On the other hand, too many tokens (=15) diminish
performance by producing unnecessary backgrounds. Hav-
ing 10 object tokens per frame provides a good balance
between foreground and background, resulting in a good per-
formance. As we utilize a per-frame set matching strategy,
we set the number of object tokens per frame to 10 for the
entire 32 frames, thus using a total of 320 object tokens.

Loss components. In Table 3e, we toggle the loss compo-
nents on and off to understand their impact on training. The
objectness loss is used in all cases since it is essential to
determine whether a prediction contains the target object.
When either ℓ1 or gIoU [20] loss is disabled, performances
drop drastically, especially in R5 metric. This implies that
both losses are not only important for accurate box localiza-
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Sketch Results in video

(a) Multiple objects

(c) Many distracting objects

(b) Multiple instances

(d) Only part of object is shown

(e) Fast moving object

(f) Deformation

Figure 5. Qualitative results of SVANet on QuickDraw dataset.
Green and blue boxes represent ground truths and predictions, re-
spectively. SVANet performs well in various challenging scenarios,
including: (a) when there are confusable objects; (b) multiple object
instances appear in a video; (c) there are many distracting objects;
(d) only part of the object is visible; (e) the target object moves
quickly; (f) the appearance of the target object is not similar to
query sketch.

tion, but also for performing overall predictions well. As we
obtain the best results when using all three losses, we con-
firm that scale-sensitive ℓ1 and scale-invariant gIoU losses
operate complementarily with each other.

Sampling density of video frames. In Table 3f, we study
the effect of frame sampling density on input video. We
uniformly sample a fixed number of frames across the video
and use them as an input to SVANet. By default, we use
32 frames. Compared to the baseline, 16 frames show a
particularly sharp performance drop on the strictest metric
R1

0.7, and 64 frames show overall sub-optimal performance.
This is because sparse sampling enables faster processing
with less memory, but can easily miss important details since
it provides less information. In contrast, dense sampling
provides more information, but if the motion of objects is
not large, it can be redundant and rather hinder optimization.
Here, we study only simple uniform sampling, but different
means of sampling may achieve different results.
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Figure 6. Attention visualization. The brighter (yellowish) the
color, the higher the attention intensity. Given a query sketch, (a)
SVCA mainly attends to regions where the target objects are lo-
cated; (b) CSA gives a higher attention weight to temporally neigh-
boring contents; (b) CTCA learns which content object tokens
should mainly focus on temporally.

3.6. Qualitative Analysis
SVOL results. We present qualitative results of SVANet
in Fig. 5 to illustrate how it works in practice. Our system
successfully recognizes the objects that correspond to the
query sketch and accurately localizes their bounding boxes
in a variety of challenging conditions. SVANet works well
even when: (a) there are two confusable objects; (b) multi-
ple object instances appear in a video; (c) there are lots of
distracting objects; (d) only part of the object is appearing;
(e) the target object moves quickly; (f) the appearance of the
query sketch is not similar to that of the target object.
CMT attention visualization. In order to understand the
behavior of CMT, we visualize its attention maps in Fig. 6.
Our observations are as follows: (a) SVCA learns where
to look, as such, the highlighted area on the attention map
aligns well with the actual locations of the sketch object.
(b) CSA learns deeper correlation between temporally adja-
cent sequences when modeling temporal context. (c) CTCA
learns when to look, thereby giving temporal inductive bias
for object tokens in conjunction with per-frame set matching.

4. Conclusion
We introduce a new challenging task termed Sketch-based

Video Object Localization (SVOL), where the goal is to lo-
calize objects in a video that match a given query sketch.
To tackle this task, we propose a strong baseline model
named SVANet, which considers the temporal context of
video and bridges the domain gap between sketches and
videos. SVANet utilizes two key designs to solve the SVOL
task as a set prediction problem: a Cross-modal Transformer
and per-frame set matching. In our experiments on a newly
curated SVOL dataset, we found that SVANet outperforms
image-level methods by significant margins. We also conduct
comprehensive ablations and show visualizations to analyze
the behavior of SVANet. Last but not least, we found that
SVANet generalizes well to unseen datasets and novel cate-
gories, implying its scalability in real-world scenarios.
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