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Abstract

Semantic segmentation is a complex task that relies
heavily on large amounts of annotated image data. How-
ever, annotating such data can be time-consuming and
resource-intensive, especially in the medical domain. Ac-
tive Learning (AL) is a popular approach that can help to
reduce this burden by iteratively selecting images for an-
notation to improve the model performance. In the case of
video data, it is important to consider the model uncertainty
and the temporal nature of the sequences when selecting im-
ages for annotation. This work proposes a novel AL strat-
egy for surgery video segmentation, COWAL, COrrelation-
aWare Active Learning. Our approach involves projecting
images into a latent space that has been fine-tuned using
contrastive learning and then selecting a fixed number of
representative images from local clusters of video frames.
We demonstrate the effectiveness of this approach on two
video datasets of surgical instruments and three real-world
video datasets. The datasets and code will be made publicly
available upon receiving necessary approvals.

1. Introduction
Minimally invasive surgical robotic systems have seen

widespread adoption for surgical procedures. In this con-
text, endoscopic video feeds allow new possibilities to
enhance, augment and even partially automate specific
tasks. This includes clinical decision support [28], case re-
view [45], or even intra-operational fusion [8]. However, a
key necessity for these applications is the ability to segment
surgical instruments [2, 27, 46]. To this end, promising per-
formances for binary segmentation have been shown, but
these methods suffer from the need for large amounts of
manually annotated data to train subsequent models.

To alleviate the segmentation annotation burden, Ac-
tive Learning (AL) is a well-established learning strat-

egy [5, 9, 36, 37, 56, 59]. Using a large set of unlabeled
data, AL iteratively optimizes which data points should be
annotated by an oracle (i.e., expert) to improve the model
performance most efficiently. To date, it has been widely
applied to different clinical applications such as echocar-
diography view classification [58], diabetic retinopathy de-
tection [49], or surgical phases recognition [43].

Video sequences pose unique challenges for AL methods
due to the high correlation between video frames. An exam-
ple of this can be seen in Fig. 2 (rows 2, 4, 5, 6 and 7), where
consecutive frames exhibit high visual similarity. Annotat-
ing more than one of these redundant frames would bring
just a marginal information gain to the segmentation model
and, considering the high cost of segmentation annotations,
should be avoided by an effective AL method. However,
while typical segmentation AL methods such as entropy
sampling incorporate some implicit or explicit mechanism
to prevent redundant samples from being annotated, they
are designed under the assumption that image samples are
independent and identically distributed, which is not satis-
fied in the case of video sequences and necessarily leads to
suboptimal sample choices. This is especially problematic
in deep learning AL methods, where multiple samples shar-
ing similar properties are simultaneously selected at each
step. Therefore, video AL methods must be designed to ac-
count for the highly correlated nature of video sequences
explicitly.

Even though many works have applied AL for videos [6,
7, 12, 18, 23, 52] and semantic segmentation [17, 47, 48,
54, 56, 59], only a few have studied AL methods for se-
mantic segmentation on video datasets [35, 39]. Peng et
al. [39] used the EndoVis 2017 dataset [3], which con-
tains surgery videos, but they curated the dataset to remove
similar frames, hence the challenge within video datasets,
and used a sampling strategy based on model uncertainty.
Mittai et al. [35] compared existing AL methods for video
datasets. They pointed out the inefficiency of uncertainty-
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based methods on videos because these methods do not con-
sider the information redundancy in video datasets. They
showed that a diversity-based method Core-Set [41], is a
better choice of sampling strategy for video datasets. We
validate their finding and further show that our approach,
combining uncertainty and diversity, can yield better per-
formance for surgery videos.

We propose COWAL, an AL strategy for video segmenta-
tion. Given that it is computationally advantageous to sam-
ple multiple images when iteratively training NNs, we hy-
pothesize that the selection of images should consider both
the model uncertainty and the temporal nature of video se-
quences. We propose to project images in a latent space,
fine-tuned by contrastive learning, and then select a fixed
number of images at each iteration representative of local
clusters of video frames. We show experimentally that our
approach is superior to standard AL selection strategies.

2. Related Works
We present here some of the relevant related works.

These consist of AL methods for video applications, meth-
ods for semantic segmentation, and general AL methods.

2.1. Semantic Segmentation

Semantic segmentation is the task of classifying each
pixel of an image into a defined category. Several AL meth-
ods for semantic segmentation have been proposed in the
past. Broadly, these can be categorized as methods that
sample images [17, 39, 48, 56, 59] or sample image re-
gions [10, 11, 15, 22, 32, 33, 40, 47, 50, 53, 54]. While sam-
pling image regions allows for finer-grained queries (i.e. la-
beling of a group of adjacent pixels in a frame), it often
comes at the expense of more complex AL methods with
higher performance variance. Instead, this work focuses on
image-level sampling, allowing for more scalable AL, and
additional annotation costs are marginal in time and effort
compared to neural network training time.

In the category of methods that sample images, Yang et
al. [56] first considers a subset S of samples from the unla-
beled pool with the highest entropy, usually two times the
number of the query budget. They proceed to iteratively se-
lect samples from this subset that best cover the unlabeled
data distribution in an embedding space. Unlike them, we
also take into account the embedding of labeled data and
group all embeddings into distinct clusters before sampling
the image with the highest uncertainty from each cluster.

Sinha et al. [48] use adversarial training between a VAE
[30] and a discriminator to generate image embedding us-
ing the VAE and having the discriminator learn the differ-
ence between embeddings of labeled images and unlabeled
images at every AL step. Once the discriminator is trained,
they select unlabeled samples that are most different from
labeled samples according to the discriminator. Instead of

training a VAE at every AL step, we train an embedding
model once using contrastive learning to learn image simi-
larity. We then cluster unlabeled images with visually simi-
lar labeled images and sample unlabeled images that are not
grouped with labeled images.

2.2. Video Datasets

Due to the vast amounts of data available in video con-
tent, AL learning for video has drawn research interests in
recent years [6,7,12,18,23,35,39,52]. These methods have
focused on a wide range of tasks, such as video caption
learning [12], surgical phase classification [44], video ob-
ject detection [7], video tracking [6, 52], video object seg-
mentation [23], and video semantic segmentation [35].

While Griffin and Corso [23] developed a method for
video object segmentation, this task only requires the anno-
tator to label one frame per video, and a model will learn to
track the segmented object of this one frame throughout the
video. In contrast, our method handles semantic segmen-
tation and requires the sampling of several frames. Thus
the method developed by Griffin and Corso [23] can not be
directly applied in our case.

The work of Mittal et al. [35] is, however, relevant to
ours. Similar to our findings, they have pointed out the
inefficiency of the uncertainty-based sampling strategy for
datasets with redundant images. They applied AL meth-
ods to the A2D2 [21] and Cityscapes [16] datasets. Even
though Cityscapes [16] comes from video sequences, it is
more akin to image datasets because of the curation it went
through to remove redundant frames. We thus focus on
their result for the A2D2 dataset [21], and their finding is
that a diversity-based sampling strategy Core-Set [41] per-
forms better than uncertainty-based methods, which aligns
with our experiments. They have nevertheless not tested
sampling methods that combine both uncertainty and di-
versity. We show in this paper a similar study focusing
on surgery videos. However, unlike Mittal et al. [35],
who compared existing AL methods for video segmenta-
tion, we also propose our own sampling strategy based on
uncertainty-diversity.

2.3. Active Learning

A recent survey on AL can be found in the work of Thar-
wat et al. [51] and a survey on AL applied to the medi-
cal domain [9]. AL methods can be categorized into three
groups: uncertainty-based [19, 20, 26, 38, 42], diversity-
based [41, 48], and methods that combine both uncertainty
and diversity [4, 31, 34, 50, 56]. Our approach falls into the
last category and proposes to select samples based on their
diversity and the uncertainty of the model.

In the same category as our method, Ash et al. [4] com-
pute the gradient embeddings of the model classification
predictions and use the magnitude of these embeddings
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Figure 1. An overview of our approach. A subset of the dataset is labeled to train a model. Once the model has converged, an embedding
function projects all the images in a latent space. K-means is then used to create clusters of similar images. We assign all labeled frames to
the closest centroids and fix the centroids to those. K-means is applied again over the remaining centroids. Our strategy selects the samples
with the highest model entropy per cluster for annotation.

to assess the uncertainty of the corresponding predictions.
They proceed to sample inputs whose gradient embedding
is far from each other using the k-means++ initialization
method. The gradient embedding is obtained by multi-
plying the predicted probability of the image with a hid-
den layer embedding, a vector. In the case of segmenta-
tion, we have a 2D map of probabilities instead of a sin-
gle scalar. Computing the gradient embedding by multiply-
ing the probability of each pixel with the embedding and
then stacking them would yield gigantic vectors, hence it is
not straightforward to adapt their method for segmentation
tasks.

Margatina et al. [34] get the embeddings for input text
data and sample inputs whose classification predictions dif-
fer despite having similar embeddings. Their method as-
sumes the prediction is a probability vector and can not be
applied directly to segmentation tasks.

Other methods, such as [31, 38] also rely on the clas-
sification nature of the task, and it is not straightforward
to adapt them for segmentation. We thus compare our
approach to the following uncertainty-based methods [19,
20, 42], diversity-based methods [41, 48] and uncertainty-
diversity methods [56].

3. Method

A video segmentation model is a function f : X → Y
that receives an image, or video frame, x ∈ X and pro-
duces a label map y = f(x) ∈ Y . Training such a model

requires pairs (x,y) ∈ X ×Y of video frames and their cor-
responding annotated label maps. While obtaining video
frames is usually inexpensive, producing manual annota-
tions is time-consuming and effort-intensive. Active learn-
ing is a technique that reduces the number of required anno-
tations by iteratively selecting the most informative frames
for annotation. At each step t, a subset of the unlabeled
frames is selected according to an annotation strategy func-
tion π : 2X ×2X×Y → 2X that receives the set of unlabeled
frames Ut and the set of labeled frames At and suggests a
subset of frames π(Ut,At) ⊂ Ut that should be annotated.
After annotation, these frames are moved to the set of la-
beled frames for the next step At+1 ⊂ X × Y . The model
is then trained with At+1, and the whole process is repeated
in the next step.

In this work, we focus on the problem of active learn-
ing with video sequences. Given a collection of unla-
belled videos {X(v)}Vv=1, where each video is a sequence of
frames X(v) = (x

(v)
1 , . . . ,x

(v)
Fv

), our goal is to find a frame
annotation strategy π that maximizes the performance of the
segmentation model f for a fixed annotation budget. This
problem is challenging since video frames are not indepen-
dent and identically distributed (i.i.d.), a default assumption
in most active learning methods. While it is possible to treat
the set of frames as i.i.d. samples, in practice, video frames
exhibit strong temporal dependencies that we can exploit in
the design of π.
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Figure 2. First 2 rows show examples of images obtained from the
MONARCH™ Platform. Row 1 shows different instruments (var-
ious sheaths, needle, brush, forceps, REBUS probe) in the dataset
and their corresponding segmentation masks. Row 2 shows partial
image sequences at 2 fps. Row 3 and 4 show examples of images
from the EndoVis [2] dataset. Row 3 shows different tools (instru-
ment shaft, instrument clasper, instrument wrist, thread, clamps,
needle, suction instrument, and ultra-sound probe) in the dataset
and their corresponding segmentation masks. Row 4 partial image
sequence at 1 fps. Row 5 shows partial image sequences of the
A2D2 [21] dataset. Row 6 and 7 show image sequences of the
Skateboard and Parrot datasets [55] at 6 fps.

3.1. Annotation strategy

Our strategy is to select unlabeled frames representing
highly correlated video segments while avoiding selecting
redundant frames similar to those already in the labeled
dataset. At each step t, the policy first projects all frames in
At and Ut to a representation space Z with an embedding
function ϕ : X → Z . K-means are applied in this space
with K = |At| +Q, where | · | is the cardinal of a set, and
Q is a hyperparameter indicating the desired number of se-
lected frames at each step. This process finds a set {k(i)}Ki=1

of representative centroids in the embedding space. We then
look for centroids similar to the frames in At in terms of
distance in the embedding space.

We design a matching algorithm (see Appendix) to find
the matching {(a(i),k(mi))}|At|

i=1 between the centroids k
and the embeddings a of the elements of At. The distance
between a centroid k and At is defined as mina∈At

∥a−k∥.
We first assign the centroids k with the smallest distances

to At with the corresponding embedding a used in the
distance calculation. Since we have more centroids than
frames in At, this matching ensures that Q centroids with
the highest distances to At are left out. Each matched cen-
troid k(mi) is substituted by its corresponding vector a(i).

A second round of k-means is applied to update the re-
maining Q unmatched centroids while keeping the matched
centroids fixed to their new values a(i). This process en-
sures that the new Q centroids will represent video seg-
ments not already covered by the labeled samples since
labeled samples belong to the clusters of the fixed cen-
troids. Finally, the selected samples by our strategy are
those with the highest entropy [2] from each cluster of the
Q unmatched centroids. The entropy of a frame is com-
puted as the sum of pixel entropies, which are computed
in a standard way by applying the entropy formula to the
output probabilities of the segmentation model. The proba-
bilities are given after the softmax or sigmoid operation.

Note that just running k-means once and fixing |At| cen-
troids to the corresponding embeddings of labeled frames
is highly dependent on the initialization of the remaining Q
centroids, and we found experimentally to lead to subopti-
mal solutions, as the fixed centroids prevent the others from
moving and adequately covering the embedded vectors.

Our strategy π assumes that the distance between em-
bedding vectors represents the level of correlation between
frames. In particular, the distance between highly correlated
frames should be smaller than between independent frames.
We design our embedding function accordingly.

3.2. Representation learning

The embedding function ϕ : X → Z is modeled as a
ResNet-34 [25] trained in an unsupervised way with Sim-
CLR [14] once before AL starts. In particular, SimCLR
minimizes the contrastive loss

ℓi,j = − log
exp (sim(zi, zj)/τ)∑2N

k=1 1[k ̸=i] exp (sim(zi, zk)/τ)
(1)

where sim is the cosine similarity sim(u,v) = uT ·v
∥u∥·∥v∥ ,

zi = ϕ(xi). The loss is minimized for all pairs of frames
augmented from the same image.

4. Experiments
4.1. Dataset

MONARCH. We collected and created a video dataset
using the MONARCH™ Platform, a robotic-assisted bron-
choscopy system indicated for diagnostic and therapeutic
procedures within the lung. The dataset centers on the
biopsy phase, encompassing the insertion of diverse instru-
ments such as REBUS, needles, forceps, and brushes. It
contains 11 videos of bronchoscopy procedures with seg-
mentation masks on the biopsy tools acquired following
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Figure 3. Comparison of different sampling strategies. Values are averaged over 10 different training-validation splits, with error bars
indicating one standard deviation. Plots for Skateboard and ResNet101 backbones are available in Appendix A.

HIPAA requirements. These videos were subdivided into
56 segments, collectively amounting to 2883 frames. Seg-
ments devoid of visible biopsy tools were excluded from the
experiments.

The videos were recorded at 25 fps with a resolution
of 220 × 220, and the segmentation annotation were done
at 2 fps with a labeled frame every 12 frames. Examples
of the different tools and their segmentation mask are dis-
played in Fig. 2. In this dataset, only one tool is visi-
ble per frame. We separate the 56 videos into 30 videos
for training (≈ 1′600 frames) and 26 videos for testing
(≈ 1′300 frames). For our experiments, the dataset is sim-
plified from a multi-tool segmentation task to a binary seg-
mentation task with biopsy tools versus background anno-
tations.

EndoVis [2]. We also evaluate our method on the En-
doVis 2018 Robotic Scene Segmentation dataset [2]. It is
a dataset of surgery videos with segmentation masks on
surgery tools and human body organs. A total of 19 videos
are divided into 15 training videos (≈ 2250 frames) and 4
test videos (≈ 1000 frames). Each video came from a sin-
gle porcine training procedure. Images from the left eye in
the stereo pair are used for training. The annotation pro-
cedure is done at 1 fps with non-anatomical classes such
as instrument shaft, instrument wrist, instrument clasper,
threads, clamps, suturing needle, suction instrument, and
ultra-sound probe. An example of each tool is shown in

Fig. 2 row 3. Like the MONARCH dataset, we simplified
the annotations with an anatomical vs. non-anatomical bi-
nary mask.

A2D2 [21] is a large-scale driving dataset consisting of
41277 annotated images with a resolution of 1208 × 1920
from 23 sequences. It covers an urban setting from high-
ways, country roads, and three cities. It contains labels for
38 categories. For our experiments, we map them to the 19
classes of Cityscapes. Following the procedure of [35], we
extract 60 video segments from the original A2D2 dataset.
Each segment contains 44 consecutive frames, totaling 2640
frames. The video ’20180925 112730’ with 993 frames is
used as the test set. The annotation rate is irregular, varying
between 10 to 300 frames per annotation.

YouTube-VOS [55] is the most extensive video segmen-
tation dataset with more than 5000 videos and 90 classes.
We selected only videos showing skateboarders or parrots
to build two binary segmentation datasets. The Skateboard
dataset contains 24 videos (≈ 700 frames) for training and
10 videos (≈ 250 frames) for testing. The Parrot dataset
contains 46 videos (≈ 1500 frames) for training and 10
videos (≈ 500 frames) for testing.

4.2. Baselines

We evaluate COWAL against the following baselines
methods, Random, Entropy [42], MC Dropout [19],
BALD [20], Suggestive Annotation [56], CoreSet [41],
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Sampling Method Backbone MONARCH EndoVis A2D2 Skateboard Parrot Avg across datasets
Random ResNet50 0.804 0.804 0.550 0.790 0.770 0.744

Temporal Coverage ResNet50 0.813 0.799 0.561 0.746 0.780 0.740
Entropy [42] ResNet50 0.805 0.795 0.574 0.768 0.745 0.737
CoreSet [41] ResNet50 0.805 0.805 0.570 0.789 0.789 0.752

CoreSet x Entropy ResNet50 0.813 0.810 0.594 0.781 0.789 0.757
SA [56] ResNet50 0.808 0.794 0.613 0.769 0.763 0.749

VAAL [48] ResNet50 0.804 0.797 0.552 0.740 0.705 0.720
COWAL center (ours) ResNet50 0.811 0.803 0.569 0.799 0.790 0.754

COWAL (ours) ResNet50 0.814 0.811 0.606 0.793 0.795 0.764
Random ResNet101∗ 0.815 0.809 0.584 0.804 0.818 0.766

Temporal Coverage ResNet101∗ 0.817 0.803 0.579 0.776 0.846 0.764
Entropy [42] ResNet101∗ 0.810 0.799 0.589 0.785 0.781 0.753
CoreSet [41] ResNet101∗ 0.815 0.811 0.590 0.802 0.831 0.770

CoreSet x Entropy ResNet101∗ 0.817 0.812 0.616 0.787 0.835 0.773
SA [56] ResNet101∗ 0.814 0.801 0.632 0.790 0.797 0.767

VAAL [48] ResNet101∗ 0.811 0.802 0.586 0.763 0.759 0.744
MC Dropout [19] ResNet101∗ 0.810 0.800 . . . .

BALD [20] ResNet101∗ 0.805 0.806 . . . .
COWAL center (ours) ResNet101∗ 0.812 0.810 0.581 0.806 0.835 0.769

COWAL (ours) ResNet101∗ 0.819 0.816 0.621 0.804 0.848 0.782

Table 1. AuALC of all sampling methods across all datasets. Metrics are computed at the end of the active learning steps. The ∗ in
ResNet101∗ indicates that it is a Bayesian model which allows the use of sampling methods such as MC Dropout [19] or BALD [20]. Best
scores are in bold and second best are underlined.

VAAL [48] as well as some custom designed baselines:
- Temporal Coverage selects samples by prioritizing videos
with fewer labeled frames, and within a video, select the
temporally most distant frame to currently labeled frames.
- CoreSet x Entropy computes the distance of an unlabeled
sample to the labeled set as in CoreSet [41] and scale these
distances by the entropy values [42], selecting the samples
with the highest scaled distances. We use the same embed-
ding ϕ as COWAL.
- COWAL center, we also compare COWAL with an ablated
version of itself. Instead of selecting the frame with the
highest entropy per cluster, we select the frame closest to
the centroid to maximize sample diversity.

4.3. Implementation details

We follow the same experimental setup for all the base-
lines. The MONARCH input images are 220×220, the En-
doVis images are 224 × 224, the A2D2 images are 270 ×
480, and the YouTube-VOS images are 256 × 448. For
data augmentation, we take crops with random scale fac-
tors in the range (0.85, 1) of the original image and with
random aspect ratios in the range ( 34 ,

4
3 ). All crops are re-

scaled back to the size of the original image, followed by a
random horizontal flipping with a probability of 0.5.

The set of labeled frames A1 is initialized with the
middle frame of 10 training videos and their correspond-
ing annotations. The complementary set of unlabeled

frames U1 contains the remaining frames from the training
data. At each step t, the segmentation model f is trained
with At until convergence of the DICE score on the valida-
tion set. We run each baseline 10 times, randomly splitting
the training videos into training and validation sets with a
proportion of 2 : 1 for the EndoVis dataset, 1 : 1 for the
MONARCH, 9 : 1 for A2D2, 2 : 1 for Parrot, and 3 : 1 for
Skateboard. The reason for a 1 : 1 split for MONARCH is
that the videos from this dataset are usually shorter and con-
tain many redundant frames. Hence, having many videos
in the validation set ensures it contains diversified images.
The segmentation model f is a DeepLabV3 [13] for which
we have two different versions. The first version is from
the official PyTorch/vision GitHub repository [1] and uses
the ResNet-50 backbone. The second version, from the im-
plementation of [47], uses a ResNet-101 backbone and a
deeper decoder with more dropout layers.

The training is done with a batch size of 4, a learning
rate of 10−4, and no weight decay using the Adam opti-
mizer [29]. The patience is set to 20, and at every AL step,
evaluation on the validation set is done after the number of
iterations required to go through the whole training set. We
apply Polyak averaging with α = 0.99 for stable training
evolution. At the first AL step t = 1, the model is initial-
ized with ImageNet pre-trained weights and, for subsequent
steps, using the weights obtained at the end of the previous
step. The policy function chooses Q = 10 new samples
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for annotation at each AL step. After convergence, model
performance is evaluated with the DICE score on the test
set.

We train the embedding function ϕ with contrastive
learning on the train and validation sets of the respective
dataset as described in Sect. 3.2. We used a learning rate
of 3 ·10−4, a batch size of 256, a weight decay of 10−2, and
trained for 2000 epochs using the Adam optimizer [29].

4.4. Evaluation protocol

We run each baseline 10 times, and perform 6 AL steps
on each run. We compute the median of the DICE scores
over the 10 runs for each AL step and plot the resulting
AL curves of median DICE vs. AL step to compare the per-
formances. In addition, we report the area under the AL
curve (AuALC) as our evaluation metric. The AuALC is
expressed as a fraction of the maximum possible area that a
hypothetically perfect AL method would achieve if it could
reach the same performance as training the model with the
complete training dataset at every AL step.

5. Results
Fig. 3 shows the experimental results. The differences in

performance among baselines are significant, as indicated
by the standard errors.

COWAL outperformed all baselines for 3 datasets out
of 5 and places second in the remaining 2 datasets (Ta-
ble 1). Strategies that rely only on uncertainty, such
as Entropy [42], MC Dropout [19], and BALD [20], per-
formed poorly across all different settings in our experi-
ments. These strategies have proven highly effective for
image datasets [24, 57], but they are more likely to se-
lect redundant frames when querying batches of frames
from video sequences, as shown in Fig. 4. For example,
Entropy selected multiple consecutive frames of video 9.
This happens because frames that are temporally close of-
ten have similar uncertainty scores, causing a concentration
of high-uncertainty frames within temporal neighborhoods.
In contrast, COWAL, by ensuring a degree of visual diver-
sity among labeled frames, selected only one frame from
the same video.

While Temporal Coverage performed well on
MONARCH, it struggled during the first AL itera-
tions on the EndoVis dataset. Temporal Coverage starts by
selecting the frames from the beginning and end of each
video sequence, which often lack relevant information.
For example, in Fig. 4 Row 1, selected frames v3-f0 and
v6-f0 contain minimal presence of surgery tools, negatively
impacting performance in the initial AL iterations.

Suggestive Annotation [56] outperforms COWAL on the
A2D2 dataset due to lower frame redundancy. Sugges-
tive Annotation selects high-entropy samples and diversi-
fies within them, while COWAL diversifies first and then

Sampling Method Backbone MONARCH EndoVis
CoreSet with TME [41] ResNet50 0.718 0.795

CoreSet [41] ResNet50 0.718 0.805
SA with TME [56] ResNet50 0.723 0.796

SA [56] ResNet50 0.722 0.794
COWAL with TME (ours) ResNet50 0.721 0.803

COWAL (ours) ResNet50 0.727 0.811
CoreSet with TME [41] ResNet101∗ 0.814 0.805

CoreSet [41] ResNet101∗ 0.815 0.811
SA with TME [56] ResNet101∗ 0.813 0.803

SA [56] ResNet101∗ 0.814 0.801
COWAL with TME (ours) ResNet101∗ 0.817 0.812

COWAL (ours) ResNet101∗ 0.819 0.816

Table 2. AuALC of embedding ablation across CoreSet, Sugges-
tive Annotation, and COWAL sampling strategies. The embedding
method of each approach uses either the Task Model Embedding
(TME) or the embedding ϕ.

identifies high-entropy frames. Suggestive Annotation gen-
erally prioritizes higher-entropy samples over COWAL, yet
frame redundancy can limit its effectiveness. In A2D2, with
fewer redundant high-entropy samples, Suggestive Annota-
tion performs better. For similar reasons, Entropy [42] sur-
passes Random and other diversity-based methods exclu-
sively in the A2D2 dataset. The selected Suggestive Anno-
tation frames are listed in Appendix D.

5.1. Embedding Model Ablation

We evaluate the impact of removing our contrastive em-
bedding function ϕ and using the embedding defined by the
downstream segmentation model f instead, as it is done
in [41,56]. As shown in Table 2, the use of the embedding ϕ
yields better results for COWAL and CoreSet, while the task
model embedding is helpful for Suggestive Annotation. AL
curves for this ablation are in Appendix B.

Suggestive Annotation performs diversity sampling on
a subset S of the unlabeled samples, unlike the other two
methods, which use the whole unlabeled set. The subset S
has high entropy frames, which for video datasets means
similar frames, and we argue that the quality of the em-
bedding method is less relevant when applied to a pool of
similar images hence explaining the different behavior of
Suggestive Annotation compared to the other two methods.

5.2. Budget Size

We compare sampling strategies with an increase selec-
tion size (Q = 50) for the MONARCH-ResNet101 setting
in Fig. 5. COWAL continues to outperform the other base-
lines. Among them, uncertainty-driven approaches, such as
Entropy [42] and BALD [20], exhibit noticeably lower per-
formance.
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Figure 4. Selected frames at the first iteration. Video and frame numbers are indicated on top of each image.
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Figure 5. Comparison of different sampling strategies with a bud-
get of Q = 50 instead of 10. AuALC is displayed on the side.

6. Conclusion
We present a novel AL approach for video segmenta-

tion that aims to sample images that are diverse from pre-
viously selected frames, and that are uncertain according
to the model. We select maximal entropy frames for each
cluster, yielded by modified iterated k-means that enforce
previously selected frames to differ from new ones. We ex-
perimentally show the effectiveness of our approach against
different AL selection schemes, whereby our approach does
consistently better. We visually show that our approach in-
deed provides a good strategy to diversify labeled images,
by still selecting informative samples.
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Mozerov, Antonio M. López, and Joost van de Weijer.
Temporal coherence for active learning in videos. CoRR,
abs/1908.11757, 2019. 1, 2

[8] Sebastian Bodenstedt, Max Allan, Anthony Agustinos, Xi-
aofei Du, Luis Garcia-Peraza-Herrera, Hannes Kenngott,
Thomas Kurmann, Beat Müller-Stich, Sebastien Ourselin,
Daniil Pakhomov, Raphael Sznitman, Marvin Teichmann,
Martin Thoma, Tom Vercauteren, Sandrine Voros, Martin
Wagner, Pamela Wochner, Lena Maier-Hein, Danail Stoy-
anov, and Stefanie Speidel. Comparative evaluation of in-
strument segmentation and tracking methods in minimally
invasive surgery, 2018. 1

[9] Samuel Budd, Emma C. Robinson, and Bernhard Kainz. A
survey on active learning and human-in-the-loop deep learn-
ing for medical image analysis. CoRR, abs/1910.02923,
2019. 1, 2

[10] Lile Cai, Xun Xu, Jun Hao Liew, and Chuan Sheng Foo. Re-
visiting superpixels for active learning in semantic segmen-
tation with realistic annotation costs. In 2021 IEEE/CVF

Conference on Computer Vision and Pattern Recognition
(CVPR), pages 10983–10992, 2021. 2

[11] Arantxa Casanova, Pedro O. Pinheiro, Negar Rostamzadeh,
and Christopher J. Pal. Reinforced active learning for image
segmentation. CoRR, abs/2002.06583, 2020. 2

[12] David M. Chan, Sudheendra Vijayanarasimhan, David A.
Ross, and John F. Canny. Active learning for video de-
scription with cluster-regularized ensemble ranking. CoRR,
abs/2007.13913, 2020. 1, 2

[13] Liang-Chieh Chen, George Papandreou, Florian Schroff, and
Hartwig Adam. Rethinking atrous convolution for semantic
image segmentation. CoRR, abs/1706.05587, 2017. 6

[14] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey E. Hinton. A simple framework for contrastive learn-
ing of visual representations. CoRR, abs/2002.05709, 2020.
4

[15] Pascal Colling, Lutz Roese-Koerner, Hanno Gottschalk, and
Matthias Rottmann. Metabox+: A new region based ac-
tive learning method for semantic segmentation using pri-
ority maps. CoRR, abs/2010.01884, 2020. 2

[16] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. CoRR,
abs/1604.01685, 2016. 2

[17] Chengliang Dai, Shuo Wang, Yuanhan Mo, Elsa D. An-
gelini, Yike Guo, and Wenjia Bai. Suggestive annotation of
brain tumour images with gradient-guided sampling. CoRR,
abs/2006.14984, 2020. 1, 2

[18] Alireza Fathi, Maria-Florina Balcan, Xiaofeng Ren, and
James M. Rehg. Combining self training and active learning
for video segmentation. In British Machine Vision Confer-
ence, 2011. 1, 2

[19] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian
approximation: Representing model uncertainty in deep
learning, 2016. 2, 3, 5, 6, 7

[20] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep
bayesian active learning with image data. CoRR,
abs/1703.02910, 2017. 2, 3, 5, 6, 7

[21] Jakob Geyer, Yohannes Kassahun, Mentar Mahmudi,
Xavier Ricou, Rupesh Durgesh, Andrew S. Chung, Lorenz
Hauswald, Viet Hoang Pham, Maximilian Mühlegg, Sebas-
tian Dorn, Tiffany Fernandez, Martin Jänicke, Sudesh Mi-
rashi, Chiragkumar Savani, Martin Sturm, Oleksandr Voro-
biov, Martin Oelker, Sebastian Garreis, and Peter Schuberth.
A2D2: Audi Autonomous Driving Dataset. 2020. 2, 4, 5

[22] S. Alireza Golestaneh and Kris M. Kitani. Importance of
self-consistency in active learning for semantic segmenta-
tion. CoRR, abs/2008.01860, 2020. 2

[23] Brent A. Griffin and Jason J. Corso. Bubblenets: Learning
to select the guidance frame in video object segmentation by
deep sorting frames. CoRR, abs/1903.11779, 2019. 1, 2

[24] David A. Gutman, Noel C. F. Codella, M. Emre Celebi,
Brian Helba, Michael A. Marchetti, Nabin K. Mishra, and
Allan Halpern. Skin lesion analysis toward melanoma detec-
tion: A challenge at the international symposium on biomed-
ical imaging (ISBI) 2016, hosted by the international skin

2018



imaging collaboration (ISIC). CoRR, abs/1605.01397, 2016.
7

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015. 4

[26] Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté
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