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Abstract

Radar-camera 3D object detection aims at interacting
radar signals with camera images for identifying objects
of interest and localizing their corresponding 3D bound-
ing boxes. To overcome the severe sparsity and ambiguity
of radar signals, we propose a robust framework based on
probabilistic denoising diffusion modeling. We design our
framework to be easily implementable on different multi-
view 3D detectors without the requirement of using LiDAR
point clouds during either the training or inference. In
specific, we first design our framework with a denoised
radar-camera encoder via developing a lightweight denois-
ing diffusion model with semantic embedding. Secondly,
we develop the query denoising training into 3D space via
introducing the reconstruction training at depth measure-
ment for the transformer detection decoder. Our framework
achieves new state-of-the-art performance on the nuScenes
3D detection benchmark but with few computational cost
increases compared to the baseline detectors.

1. Introduction
Aiming at identifying and estimating accurate informa-

tion about objects’ 3D bounding boxes, recent 3D object
detectors [14, 41, 53, 54, 61] focus on exploiting methods
equipped with different types of sensors to take advantage
of their complimentary characteristics. Considering that
camera provides rich 2D appearance features, it is usually
paired with 3D sensor data, e.g., LiDAR or radar, for pro-
viding accurate 3D measurements. In this work, we focus
on performing object detection with radar and camera due
to its advantages of being widely implemented, and its ca-

*the denotion † means these authors contributed equally and � means
the corresponding author.

Figure 1. Our denoising diffusion modeling framework proceeds
fully differentiable radar feature association with semantic embed-
ding and takes the query denoising training for the transformer
decoder at the 3D level. Compared with ground-truth labels, our
model predicts quite similar outputs, especially on objects of small
size and complex geometries (marked by white arrows).

pability in velocity estimation [15, 18, 41], as compared to
the expensive LiDARs.

Despite radar’s popularity in the automotive industry,
radar point clouds suffer from the drawbacks of severe spar-
sity and ambiguity [15, 35, 41], making it unfeasible to use
for extracting objects’ geometry information; see Figure 1
for a radar sample. Hence, due to the inherent difference be-
tween LiDAR and radar, applying existing LiDAR-camera
fusion techniques to radar-camera is difficult. To address
radar-camera object detection, a pioneer work [28] jointly
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transforms radar and image features into the same view and
concatenates corresponding features for radar-camera fu-
sion. However, direct camera-view transformation results in
restrained performances due to the significant semantic loss.
Later, [15,17–19,39,41] suggested performing modality fu-
sion in a two-stage manner, where the first-stage camera-
only detection results are adopted to associate positive radar
features during inference, while ground truth annotations
are adopted for the association during training.

Apparently, it inevitably results in asymmetric radar
quality during training and inference, and would cause sig-
nificant radar information loss when the camera detection
performance degrades. Thus, FUTR3D [6] proposed to
query expanded radar signals with images with the trans-
former decoder [58]. And the most recent work, CRN [20]
proposed to transform image features from perspective
views into the BEV level with radar, and has achieved con-
vincing performances in terms of detection accuracy. How-
ever, this approach relies on the auxiliary supervision of
scarce LiDAR point clouds, which turns it not as easily im-
plementable as pure radar-camera approaches.

To address this issue and further restrain the sparsity
and ambiguity natures of the radar sensor, we propose a
fully differentiable radar-camera framework with the tech-
nique of probabilistic denoising diffusion model in a Rao-
Blackwellized fashion [10]. We develop our method as a
framework so that it could be easily implemented on differ-
ent multi-view 3D object detectors, regardless of their tech-
nique of obtaining BEV-level information from perspective
monocular images. As shown in Figure 1, our framework
aligns the radar point clouds with images by the 3D to 2D
projection with calibration information. We introduce the
designs of information denoising into both the feature en-
coder and the transformer detection decoder at the BEV
level. As a result, we observe that our framework could
detect objects in complex geometry, small size and far dis-
tance.

In specific, within our denoised radar-camera encoder,
we introduce Denoising Diffusion Model (DDM) on
aligned radar features followed by the querying of high-
level semantic features for feature association. Particularly,
we develop the DDM to be aware of the guidance of fore-
ground recognition via introducing it with the embedding
of semantic features. We hence point-wisely add the asso-
ciated positive radar features and image features, and send
the output into the transformer decoder. In addition, we
introduce the transformer decoder with query denoising at
both the 2D and depth levels to further explore the potential
of radar-camera association. We conduct extensive exper-
iments to evaluate the robustness and effectiveness of our
framework on the large-scale nuScenes [1] benchmark of
3D object detection. We successfully implemented our ap-
proach on three representative multi-view 3D detectors and

have achieved new state-of-the-art performances. We sum-
marize our contributions as follows:

• We develop an end-to-end differentiable framework
for the robust learning of radar-camera 3D object de-
tection based on probabilistic denoising diffusion. Our
framework takes no need for LiDAR point clouds for
either the training or the inference process.

• We propose to mitigate the ambiguous nature of radar
signals via developing a denoising diffusion model
with the embedding of semantic features. We also de-
velop the idea of query denoising into 3D space via in-
troducing the reconstruction training at the depth mea-
surement for the transformer decoder [2].

• We successfully implement our framework on three
representative multi-view 3D detectors, which take dif-
ferent techniques for the BEV decoding, with few extra
costs in terms of computational complexity. We have
achieved the new state-of-the-art performance on the
nuScenes 3D object detection benchmark [1].

2. Related Work
Camera 3D Object Detection. The main challenge of
monocular 3D object detection lies in solving the 2D-3D
projection ambiguity caused by the lack of accurate 3D
measurements [24, 26, 36]. Based on a single image in-
put, recent approaches adopted geometric constraint regu-
larization [3, 24, 30, 34, 40, 63] and depth estimation inter-
action [37, 38, 47] to assist 3D object detection. On the
other hand, multi-view 3D object detection targets at pre-
dicting the objects’ 3D bounding boxes and categories by
taking multiview images as inputs. We roughly divide cur-
rent methods into one scheme that lifts 2D to 3D, and the
other that queries 2D from 3D.

Inspired by the success of LSS [45], BEVDet [13]
and BEVDepth [26] performed the task of 3D detection
by lifting multi-view 2D image features into a frustum
with depth encoding and creating a unified bird’s-eye-view
(BEV) feature via flattening the height dimension. More-
over, BEVDet4D [12] incorporated the multi-frame images,
and developed a detection pipeline in spatial-temporal 4D
working space. Considering further taking advantage of
temporal geometric constraints, STS [59], BEVStereo [25]
and SOLOFusion [44] were proposed with convincing per-
formances. The other scheme of multiview 3D object detec-
tion could be referred to as querying 2D from 3D. Following
end-to-end 2D detection pipeline of DETR [2], DETR3D
[58] predicted learnable queries in 3D space and queried the
corresponding 2D image features via applying the 3D to 2D
projection. PETR [31,32] further generated the queries with
3D positional embedding. BEVFormer [27] explicitly con-
structed the BEV grid samples in 3D space via leveraging
the spatial-temporal deformable attention on BEV features,
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Figure 2. Framework overview. Firstly, within the feature encoder, we align radar features with the images based on calibration information.
We develop a Global-Aware Association with the DDM module for the association of positive radar features by the guidance of semantic
querying and embedding. We hence send the addition of image and associated radar features into the BEV decoder, where we introduce
the querying denoising at the 3D level.

which aggregated multi-view image features by querying
for the 2D space.

Radar-Camera 3D Object Detection. Since radar sen-
sors have the advantages of velocity detection, long-range
depth measurement, weather robustness, and low-cost im-
plementation, recent works [7, 17, 18, 28, 39, 41] have inter-
acted radar signals with camera sensors on the challenging
3D object detection tasks. Lim et al [28] firstly proposed
to jointly transform radar and image features into the same
view based on the Cartesian representation of radar signals
and the inverse projection mapping of images. However,
direct view transformation causes significant semantic loss,
thus resulting in restrained performance.

Afterwards, works [17, 18, 39, 41] associated radar in-
formation based on 3D region proposals that were first ob-
tained from camera-based detection networks. CenterFu-
sion [41] suggested lifting region proposals into 3D frus-
tums for more precise associations. CramNet [15] pro-
posed to adopt global radar signals with the cross-attention
mechanism [55] to assist the depth estimation of fore-
ground objects, but restricted its application scope in cir-
cumstances only when radio frequency images are avail-
able [49]. CRAFT [19] mitigated the system discrepancy
and measurement ambiguities of coordinates by develop-
ing a proposal-level early fusion framework with the soft
polar association and spatial-contextual fusion transformer.
However, their IoU-based association strategy inevitably re-
sults in sensitive models as the ground-truth bounding boxes
were used for training association but predicted bounding
boxes were used for inference association. Afterwards,
FUTR3D [6] directly fused expanded radar signals with im-
ages based on the transformer decoder [2]. CRN [20] gener-

ated the BEV feature maps by transforming image features
in perspective view into BEV with radar measurements. To
further restrain the sparsity and ambiguity natures of the
radar sensor [15, 35], we proposed a radar-camera frame-
work with denoising diffusion modeling. In specific, we
embedded the semantic clues into the forward diffusion pro-
cess to guide the association of positive radar features in a
fully differentiable manner.

Denoising Diffusion Model. Recent researches [10, 42,
50] presented the powerful generative Denoising Diffusion
Models (DDMs) by learning the gradients of the log data
distribution. They leveraged the Langevin dynamics sam-
pling [60] to generate novel samples in a sequence man-
ner, and performed the information denoising starting from
a random sample of a standard Gaussian distribution. Fol-
lowing this design, researchers successfully adopted the De-
noising Diffusion Models in the learning and sampling of
images [10,51], video [11], speech [4,21], etc. Additionally,
for the task of text-to-image synthesis, Denoising Diffusion
Models have shown significant robustness and generaliza-
tion abilities, such as the works DALL-E 2 [46] and Ima-
gen [48]. For the task of object detection, DiffusionDet [5]
developed the noise-to-box detection paradigm which de-
couples the training and evaluation stage for dynamic boxes
and progressive refinement, while we use DDMs to regular-
ize the sparsity and ambiguity natures of radar features for
better incorporation with the image features.

3. Methodology
We develop a fully differentiable denoising framework

for the robust learning of 3D object detection, as shown
in Figure 2. In particular, we combine radar point clouds
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with multi-view images as inputs, so that our network is
aware of global 3D circumstances [13, 58]. Following the
inference process, our pipeline contains two main compo-
nents: (i) a radar-camera feature encoder that firstly aligns
radar and camera inputs with the calibration information,
and performs the fully-differentiable radar-camera associa-
tion by developing the global-aware attention, and the de-
noising diffusion model with semantic embedding. (ii) a
BEV decoder that jointly decodes the multi-modality fusion
features at the BEV level, which adopts the denoising of ob-
jects’ localization information via introducing extra query
groups. We elaborate on the details in the following subsec-
tions.

3.1. Radar-Camera Alignment

It is usual to take radar-camera detectors [15, 19, 20]
with advanced designs for the encoding of features in each
modality for performance boosting. However, a complex
architecture is not flexible, and results in cost raises in real
industry implementation, which limits the generalization of
our radar-camera modality association framework. Thus,
we use easily the accessible image backbones [9,22,62] for
the information encoding of our framework only.

In specific, we provide our framework with N -view in-
put RGB images Iin ∈ RN×3×Hin×Win with the resolu-
tion of Hin ×Win. We hence extract their image features
IF ∈ RN×C×H×W , whereC is the number of feature chan-
nels and H = Hin

16 ,W = Win

16 . Considering radar sig-
nal processing, to alleviate the drawbacks of radar sparsity
and its missing of height measurements, we expand radar
points along the z-direction following the pillar expansion
technique [41]. Particularly, we merge all extended radar
point clouds from all radar sensors, which is five on nuS-
cense. We leverage distance and velocity measurements
as inputs and aggregate multi-sweep radar points with the
ego-motion information for time alignment. Afterwards, we
project radar signals onto image planes based on sensor cal-
ibrations following the 3D to 2D projection function.

Functionally, we denote the number of radar sweeps as
Dr, radar inputs as RN , intrinsic parameters as I3×3, ex-
trinsic transformation from radar to LiDAR as TL

R , LiDAR
to camera as TC

L , and the ego-motion transformation as T t2
t1 .

High-level radar features RF is formulated as:

RF = I3×3 · TC
L · T t2

t1 · TL
R · ϕexp(RDr

), (1)

where RDr indicates the merged radar signals from all five
radar sensors, and ϕexp indicates the pillar expansion oper-
ation.

3.2. Global-Aware Association with DDM

We propose a denoising diffusion model with seman-
tic embedding to allocate positive radar features and cal-
culate the long-range dependency between features of dif-

Figure 3. The main architecture of our Global-Aware Associ-
ation with DDM. It first applied the denoising diffusion model
with semantic embedding as input to alleviate the ambiguity na-
ture of radar in a fully differentiable manner. Secondly, we apply
the cross attention with semantic querying to associate positive
radar features.

ferent modalities to generate 3D-representative fusion fea-
tures. Before delving into the details of each module,
we first briefly review the process of the attention opera-
tion [55]. We denote this operation as ψatt, and its query,
key and value projection by convolution and tensor flatten-
ing as Pq/k/v(·):

ψatt(q, k, v) = ϕdim(ϕsoft(
qkT√
c
)v), (2)

where ϕsoft indicates the softmax calculation, c indicates
the length of the flattened query and key, and ϕdim reshapes
the vector in tensor form.

DDM with Semantic Embedding. The details of our
DDM with semantic embedding are shown in Figure 3.
During the training of the radar denoising model, we first
construct the diffusion process from projected extended
radar features to noisy feature maps and then train the model
to reverse this process. For detailed explanations for the
process of adding Gaussian noises, please refer to [10]. We
set the total step number as T for the reverse and diffu-
sion process, and ϵ ∼ N(0, I) as the corresponding Gaus-
sian noise. We set our variance schedule as {βt}Tt=1, with
αt = 1−βt, and ᾱt refers to the cumulative product fromα1

to αt. For limiting the increase of computational costs, we
design the denoising model as two blocks of light-weight
residual connections with layers of 2D convolution, ReLU
activation and batch normalization, and we denote it as ϵθ.
Within the DDM, the embeddings are added to the mapped
radar feature. We hence train the diffusion process via opti-
mizing the negative log-likelihood of the designed Markov
Chain, that is equivalent to performing gradient descent on:

∇θ∥ϵ− ϵθ(
√
ᾱtR0 +

√
1− ᾱtϵ, t, ϕe(IF ))∥2, (3)
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where ϕe refers to the embedding of semantic features. In
specific, we obtain the semantic embedding via firstly maxi-
mum pooling of the image feature, clip features to the inter-
val (0, 1), assign feature values into uniformly discretized
K bins, and embed them into dictionaries.

Since that we aim at the denoising of radar features that
are inherently noised and ambiguous, we do not follow con-
ventional diffusion processes [5, 21] that start from the fea-
tures sampled in Gaussian distribution. Instead, we design
the inference procedure of our radar DDM as a sampling
process from the original radar feature RF and denoise it
to obtain Rdf under the guidance of semantic embedding.
Functionally, we could thus obtain from step T to step 1 as
the following:

Rt−1 =
1

√
αt

(Rt−
1− αt√
1− ᾱt

ϵθ(Rt, t, ϕe(IF ))+σtz), (4)

where σt refers to the untrained step dependent constants,
z ∼ N(0, I) when t > 1, but equals zero when t = 1. For
more details, please refer to the experiments. Our experi-
ments reveal that the semantic embedding from the image
features is important for the refinement of radar features,
while direct applying the conventional denoising process
will show no contributions to the 3D object detection task.

Association by Semantic Querying. Since our semantic
features are learned for detecting foreground objects, their
high-level representations are accomplished with enhanced
foreground information and could provide meaningful guid-
ance for the denoising of radar signals. As a result, we set
projected semantic features as the query and key to allocat-
ing positive radar reflections. In function, we have:

X = ψa
att(P

a
q (IF ), P

a
k (IF ), P

a
v (Rdf )), (5)

where X ∈ RN×C×H×W indicates our associated pos-
itive radar features. Afterwards, we implement spatial-
wise attention ψb

att and channel-wise attention ψc
att on X

to obtain spatial-wise feature XS and channel-wise feature
XC , respectively. We point-wisely add X , XS , XC and
IF to obtain the final fusion feature Xfu. Specifically,
spatial-wise attention operates on the (H ×W ) plane, i.e.
F1 = N ×C,F2 = H ×W , to selectively aggregate fusion
features across all possible spatial positions. In function,
we have:

XS = ψb
att(P

b
q (X), P b

k(X), P b
v (X)T ), (6)

with XS ∈ RN×C×H×W . While, channel-wise attention
operates on the (N×C) plane, i.e. F1 = H×W,F2 = N×
C, to selectively emphasize interdependent fusion channels.
In function, we have:

(XC)
T = ψc

att(P
c
q (X)T , P c

k (X)T , P c
v (X)), (7)

with XC ∈ RN×C×H×W . We thus formulate our final fu-
sion feature as follows:

Xfu = X + γSXS + γCXC + IF , (8)

where γS and γC indicate hyper-parameters for spatial-
channel balancing.

3.3. BEV Decoder with Localization Denoising

We apply the BEV decoder for the task of 3D ob-
ject detection. We experimented our framework on three
representative multi-view 3D detection baselines, namely
BEVDet [13], PETR [31], and BEVFormer [27] which
adopt different BEV decoding techniques. Particularly, as
shown in the second part of Figure 2, inspired by the usage
of denoising training in DN-DETR [23] in 2D object detec-
tion, for the NMS-free transformer decoder [2] in PETR,
we propose the auxiliary training of query denoising for the
regression of 3D bounding box centers, i.e, denoising mod-
eling on the ‘XYZ’ measurement values.

In specific, despite the learnable queries which are
trained to match by the Hungarian loss [52], we introduce
the decoder with D denoising query groups, that are ob-
tained from the sampling of object labels with Gaussian
noises. In specific, we set ND queries to each of the D
groups, which is selected to be larger than the most possible
number of objects of interest within a 3D circumstance. We
experimented to find that adding noises to other features of
interest shows no significant contributions to the model per-
formance. Besides, we train the attention operations with
the masking of parameters for the denoising queries fol-
lowing the design of DN-DETR [23], and only the regular
learnable queries are used to decode for 3D bounding boxes.
Functionally, we denote our initialized object queries asQ0,
initialized noised localization queries as Qxyz

0 , and our ith
layer of the transformer decoder as ϕi. Hence, we formulate
our transformer decoder as follows:

Qi+1 = ϕi(ψenc(Xfu), Qi, Q
xyz
i ), i = 1, ..., L (9)

where L indicates the total number of decoder layers, and
ψenc indicates the projection of fusion feature.

3.4. Denoising Framework Loss Function.

The denoising query groups interact with the fusion fea-
tures as the regular learnable queries, but are trained with
the direction regression of bounding box localization infor-
mation without Hungarian matching [52], as they are ini-
tialized based on one-to-one matching during the denoising
query preparation. Thus, the 3D detection loss of BEV de-
coder could be formulated as the following:

L = γ1LDDM + γ2Lreg + γ3Lcls + γ4Lxyz, (10)
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Method Modality Backbone NDS↑ mAP↑ mAVE↓ mATE↓ mASE↓ mAOE↓ mAAE↓
BEVDet [13] C V2-99* 48.8 42.4 95.0 52.4 24.2 37.3 14.8
BEVDet+DR R+C V2-99* 54.8 43.9 46.3 51.2 24.1 36.7 13.5
Improvements - - +6.0 +1.5 +43.7 +1.2 +0.1 +0.6 + 1.3

PETR [31] C V2-99* 50.4 44.1 80.8 59.3 24.9 38.3 13.2
PETR+DR R+C V2-99* 55.4 45.9 45.5 55.1 24.9 38.1 12.9

Improvements - - +4.0 +1.8 +35.3 +4.2 +0.0 +0.2 +0.3
BEVFormer [27] C V2-99* 56.9 48.1 37.8 58.2 25.6 37.5 12.6
BEVFormer+DR R+C V2-99* 59.4 50.2 31.3 52.3 24.5 36.6 11.7

Improvements - - +2.5 +2.1 +6.5 +5.9 +1.1 +0.9 +0.9

Table 1. Quantitative comparisons on the nuScense testing split. DR refers to our denoising radar-camera framework. Our improvements
relative to baseline multi-view models are listed with +. * notes that VoVNet-99 [22] was pre-trained with extra data [43].

Method Modality Backbone LiDAR NDS↑ mAP↑ mAVE↓ mATE↓ mASE↓ mAOE↓ mAAE↓
BEVDepth [26] C V2-99* ✓ 60.0 50.3 32.0 44.5 24.5 37.8 12.6
BEVStereo [25] C V2-99* ✓ 61.0 52.5 35.7 43.1 24.6 35.8 13.8
CRN [20] R+C ConvNextB + PointNet ✓ 62.4 57.5 36.5 41.6 26.4 45.6 13.0
FCOS3D [56] C R101 42.8 35.8 143.4 69.0 24.9 45.2 12.4
CenterFusion [41] R+C DLA34 44.9 32.6 61.4 63.1 26.1 51.6 11.5
DETR3D [58] C V2-99* 47.9 41.2 84.5 64.1 25.5 39.4 13.3
BEVDet [13] C V2-99* 48.8 42.4 95.0 52.4 24.2 37.3 14.8
PETR [31] C V2-99* 50.4 44.1 80.8 59.3 24.9 38.3 13.2
CRAFT [19] R+C DLA34 + PointNet 52.3 41.1 51.9 46.7 26.8 45.6 11.4
BEVDet4D [12] C Swin-B 56.9 45.1 30.1 51.1 24.1 38.6 12.1
BEVFormer [27] C V2-99* 56.9 48.1 37.8 58.2 25.6 37.5 12.6
PolarFormer [16] C V2-99* 57.2 49.3 44.0 55.6 25.6 36.4 12.7
FrustumFormer [57] C V2-99* 58.9 51.6 38.9 55.5 24.9 37.2 12.6

Ours R+C DLA34 53.8 44.2 45.6 60.7 25.0 39.4 12.7
R+C V2-99* 59.4 50.2 31.3 52.3 24.5 36.6 11.7

Table 2. Comparisons to state-of-art on the nuScenes testing set. * notes that VoVNet-99 [22] was pre-trained with extra data [43]. LiDAR
refers to training depth estimation via extra modality supervision from LiDAR.

where Lcls indicates the focal loss [29] that balances the
sample for classification, Lreg indicates the L1 loss that re-
gresses the 3D bounding box information, LDDM indicates
the gradient descent optimization for our radar DDM, and
Lxyz indicates the loss of the reconstruction loss [23]. We
set hyper-parameter γ4 as zero when we do not experiment
with the 3D transformer decoder [31, 58].

4. Experiments and Results

4.1. Dataset and Evaluation Metrics

We evaluate our network on the challenging and large-
scale nuScenes dataset [1], which contains radar, LiDAR
and multi-camera data with annotated 3D bounding boxes.
It considers 10 categories for metric comparison. We con-
duct experiments following its official data spits, which
contain 700 scenes for training, 150 scenes for validation
and 150 scenes for testing. For the network analysis, we

experimented with the validation split. Following prior
works [19,31,41,58], we adopt the nuScenes detection score
(NDS) and mean average precision (mAP) as the main met-
rics for performance comparison. NDS is calculated as a
weighted sum of mAP, and one minus each of the five other
mean average errors, namely velocity (mAVE), translation
(mATE), scale (mASE), orientation (mAOE) and attributes
(mAAE). We assign ↑ and ↓ to metrics that are expected to
be higher and lower for better performance, respectively.

4.2. Implementation Details

We take three sweeps of radar signals (Dr = 3), and
six transformer decoding layers (L = 6) for our denoised
transformer decoder. We set γS = 1.0, γC = 0.5 for
spatial-channel balancing, set γcls = 2.0, γreg = 1.0 for
classification and regression balancing, and set γ2 = 2.0,
γ3 = 1.0 for classification and regression balancing.

For our denoising designs, we experimented to find that
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Method Modality Backbone LiDAR NDS↑ mAP↑ mAVE↓ mATE↓ mASE↓ mAOE↓ mAAE↓
BEVDepth [26] C R101 ✓ 53.5 41.2 33.1 56.5 26.6 35.8 19.0
STS C R101 ✓ 54.2 43.1 36.9 52.5 26.2 38.0 20.4
CRN [20] R+C R101 + PointNet ✓ 59.2 52.5 35.2 46.0 27.3 44.3 18.0
FCOS3D [56] C R101† 37.2 29.5 131.5 80.6 26.8 51.1 17.0
CenterFusion [41] R+C DLA34 45.3 33.2 54.0 64.9 26.3 53.5 14.2
DETR3D [58] C R101† 43.4 34.9 84.2 71.6 26.8 37.9 20.0
PETR [31] C R101† 44.2 37.0 86.5 71.1 26.7 38.3 20.1
CRAFT [19] R+C DLA34 + PointNet 51.7 41.1 48.6 49.4 27.6 45.4 17.6
BEVFormer [27] C R101† 51.7 41.6 40.9 64.8 27.0 34.8 19.8
PolarFormer [16] C R101† 52.8 43.2 40.9 64.8 27.0 34.8 20.1
FrustumFormer [57] C R101† 54.6 45.7 38.0 62.4 26.5 36.2 19.1
Ours R+C DLA34 52.7 43.9 46.3 60.8 25.4 41.8 18.5
Ours R+C R101† 55.0 45.2 34.1 61.3 26.6 35.9 18.3

Table 3. Comparisons to state-of-art on the nuScenes validation set. † indicates backbones initialized from the training of FCOS3D [56].
LiDAR refers to training depth estimation via extra modality supervision from LiDAR.

Denoised Encoder Denoised Decoder NDS↑ mAP↑ mAVE↓Attention DDM Sem. Emb. 2D-DN Depth-DN
(i) — — — — — 40.3 33.9 90.7
(ii) ✓ — — — — 43.1 33.7 51.8
(iii) ✓ ✓ — — — 43.9 34.2 50.1
(iv) ✓ ✓ ✓ — — 45.5 35.1 47.2
(v) ✓ ✓ ✓ ✓ — 46.4 35.6 45.5
(vi) ✓ ✓ ✓ ✓ ✓ 47.0 36.2 45.2

Table 4. Analysis of our denoising radar-camera framework on the nuScenes validation split. ‘Attention’ refers to the cross-attention with
the semantic querying operation, and the joint of the channel- and special-wise self-attention on associated positive radar feature. ‘DDM’
refers to our denoising diffusion model without semantic embedding. ‘Sem. Emb.’ refers to our designed semantic embedding for DDM.
‘2D-DN’ refers to directly applying the query denoising from DN-DETR on a 2D plane. ‘Depth-DN’ refers to query denoising on depth.

setting γ1 = 0.5 and γ4 = 0.1 generates the detector with
the best performance. We set γ4 = 0 if the baseline multi-
view model does not adopt the transformer decoder [2, 58].
For our DDM on radar features, we set the total step T = 5,
and the bin size is set to 10. For our query denoising train-
ing, we set the denoising groups as two, and set fifty queries
to each of them. The total number of queries for decoding
is set as 900. For experiments to compare against the SOTA
works, the image resolution is set as 1600× 900. While for
the network analysis, the resolution is set as 1408 × 512.
Settings for optimizers, batch sizes and numbers of GPUs
used follow those for baseline models [13, 27, 31].

We train our models with the VoVNetV2(V2-99) [22],
DLA34 [8] and ResNet [9] backbones to evaluate against
existing state-of-the-art multi-camera and radar-camera de-
tectors [27, 31] on the testing and validation splits. Particu-
larly, our framework requires no extra supervision from the
expensive LiDAR sensor and takes no extra backbone for
the feature encoding of radar signals.

4.3. Comparisons with Baselines

To evaluate the effectiveness of our radar-camera de-
noising framework, we implemented it on three multi-
view baselines and re-trained each multi-modality network
model on the nuScense 3D object detection dataset. The de-
tection performances are reported in Table 1. For easy ob-
servation, the percentages of improvements in overall met-
rics are shown in bold. Clearly, equipped with our denois-
ing radar-camera fusion framework, the performance of all
three multi-modality models is improved significantly on
the important NDS and mAP metrics. Particularly, we ob-
serve clear performance boosts on the regression of objects’
velocities, i.e., on mAVE. It shows that our framework can
successfully associate and transfer precise depth and veloc-
ity knowledge from radar measuring to the baseline models.

4.4. Comparison with the State-of-the-Arts

We evaluate our pipeline against state-of-the-art multi-
view and radar-camera methods in Table 2 on the testing set.
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NR-Init. R-Init. NDS↑ mAP↑ mAVE↓
(i) — — 44.1 34.7 48.8
(ii) ✓ — 43.7 34.3 49.2
(iii) — ✓ 47.0 36.2 45.2
(iv) ✓ ✓ 46.5 35.6 46.9

Table 5. Analysis of DDM with semantic embedding on nuScenes
validation set. ‘NR-Init.’ refers to starting the diffusion process
conventionally from noised radar features. ‘R-Init.’ refers to the
start of the diffusion process from direct projected extended radar.

Among methods that take no LiDAR measurements auxil-
iary supervisions, our denoising radar-camera pipeline (ex-
perimented on BEVFormer [27]) ranks first place in terms
of NDS, mAVE rankings, while second place in terms of
mAP ranking. Compared to the two-stage radar-camera de-
tectors (CenterFusion [41] and CRAFT [19]), our model
with DLA34 [8] surpasses them by a large margin.

While comparing to the CRN [20], our method takes
no extra supervision from the LiDAR, which is crucial as
radar sensors have been widely deployed to the production
of vehicles, instead of the expensive LiDAR. Besides, al-
though ConvNextB [33] is considered as a stronger back-
bone, our model on V2-99 [22] still shows competitive re-
sults in terms of NDS, and stronger performance in terms
of mAVE against CRN [20]. We also compared the state-
of-the-art on the validation set in Table 3. We experimented
with the backbone of R101(initialized from the training of
FCOS3D [56]), and with DLA34 to make fair comparisons
against CenterFusion [41] and CRAFT [19].

4.5. Network Analysis

In this section, we experiment with the performance
of our framework on PETR [31] with the backbone of
ResNet50 [7] to make detailed explorations about the ef-
fectiveness of our designs on the nuScenes validation set.

Analysis of our denoising radar-camera framework.
To validate the effectiveness of our denoised decoder and
denoised encoder, we conducted ablation studies and the re-
sults are summarized in Table 4. The first line model refers
to the performance of our baseline. The second line results
are obtained from directly sending aligned radar features
into the cross-attention with semantic querying, followed by
the dual-attention operation on the associated positive radar
features. For the third line, we introduce the network to the
DDM model with the step embedding only. For the fourth
line, radar DDM with our semantic embedding. For the fifth
line, we introduce the transformer decoder with 2D-level
query denoising training following DN-DETR. For the last
line, we further extend the 2D-level query denoising train-
ing to the 3D level by developing the denoising process on
depth measurements. We observe that both the radar feature

x vxy rcs NDS↑ mAP↑ mAVE↓
(i) — — — 40.3 33.9 90.7
(ii) ✓ — — 41.9 36.5 86.7
(iii) ✓ ✓ — 47.0 36.2 45.2
(iv) ✓ ✓ ✓ 46.8 37.4 48.5

Table 6. Analysis of radar characteristics on nuScenes validation
set. ‘x’, ‘vxy’ and ‘rcs’ indicate the distance, two-direction radial
velocity, and radar cross-section measurements, respectively.

DDM with semantic embedding, and the 3D-level query de-
noising could bring significant performance improvements,

Analysis of DDM with semantic embedding. The anal-
ysis is shown in Table 5. For the first line, we experiment by
dropping the radar feature DDM with semantic embedding,
while the query denoising training within the BEV decoder
is included. For the last line, we experiment by sending
both the noised radar and original radar into our DDM and
point-wisely add their denoised results. Our experiments
once more approve the ambiguous nature of radar sensors.
It also shows that denoising on raw radar features with se-
mantic embedding could benefit the multi-modality feature
association process for the task of 3D object detection.

Analysis of radar characteristics. The analyais is
shown in Table 6. It shows that distance (x) and velocity
measurements (vxy) could benefit 3D detection, while radar
cross-section measurement (rcs) brings no convincing im-
provements to the NDS metric. The first line refers to our
baseline, which takes image inputs only.

5. Conclusion

In this work, we propose a robust denoising framework
for the task of radar-camera 3D objection. An end-to-end
fully-differentiable framework that adopts the DDM with
semantic embedding to association radar responses, and
adopts the 3D-level query denoising training for the decod-
ing of bounding boxes under the BEV view. We found that
the denoising diffusion model with guidance from semantic
information could effectively mitigate the ambiguous na-
ture of radar sensors. Our framework takes no usage of Li-
DAR point clouds during either the inference or the training
process, which is important as expensive LiDAR sensors
are not as widely implemented onto vehicles as radar or
camera. Our framework is flexible and could bring signif-
icant performance improvements for major multi-view 3D
detectors that take different techniques for BEV-level de-
coding. Our framework turns multi-view detectors into ro-
bust multi-modality radar-camera detectors with significant
performance gains on the nuScense [1] 3D detection bench-
mark and also causes a limited increase in terms of compu-
tational costs.
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