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Abstract—This study introduces an efficacious approach,
Masked Collaborative Contrast (MCC), to highlight semantic re-
gions in weakly supervised semantic segmentation. MCC adroitly
draws inspiration from masked image modeling and contrastive
learning to devise a novel framework that induces keys to
contract toward semantic regions. Unlike prevalent techniques
that directly eradicate patch regions in the input image when
generating masks, we scrutinize the neighborhood relations of
patch tokens by exploring masks considering keys on the affinity
matrix. Moreover, we generate positive and negative samples in
contrastive learning by utilizing the masked local output and
contrasting it with the global output. Elaborate experiments on
commonly employed datasets evidences that the proposed MCC
mechanism effectively aligns global and local perspectives within
the image, attaining impressive performance. The source code is
available at https://github.com/fwu11/MCC.

I. INTRODUCTION

Weakly supervised semantic segmentation (WSSS) aims
to reduce manual labor in annotating pixel-wise ground-
truth labels by using ”weak” supervision, such as image-level
classification labels [2], [7], [37], [38], [44], [48], [49], [54],
points [4], [42], scribbles [42], [53] and bounding boxes [23].
Among all these weak annotations, image-level labels are
the most affordable yet challenging, as they only indicate
the presence or absence of objects in an image and do not
prompt object positions that are fundamental for semantic
segmentation. This work focuses on WSSS with only image-
level labels.

Previous methods of WSSS with image-level labels typi-
cally adopt Class Activation Maps (CAMs) [55] as pseudo
segmentation labels to estimate the locations of target objects
approximately. The generated pseudo labels are then refined
with diverse approaches [2], [8], [22] and further employed
to supervise a standard segmentation network. However, the
above-mentioned multi-stage framework is usually compli-
cated and suffers from massive burdens, requiring training
multiple networks for different subtasks. Another strand of
works addresses WSSS in an end-to-end manner [3], [37],

*corresponding author.

[38], [52], i.e., pseudo annotation generation and segmentation
prediction are achieved within a single network. Although
achieving impressive results, approaches based on single-stage
frameworks still confront incomplete object regions since they
are shifted by classification procedure where discriminative
regions are mainly identified. To alleviate this issue, recent
solutions [37], [38] adopt the transformer architecture [10] to
make full use of the long-range relationships to generate more
accurate pseudo labels. However, the crucial relationships
between patch tokens have not been well captured semanti-
cally [50], which inevitably limits the potential of transformers
for WSSS.

Recent studies [12], [28], [37], [38], [49], [56] have ex-
plored the benefits of long-range relationships in Transformer
to compensate for discriminative attention (e.g., CAMs).
Building upon this, we take a further step to ameliorate it
with high-level semantics. To achieve this, we first explore the
sparsity of the affinity matrix inspired by [14] and manage to
construct meticulous instances that pay much attention to local
details within an input. These local instances are then labeled
as positive and negative based on the aggregated activation
value of the remaining unmasked tokens. For example, we
say the masked instance to be positive if the mean value of
remaining tokens in CAMs is larger than the mean value of the
whole CAMs. We take advantage of contrastive learning [15]
to pull positive instances closer to the global instance and push
negative instances away.

Consequently, representation consistency between global
and local instances can be promoted, and semantic discrepan-
cies between foreground and background can be amplified, fur-
ther facilitating the discovery of accurate and integral objects.
In addition, we investigate inter-neighborhood relationships
and study different masking strategies for performance, show-
ing a high drop rate (up to 75%) in the mask with a moderate
patch size (4× 4) can better facilitate the performance.

In summary, our contributions are as follows:
• We introduce Masked Collaborative Contrast (MCC),

an effective module to embrace objects of interest by
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imposing representation consistency between global and
local views in the WSSS framework.

• We propose an effective single-stage weakly supervised
semantic segmentation framework. Unlike existing meth-
ods that explicitly erase input image patches to construct
local views, we ingeniously integrate the construction of
local semantics into Transformer blocks, making it more
efficient and allowing salient regions to align better with
keys.

• Exhaustive experiments showcase that the proposed
approach achieves state-of-the-art performance on the
prevalent PASCAL VOC [11] and MS COCO [29]
datasets compared with previous single-stage WSSS
methods.

II. RELATED WORK

A. Weakly Supervised Semantic Segmentation

In recent years, a substantial portion of weakly supervised
semantic segmentation (WSSS) methods utilizing image-level
labels have been developed, with Class Activation Map (CAM)
being one of the most commonly used techniques [55]. In-
corporating localization information exclusively from a clas-
sification network, CAM activates only the most discrim-
inative regions of an object. To overcome this limitation,
various strategies have been proposed, including both multi-
stage and end-to-end approaches. These approaches have been
proposed to bridge the gap between the classification and the
semantic segmentation task by embedding semantics into the
learning process, as opposed to only the most discriminative
characteristics. The standard multi-stage pipeline for WSSS
involves first generating seeds via a classification network,
then refining the seed to produce a pseudo-mask, and finally
training a fully supervised semantic segmentation network
with the generated pseudo-mask. Significant attention has been
devoted to generating high-quality seeds. For instance, various
approaches [7]–[9], [18], [27], [41], [49] are introduced to
facilitate CAM attention by activating non-discriminative re-
gions or eliminating false positives. Moreover, pixel-to-image
aggregation strategies [17], [19], [21], [24], additional saliency
maps [16], [25], [45], [48], [51], language supervision [30],
[46], post-processing methods [1], [2], [8], [22] have been ex-
plored to promote CAM qualities. Compared with multi-stage
methods, single-stage frameworks [3], [33], [36]–[38] possess
the advantage of simplified streamline and advanced efficiency,
yet generally sacrifice segmentation accuracy. 1Stage [3]
achieves competitive performance with previous multi-stage
methods by designing a segmentation-based network and a
self-supervised training scheme. ViT-PCM [36] proposes an
alternative to CAM based on the locality property of vi-
sion transformers through learning a mapping between patch
features and classification predictions. AFA [37] achieves
affinity learning during training by imposing constraints on
multi-head self-attention. ToCo [38] mines non-discriminative
regions by cropping uncertain regions and aligns them with the
global object in a contrastive manner. In this work, we draw
inspiration from ToCo [38] to devise a masked collaborative

contrast approach that achieves compelling performance gains.
Besides, recent studies [26] also attempt to employ novel
unsupervised pre-training solutions for low-data regimes.

B. Transformers in WSSS

ViT [10] revolutionized the vision domain by introducing
transformers, resulting in superior performance across a vari-
ety of vision tasks. Due to the limited locality of convolutional
neural networks, WSSS methods [12], [28], [37], [38], [49],
[56] employ transformer-based approaches to capture global
context for its long-range dependency. These methods utilize
ViT and its variants as image encoders, leveraging class
tokens to predict image labels and generating CAM from
patch tokens, delivering impressive results. TS-CAM [12] pro-
duces semantic coupled localization maps by coupling class-
agnostic attention maps with patch tokens. MCTformer [49]
uses multiple class tokens to generate class-specific attention
maps and refines CAM with class-specific object localization
maps and patch-level pairwise affinity. WeakTr [56], built upon
MCTformer, employs an adaptive attention fusion strategy
when combining attention maps from different attention heads.
TransCAM [28] refines CAM using attention weights from
the transformer while using a dual-branch Conformer [34]
network to generate CAM from the CNN branch, thereby
embedding both local features and global representations. This
study capitalizes on the global information provided by the
self-attention module from the vision transformer and the local
information from masked attention, aligning local and global
information through contrastive learning.

III. METHOD

A. Preliminaries

Masked Self-attention in Transformer. Let I ∈ RW×H×3

be the input image, the vision transformer encoder partitions I
into N = W ′×H ′ non-overlapping patches I ′ ∈ RN×(3×P 2),
where W ′ = W

P , H ′ = H
P , and P is the patch size. The

patches I ′ are then flatted and projected into N patch tokens
x0 ∈ RN×D, where D represents the dimension of token
embedding. The token embeddings, along with the associated
learnable class tokens, are concatenated and fed into the
standard transformer block. In addition, it is conventional to
add an acknowledged effective positional embedding on top
of this. Specifically, in the Transformer layer l, we first apply
linear learnable transformation to map the token sequences to
a query matrix Q(l) ∈ RN×Dk , a key matrix K(l) ∈ RN×Dk ,
and a value matrix V(l) ∈ RN×Dv . Here, Dk denotes the
dimensionality of the Q and K, while Dv is the dimension
of V. Consistent with established conventions, we achieve
the self-attention mechanism by computing the dot product
between each query and all keys, and subsequently scale it by
dividing by

√
Dk. This procedure delivers successive affinity

matrices A(l) ∈ RN×N that encompassing pair-wise global
relationships in each layer. To regulate these relationships, a
binary affinity mask M(l) ∈ {0, 1}N×N is introduced as a
switch for the affinity matrix, resulting in a regularized affinity
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Fig. 1: Visualization of our single-stage framework for WSSS. It is composed of classification, segmentation, affinity learning, and masked
collaborative contrast. Particularly, we generate a random mask and integrate it into the transformer encoder to produce a local class token.
Several local class tokens are obtained in the same way. After positive/negative determination, they are aligned with the global class token
by contrastive learning.

matrix A′(l) ∈ RN×N . The aforementioned association can be
expressed in the following manner:

A′(l) = softmax(A(l) +M′(l)) (1)

where A(l) =
Q(l)K(l)⊤

√
Dk

(2)

M′(l)(x, y) =

{
0 if M(l)(x, y) = 1

−∞ else
(3)

The output matrix Z(l) emerges as a weighted amalgamation
of V(l), with the weights being derived from the normalized
affinity matrix subjected to a softmax operation.

Z(l) = A′(l)V(l) (4)

CAM Generation. We employ Class Activation Maps
(CAMs) [55] to derive initial pseudo segmentation labels. As-
suming that the output sequence of patch tokens at each trans-
former layer is reshaped to a feature map Z(l) ∈ RD×H′×W ′

,
where D is the feature dimension, and H ′×W ′ is the spatial
dimension. CAMs at the l-th layer F(l) ∈ RC×H′×W ′

are then
generated through matrix multiplication between the feature
map and the parameters W(l) ∈ RD×C of the corresponding
classifier:

F(l) = W(l)⊤Z(l) (5)

where C denotes the number of foreground categories.

B. Overview

Figure 1 demonstrates the overall single-stage framework
for WSSS. Following the common practice [37], [38], we
adopt a standard vision transformer as the encoder to realize
classification and a lightweight decoder to make segmentation
predictions. For classification, representations of patch tokens
from the last layer are aggregated through Global Maximum
Pooling (GMP) followed by a convolutional classifier, produc-
ing the class score vector ŷ and the multi-label soft margin loss
is applied to calculate the classification loss Lcls.

Lcls = −
1

C

C∑
c=1

yc log(
1

1 + exp (−ŷc)
)

+ (1− yc) log(
exp (−ŷc)

1 + exp (−ŷc)
) (6)

where C is the number of classes and image-level ground-
truth labels y . The CAM derived from the classifier is refined
with PAR proposed in [37] to a reliable pseudo segmentation
label, which is subsequently used to supervise segmentation
predictions, producing the segmentation loss Lseg. We also
leverage patch tokens from a predefined intermediate layer to
generate an auxiliary CAM. These tokens are further processed
to pseudo affinities as guidance for pairwise relations of
final patch tokens to alleviate over-smoothing, as suggested
in [38]. The process yields the auxiliary classification loss
Laux

cls , calculated using the multi-label soft margin loss, as well
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Fig. 2: Visualization of the generation process of masked affinity matrix (left) and the masking strategy (right).

as the affinity loss Laff. In addition, various binary masks are
applied to self-attention in the transformer encoder to generate
a number of class tokens that only contain local information.
These local class tokens are assigned with positive/negative
in virtue of activations of the auxiliary CAM. Representation
consistency of global and local class tokens are optimized
by the contrastive loss Lmcc. In summary, the overall training
objective is:

L = Lcls + Laux
cls + Lseg︸ ︷︷ ︸

baseline

+λaLaff + λmLmcc (7)

where λa and λm are the weighting factors for losses.

C. Masked Collaborative Contrast

Although the quality of CAMs is ameliorated by virtue of
the long-range modeling capabilities of transformers, there are
still some non-discriminative object regions that need to be
identified to elevate segmentation performance. Inspired by
Masked Image Modelling [47] and Contrastive Learning [5],
[15], [32], we design a novel module, termed Masked Collab-
orative Contrast (MCC), to achieve more integral object cov-
erage by imposing representation consistency between global
and local views of the same input image.

The proposed module employs binary masks to extract local
information, which entails the selective elimination of columns
within the affinity matrix during the attention operation. This
process effectively filters out specific keys, compelling the
transformer encoder to focus its attention on the remaining
tokens. A noteworthy aspect of this masking procedure is its
application at a reduced resolution through downsampling.
Subsequently, the final target mask matrix is synthesized
by upsampling to form contiguous, squared, and localized
masking regions. The masks generated during the attention
operation serve the crucial role of distinguishing between pos-
itive and negative local class tokens that encapsulate high-level
semantic information. MCC aims to optimize the similarity
between the global class token and the positive/negative local
class tokens within the latent space, and this optimization is
achieved through the utilization of a contrastive loss. This
comprehensive approach not only enhances the model’s ability
to capture essential local information but also improves the

discrimination capabilities in the latent space, thereby con-
tributing to the overall performance and robustness of the
model. We will clarify the details in the following paragraph.

Random Masking with Keys. MCC employs binary masks to
extract local information through successive affinity matrices.
As outlined in Equations 1 to 3, a binary affinity mask
M ∈ {0, 1}N×N is introduced to regulate the information
flow within the affinity matrix A ∈ RN×N . For simplicity,
we omit the layer index in the discussion. The intricacies
of our proposed masking strategy are depicted in Figure 2.
Specifically, masking is achieved by selectively ”dropping”
columns within the affinity matrix. This process essentially
involves discarding specific keys, compelling the transformer
encoder to prioritize the analysis of the remaining tokens. It
is essential to note that the keys designated for masking are
independently sampled from a Bernoulli distribution with a
masking ratio p ∈ (0, 1) applied along the token dimension.
Subsequently, these masked keys are expanded to match the
dimensions of the affinity matrix, thus culminating in the
creation of M ∈ {0, 1}N×N .

Random Masking with Scales. Figure 2 (right) illustrates
the versatility of the proposed random masking technique,
showcasing its applicability across varying scales. This process
entails two main steps: downsampling, which adheres to a
predetermined multiple of the specified scale, is employed
to generate the initial mask matrix at the lower resolution;
subsequently, upsampling the initial mask matrix by the same
preset multiple results in the formation of the final target
mask matrix. A salient aspect to observe is that, due to the
upsampling procedure, the elements within the initial mask
matrix coalesce to form contiguous, squared, and localized
masks.

Positive/negative Determination. We define positive and
negative local images based on activation values of the
auxiliary CAM and attention masks. Concretely, let Mt =
ΓN→H′×W ′

(Mi:) be a key mask derived from the correspond-
ing affinity mask, where i is an arbitrary row index and Γ(·)
denotes the reshape operator. Here we use 1 to represent a
masked token and 0 to be an unmasked token. Intuitively, the
remaining tokens are likely to belong to semantic objects if
their averaged activation values are high. As a consequence,
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we distinguish positiveness from negativeness by the following
equation:

positiveness(+) :=

I(
1

N

∑
Y′

t ⊙ (1−Mt) > µ
1

N

∑
(1−Mt)) (8)

where I(·) is an indicator function, ⊙ denotes Hadamard
product, µ is a predefined threshold for positiveness and Y′

t

is a discretized token-level label defined as:

Y′
t =


2 ifmaxc(Faux) ≥ βfg

0 ifmaxc(Faux) ≤ βbg

1 else
(9)

where from activation values given two thresholds βbg and βfg
and Faux denotes the feature map derived from the auxiliary
layer to ameliorate the issue of over-smoothing.

CAM Uncertain
Regions

Confident
Foreground

Confident
Background

Fig. 3: The generated CAM is segregated into three distinct seg-
ments, utilizing thresholds defined by θbg and θfg . This partitioning
process enables the accurate identification of positive and negative
labels, as well as the subsequent generation of affinity labels.

Contrastive Loss. We employ InfoNCE loss [32] for con-
trastive learning. Global and local class tokens are linearly
projected to a latent space appropriate for contrasting through
global and local projectors, respectively. Let q be the pro-
jected global class token and k+/k− be the projected posi-
tive/negative local class tokens. The training objective is to
optimize the similarity between the global class token and
positive/negative local class tokens:

Lmcc =

− 1

N+

∑
k+

log
exp(qk+/τ)

exp(qk+/τ) +
∑

k− exp(qk−/τ) + ϵ
(10)

where N+ counts the number of k+ samples, τ is the
temperature factor, and ϵ is introduced for numerical sta-
bility. Parameters of the global projector are updated using
the moving average strategy proposed in MoCo [15], i.e.,
θg ← mθg + (1 − m)θl, where m is the momentum factor,
θg and θl are the parameters of the global projector and the
local projector, respectively. This slowly evolved update on
parameters of two projectors ensures training stability and
enforces representation consistency.

D. Affinity Learning

In this section, we introduce affinity learning to facilitate
pairwise relations of final patch tokens, as suggested in [38].
It is observed that patch tokens from deeper transformer layers

suffer from over-smoothing [14], [40], and the resultant unified
representations impair semantic segmentation performance
severely. To address this issue, we first derive favorable CAMs
from an intermediate layer, then leverage them as available
constraints to optimize pairwise relations of final patch tokens.
Affinity Label Generation. We first aggregate patch tokens
from a chosen intermediate layer through global max-pooling
(GMP), as suggested in [37], then apply a convolution layer
to generate classification logits. The intermediate CAMs Faux
are subsequently processed to pseudo affinity labels as su-
pervision for affinity learning. Note that it is difficult to
accurately differentiate foreground from background based on
the activation values of the derived CAMs, since pixels with
medium confidence are inappropriate to be labeled as either
an annotated object or background.

To generate a reliable affinity label, we introduce two thresh-
olds βfg and βbg satisfying 0 < βbg < βfg < 1 to partition
CAMs into foreground, background and uncertain regions.
Mathematically, the reliable segmentation label Y′ ∈ RH′×W ′

is formed as follows:

Y′ =


argmaxc(Faux) ifmaxc(Faux) ≥ βfg

0 ifmaxc(Faux) ≤ βbg

255 else
(11)

Here we label the background class as 0 and the uncertain
region as 255. Pairwise affinity relations are then constructed
based on this pseudo segmentation label. Concretely, we deter-
mine the affinity to be positive if the pixel pairs sampled from
the segmentation label share the same semantic (e.g., the pixel
pairs are both from foregrounds or both from backgrounds);
otherwise, their affinity is treated as negative. Affinities will
be ignored when pixels are sampled from uncertain regions.
Affinity Loss. The reliable affinity relations are then harnessed
as supervision to promote representations of patch tokens from
the last layer of the transformer encoder. In addition, we use
the cosine similarity to measure the predicted affinity between
two final patch tokens. The affinity loss is therefore calculated
as:

Laff =
1

N+

∑
Yi=Yj

(1− cos(T
(L)
:,i ,T

(L)
:,j ))

+
1

N−

∑
Yi ̸=Yj

cos(T
(L)
:,i ,T

(L)
:,j ) (12)

where T(L) = ΓD×H′×W ′→D×N (Z(L)), Y =
ΓH′×W ′→N (Y′). Γ(·) is the reshape operator, cos(·, ·)
denotes the cosine function, and N+/N− count the number
of positive/negative samples. Intuitively, this objective
function directly encourages final patch tokens with a positive
relation to be more similar, and otherwise be more distinctive.
It also benefits the learning of token representations from the
earlier transformer layers according to the chain rule.
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IV. EXPERIMENTS

A. Setup

Datasets and Metrics. We evaluate our proposed method
on two commonly used benchmark datasets, i.e., PASCAL
VOC [11] and MS COCO [29], which contains 20 and 80
distinct object classes, respectively. For PASCAL VOC, we
adopt the prevailing SBD dataset [13] with 10,582 training
images in our experiments, following the common practice
[8], [49]. It also has 1,449 for validation and 1,456 images
for testing. MS COCO has 82,081 training images and 40,137
validation images. For all experiments, we only use image-
level labels for training. We apply mean Intersection over
Union (mIoU) as the evaluation metric.

TABLE I: Segmentation results in terms of mIoU(%) on PASCAL
VOC and MS COCO datasets. I, S, and L denote image-level labels,
the external saliency maps and external language supervision used for
supervision, respectively.

Methods Backbone Sup. VOC COCO
val test val

Multi-Stage WSSS Methods
AuxSegNet [48] WResNet38

I,S
69.0 68.6 33.9

EPS [25] ResNet101 71.0 71.8 35.7
L2G [16] ResNet101 72.1 71.7 44.2
CLIMS [46] ResNet101 I,L 69.3 68.7 -
CLIP-ES [30] ResNet101 71.1 71.4 45.4
ReCAM [8] ResNet50

I

68.5 68.4 45.0
AMR [35] ResNet50 68.8 69.1 -
ESOL [27] ResNet50 69.9 69.3 42.6
AMN [24] ResNet50 69.5 69.6 44.7
MCTformer [49] DeiT-S 71.9 71.6 42.0
Single-Stage WSSS Methods
1Stage [3] WResNet38

I

62.7 64.3 -
AFA [37] MiT-B1 66.0 66.3 38.9
SLRNet [33] WResNet38 67.2 67.6 35.0
ToCo [38] DeiT-B 69.8 70.5 41.3
MCC (Ours) DeiT-B 70.3 71.2 42.3

Implementation Details. We use DeiT-base [43] pre-trained
on ImageNet-1K [39] as our transformer backbone. For PAS-
CAL VOC, the network is trained with a batch size of 4 for a
total of 20k iterations. For MS COCO, the network is trained
for 80k iterations with a batch size of 8. AdamW [31] is used
for optimization with a polynomial scheduler. The initial 1500
iterations are considered as a warm-up stage, during which the
learning rate is set to 1e−6, and gradually increased in a linear
fashion to reach 6e−5. In the following iterations, the learning
rate decays with a rate of 0.9. Training images are cropped
into 448 × 448. In affinity learning procedure, the auxiliary
layer is chosen to be the 10th layer of the Transformer block
as suggested in ToCo [38]. βbg and βfg in Equation 9 and 11
are set as 0.25 and 0.7. In MCC module, the masking ratio and
the masking scale are 0.75 and 4, respectively. The threshold µ
for positiveness in Equation 8 is 0.2. The temperature factors
τ in Equation 10 is set as 0.5. The momentum factor m for
the EMA process is chosen to be 0.9. The loss weights λa

TABLE II: Pseudo labels evaluation results compared to other
single-stage WSSS methods in terms of mIoU(%) on the PASCAL
VOC dataset.

Methods Backbone VOC train VOC val
1Stage [3]CVPR’2020 WResNet38 66.9 65.3
SLRNet [33]IJCV’2022 WResNet38 67.1 66.2
AFA [37]CVPR’2022 MiT-B1 68.7 66.5
ViT-PCM [36]ECCV’2022 ViT-B 71.4 69.3
ToCo [38]CVPR’2023 Deit-B 72.2 70.5
MCC(Ours) Deit-B 73.0 71.3

and λm in Equation 7 are set as 0.2 and 0.5, respectively.
During inference, we use multi-scale testing and dense-CRF
processing, as suggested in [6].

B. Comparison with State-of-the-arts

Pseudo Labels Performance. Table II presents the quantita-
tive pseudo label results on PASCAL VOC dataset in terms of
mIoU. Notably, our method can produce better pseudo labels
than other Transformer-based single-stage WSSS methods
like AFA [37] and ToCo [38] with ImageNet-1k pretrained
weights. It is worth noting that our performance even surpasses
ViT-PCM [36] which uses ImageNet-21k pretrained weights.

The qualitative results on both PASCAL VOC and MS
COCO datasets are presented in the Figure 4 and Figure
5a, respectively. These results demonstrate that the CAMs
generated with our method can cover more integral part of
the objects while reducing the noisy components, compared
to other Transformer-based end-to-end SOTA WSSS methods.

Segmentation Performance. Table I presents the quantitative
semantic segmentation results on the PASCAL VOC and MS
COCO datasets. Our proposed method outperforms existing
competitive single-stage WSSS methods, such as SLRNet
[33] and ToCo [38], on both the PASCAL VOC and MS
COCO datasets. It shows remarkable performance on online
PASCAL VOC testing, achieving a score of 71.2% compared
to 70.5% for ToCo, and delivers an improvement of up to
1.0% compared to ToCo on the large-scale MS COCO dataset.
Furthermore, our proposed method is on par with many multi-
stage WSSS methods that employ additional supervision, such
as saliency maps and natural language, demonstrating its
sufficiency during the training phase.

Figure 6 and Figure 5b shows the visualization of the gener-
ated segmentation results with our proposed MCC in PASCAL
VOC and MS COCO dataset respectively. Compared with
previous methods, our model succeeds in segmenting multiple
objects in an image with more complete and accurate object
boundaries, even when the objects are small. Furthermore, our
model is able to distinguish objects from background areas
with similar colors.

C. Ablation Study

Improvements of Masked Collaborative Contrast. We pro-
vide quantitative results of CAM and Segmentation on the
PASCAL VOC train and val set in Table III. Our baseline
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Fig. 4: CAM results of Transformer-based end-to-end WSSS methods AFA [37], ToCo [38] and our method on PASCAL VOC val set.

(a) CAM results.

(b) Segmentation results.

Fig. 5: Qualitative results of MCC on MS COCO val set.

model incorporates a classifier subsequent to the transformer
encoder, an auxiliary classifier, derived from an interme-
diate layer, in conjunction with a decoder designated for
segmentation. The introduction of a token affinity learning
module, addressing the over-smoothing problem, results in a
marked enhancement in performance relative to the baseline
model. The incorporation of our proposed MCC module yields
considerable enhancements in the segmentation performance,
with gains exceeding 4.0% within the training set and 2.0%
within the validation set. After applying CRF post-processing,
the performance finally boosts to the 70.3% mIoU on the val
set.

The proposed MCC module attempts to attend objects of
interest by imposing representation consistency between global
and local views based on masked attention, which differs from
existing approaches that explicitly erase image patches as the

TABLE III: Performance comparison with baseline model in terms
of mIoU(%). MS is the commonly used multi-scale testing [6]
strategy and CRF is dense conditional random field [20].

Methods
VOC train VOC val

MS MS + CRF MS MS + CRF

Baseline(Lcls + Laux
cls + Lseg) 57.0 57.2 55.7 55.8

Baseline + Laff 69.6 70.1 67.1 67.5
Baseline + Laff + Lmcc 73.6 74.3 69.6 70.3

input, making it more efficient and allowing salient regions to
align better with keys.

Mask Sampling Strategy. During the process of random
masking, the masking ratio and masking scale play pivotal
roles in controlling the extent and resolution of masked
patches, respectively. As shown in Figure 7, the sensitivity
analysis sheds light on the ramifications of varying configura-
tions for the masking scale and masking ratio. The left segment
of Figure 7 delineates that, among the entire spectrum of
masking ratios spanning from 0.45 to 0.99, a masking scale of
4 emerges as the optimal choice for average. On the opposite
side, the right segment of Figure 7 signifies that, within the
range of masking scales (1, 2, 4, and 7), a masking ratio
of 0.75 holds sway as the most advantageous for averaged
scenarios. The judicious selection of values for both the mask-
ing scale and masking ratio orchestrates preserving long-range
connections while concurrently upholding the integrity of local
patches. This empowers the network to extract sophisticated
features from a localized vantage point, thereby amplifying its
comprehensive performance.

Foreground/Background Thresholds. In Table IV, we re-
port the impact of using different background thresholds to
differentiate between foreground, background, and uncertain
regions. Our results show that the combination of βfg = 0.7
and βbg = 0.25 achieves the best performance.
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Fig. 6: Segmentation results of AFA [37], MCTformer [49], ToCo [38] and our method on PASCAL VOC val set
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Fig. 7: Ablation Study on the impact of masking ratios on masking
scales (left), and the impact of masking scales on masking ratios
(right). The mean and standard deviation of the segmentation results,
reported in terms of mIoU (%), were obtained from the PASCAL
VOC val set without MS inference and CRF post-processing.

TABLE IV: Impact of the choices of background threshold βbg and
foreground threshold βfg .

βfg

βbg 0.2 0.25 0.30

0.65 63.4 65.4 67.6
0.70 64.4 68.8 66.0
0.75 67.1 65.7 64.7
0.80 65.7 64.9 61.5

V. LIMITATIONS

The MCC typically excels in generating high-quality CAMs.
However, like any method, it has limitations and may exhibit
shortcomings in specific scenarios. Notably, we observe that
it can encounter challenges in cases characterized by clutter,
incompleteness, missing objects, and over-activation. These
issues are visually depicted in Figure 8 for clarity. To provide a
more detailed insight into these failure scenarios, it’s important
to highlight a few specific situations where MCC may not
perform optimally. Understanding these limitations is crucial
for effectively employing MCC in applications and scenarios

Fig. 8: Failure cases: (1) Object appearance cues are easily confused.
(2) Multiple objects appear in close proximity or overlap. (3) Objects
with intricate and complex structures.

where these specific failure cases might be encountered. It
also underscores the need for further research and potential
improvements to address these challenges.

VI. CONCLUSION

In this work, we draw inspiration from masked image mod-
eling and contrastive learning to devise an effective module
termed Masked Collaborative Contrast (MCC) to facilitate the
performance of weakly supervised semantic segmentation. The
experimental results manifest the superiority of the proposed
approach over existing methods and underscore its potential
for related tasks.
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