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Abstract

Deep learning (DL) networks have achieved remark-

able performance in infrared small target detection (ISTD).

However, these structures exhibit a deficiency in inter-

pretability and are widely regarded as black boxes, as they

disregard domain knowledge in ISTD. To alleviate this is-

sue, this work proposes an interpretable deep network for

detecting infrared dim targets, dubbed RPCANet. Specif-

ically, our approach formulates the ISTD task as sparse

target extraction, low-rank background estimation, and im-

age reconstruction in a relaxed Robust Principle Compo-

nent Analysis (RPCA) model. By unfolding the iterative op-

timization updating steps into a deep-learning framework,

time-consuming and complex matrix calculations are re-

placed by theory-guided neural networks. RPCANet detects

targets with clear interpretability and preserves the intrin-

sic image feature, instead of directly transforming the de-

tection task into a matrix decomposition problem. Exten-

sive experiments substantiate the effectiveness of our deep

unfolding framework and demonstrate its trustworthy re-

sults, surpassing baseline methods in both qualitative and

quantitative evaluations. Our source code is available at

https://github.com/fengyiwu98/RPCANet.

1. Introduction

Research on infrared small target detection (ISTD) plays

a crucial role in both civilian and military applications, such

as maritime rescue [23], early-warning systems [6], and re-

connaissance activities [51]. However, targets usually ap-

pear as point targets in just a few pixels due to the inherent

extensive imaging distance in infrared detection, leading to

limited shape and texture information. Further, background

clutter and imaging system noise interfere with distinguish-

ing infrared targets from complex noise, making ISTD a
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Figure 1. Overview of the suggested RPCANet. The optimization

steps of the ISTD model are unfolded into a deep framework.

challenging academic topic.

In recent years, ISTD techniques have been ad-

vanced, falling into model-driven and data-driven cate-

gories. The model-driven framework includes filter-based

[2,9,14], human vision system (HVS)-based [5,17,36], and

optimization-based methods [6,10,35]. These methods pro-

vide theoretical and physical foundations and interpretable

detection results, but their efficacy often hinges on finely

tuned parameters, which may not suffice when the environ-

ment changes.

Data-driven methods for detecting small infrared targets

have been enabled by the evolution of Artificial Neural Net-

works (ANNs). However, general deep-learning-based ob-

ject detection techniques [11, 20, 25] have shown limited
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performance on ISTD due to the significant difference in

shape and texture information between visible light and in-

frared. Therefore, recent studies have formulated ISTD as

a segmentation problem [7, 8, 19, 47], which can better cap-

ture the discriminative and salient features of small targets.

However, common segmentation ISTD methods [7, 8] that

adopt ImageNet [27] backbones may limit the infrared data

representation [38]. Moreover, the multiple downsampling

operations in mainstream networks can cause target loss due

to the small target size. The reliability of these networks

is questionable as they are designed without ISTD domain

knowledge.

Taking into account the benefits and drawbacks of both

model and data-driven ISTD techniques, a pertinent ques-

tion arises: Can we devise a balanced ISTD method that

integrates the strengths of data-driven and model-driven

methods to yield more reliable ISTD results? Deep un-

folding network (DUN), also known as algorithm unrolling,

is an emerging technique that bridges the gap between it-

erative algorithms and neural networks. This technique

has attracted a great deal of attention across multiple fields

[26, 29, 33, 42]. DUN constructs a network by unrolling the

iterative solving algorithm of an existing model at the iter-

ation level. Its hyperparameters are subsequently updated

in a network-based fashion. By establishing systematic and

precise connections between iterative algorithms and neural

networks, DUNs exhibit considerable potential for building

more interpretable networks [1].

Interestingly, optimization-based ISTD schemes, as an

extended application of image completion, involve opti-

mization steps such as model formulation (as shown in Fig.

1 (a), low-rank background and sparse target) and itera-

tive solving methods [10, 37], which align with the require-

ment of DUNs. However, complex matrix operations hinder

scholars from delving into DUN-based ISTD. Some stud-

ies in medical image restoration [16] and video separation

[4] have modeled images using robust principle component

analysis (RPCA). But directly learning parameters in sin-

gular value thresholding (SVT) and soft thresholding (ST)

overlooks the inherent correlation of images and compli-

cates the empirical selection of regularization parameters.

Thus, to design an ISTD network that addresses the

above issues and balances efficiency and interpretability, we

develop a deep architecture called Robust Principle Compo-

nent Analysis Network (RPCANet), as shown in Fig. 1 (d).

Rather than applying ST on deep features, this framework

uses neural layers to approximate the sparsity constraint

function within a target extraction module (TEM). In addi-

tion, we design a background extraction module (BEM) to

mimic the proximal function with convolution layers, thus

approximating the background and eliminating steps such

as SVT. An image reconstruction module (IRM) is also in-

troduced to iteratively combine the target and background

outputs. In summary, our work contributes to the field of

ISTD by:

• RPCANet is a learnable deep network architecture de-

rived from a relaxed RPCA model in Fig. 1 (b) and (c),

combining the accuracy of data-driven networks with

the interpretability of model-driven ISTD approaches.

• Our TEM and BEM approximate the target and back-

ground for segmentation. Nonlinear proximal map-

ping problems for targets are handled effectively, while

complex matrix calculations in background estimation

are replaced with neural layers. Moreover, the pro-

posed IRM combines the background and targets, aim-

ing to reconstruct the image.

• Experimental results on multiple datasets demonstrate

the effectiveness of RPCANet compared to state-of-

the-art baselines. Visualization of learned characteris-

tics provides comprehensive and reliable results.

2. Related Work

2.1. Optimization­based ISTD

Numerous ISTD methods have been developed over the

past decades. Optimization-based methods are dominant

in the model-driven category, compared to traditional filter-

based [2,9,14] and HVS-based [5,17,36] schemes. The in-

frared patch image (IPI) model by Gao et al. [10] introduces

the method of low-rank and sparse decomposition within

the stable RPCA model [52]. This matrix-based category

has been enriched by works in single [44,49] and multi [35]

subspaces. Based on the hypothesis that tensors leverage

correlation information better than matrices [12], Dai et al.

proposed a reweighted infrared patch tensor (RIPT) model

for ISTD [6]. Various strategies [18,37,45] based on tensors

have been applied to both single and multi-frame infrared

sequences. The optimization-based methods model targets

and backgrounds in a mathematically interpretable manner

within RPCA. However, they have limitations in robustness,

parameter tuning, and efficiency [46, 48]. Therefore, our

goal is to develop a model that preserves interpretability

while improving robustness and efficiency.

2.2. Deep Learning­based ISTD

In contrast to model-driven ones, convolutional neural

networks (CNNs) are data-driven to learn the non-linear

mappings between the original images and masks and are

flexible to complicated scenarios. Wang et al. proposed

a conditional GAN (MDvsFA-cGAN) [34] to reduce false

alarms and missed detections in ISTD. Dai et al. presented

an asymmetric contextual modulation (ACM) method [7]

to enhance feature fusion. Zhang et al. [47] extracted con-

textual information of the target in the deep layer, based
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on ACM. Li et al. [19] designed the DNANet with an en-

hanced receptive field to prevent small targets from disap-

pearing. Wu et al. [38] integrated residual u-blocks into

the network, which preserves feature resolution. Zhang et

al. [46] merged an edge block in a U-Net framework to en-

hance edge features, considering target shapes vary. Ying et

al. [40] updated labels with single-point supervision, based

on effective models [7, 8, 19]. However, most data-driven

methods tailor the segmentation network, which is a black

box, instead of incorporating classic ISTD algorithms with

field knowledge. Only a few studies have tried this ap-

proach [8, 15]. Therefore, we aim to find a solution that

balances interpretability and effectiveness.

2.3. Deep Unfolding Networks

Deep unfolding networks (DUNs) solve iterative op-

timization problems via neural networks and have been

widely used in image processing. Gregor and LeCun [13]

first proposed the Learned ISTA (LISTA) model, which

learns the parameters of the iterative shrinkage threshold-

ing algorithm (ISTA). Zhang et al. [41, 42] improved it

by introducing ISTA-Nets, which incorporate neural layers

into the update steps. Yang et al. [39] developed ADMM-

CSNet, which is based on unfolding the alternating direc-

tion multiplier method (ADMM) for MRI-oriented image

reconstruction. Borgerding et al. [3] applied the approxi-

mate message passing algorithm (AMP) to learn sparse lin-

ear inverse problems, and Zhang et al. [50] extended it to

compressive sensing. Other works also use DUNs for opti-

mization models, such as low-rank representation [48] and

RPCA [4,28]. These DUNs frameworks blend the strengths

of model and data-driven methods, achieving high and ro-

bust performance. Given the solid knowledge of optimiza-

tion and deep learning-based methods, a progression to-

wards DUN-based ISTD is a logical next step.

3. Deep Unfolding RPCA Network

3.1. Problem Formulation

For an infrared image D, the physical model separates it

into low-rank background B and sparse target T as:

D = B+T , (1)

where D,B,T ∈ R
m×n. In a general RPCA [52] manner,

we aim to recover the low-rank background B that could

pair the given D by constraining sparse target T and usually

transform the detection problem into:

min
B,T

rank(B) + λ ∥T∥
0

s.t. D = B+T , (2)

where λ indicates a positive trade-off parameter, and ∥·∥
0

demotes the l0-norm as the number of nonzero entries.

However, solving (2) is NP-hard since the rank function

and l0-norm are both non-convex and discontinuous. Con-

sidering this, models like IPI [10] individually replace them

with the nuclear norm (∥·∥
∗
, the sum of singular values in

a matrix) and l1-norm (∥·∥
1
) through principal component

pursuit (PCP) and reformulate (2) as:

min
B,T
∥B∥

∗
+ λ∥T∥

1
s.t. D = B+T . (3)

In complex infrared scenarios, the background and target

may vary in complexity and sparsity, and a single norm or

rank function may not capture the practical constraints [49].

Thus, we useR(B) and S(T) to constrain the prior knowl-

edge of the background and target images, respectively:

min
B,T
R(B) + λS(T) s.t. D = B+T . (4)

Moreover, to simplify the complexity of updating vari-

ables due to the augmented Lagrange multipliers [6], we

adopt a simpler and more intuitive l2-norm to transform the

constrained problem into an unconstrained one [30] as:

L(B,T) = R(B) + λS(T) +
µ

2
∥D−B−T∥

2

F , (5)

where µ is a penalty coefficient, and ∥·∥F indicates the

Frobenius norm (F-norm). For a matrix X, its F-norm

equals

√

m
∑

i=1

n
∑

j=1

|Xij |
2
. Based on (5), we can optimize the

background and target individually in an iterative scheme.

3.2. Model Iterative Solving

Updating B
∗: To update the background, we draw the

sub-problem as:

B
∗ = argmin

B

R(B) +
µ

2
∥B+T−D∥

2

F . (6)

As (3) illustrates, former optimization-based ISTD ap-

proaches usually set R(B) as ∥B∥
∗
, then degenerates (6)

into the sum of the nuclear norm and l2 norm, and this prob-

lem has an analytical solution as:

B
∗ = Dµ(D−T) , (7)

whereDµ(·) denotes the SVT operator [21] with the thresh-

old of µ. However, solving (7) involves SVD and functions

on its singular values. In DUNs, we emulate this using neu-

ral networks, which means we must perform SVD on each

neural tensor in each forward propagation. This poses chal-

lenges for time consumption and accuracy. [4] proposes an

initialization method based on the best rank-r approxima-

tion SVD, but still faces precision issues. [48] introduces a

technique with different rank constraints for the submatri-

ces, which improves interpretability but depends on manual

tuning and ignores the intrinsic image properties when sim-

ulating matrix computation in neural layers.

Thus, instead of adopting the nuclear norm and solving

it with complex SVDs, we degrade it to a constrain func-

tion R(B) in this study, and introduce a proximal opera-

tor proxµ(·) to approximate the closed-form solution for the

background, which is formulated as:

B
∗ = proxµ(D−T) . (8)
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Figure 2. Overall structure of RPCANet. The network is composed of K stages, each following the unfolding steps detailed in Fig. 3.

We use convolutional layers to approximate proximal func-

tions and solve the optimization problem. This method

eliminates the need for complex matrix operations and

leverages the nonlinear capabilities of neural networks to

extract deep features from images in a data-driven way. And

we will illustrate the detailed construction in Section 3.3.

Updating T
∗: Similar with (6), the sub-problem of op-

timizing the target is written as:

T
∗ = argmin

T

λS(T) +
µ

2
∥T+B−D∥

2

F . (9)

As discussed in Section 3.1, common optimization ap-

proaches impose an l1 norm constraint on the sparse tar-

get image. However, this poses the challenge of mapping

the soft thresholding into the neural network [42]. More-

over, sparse constraints often vary depending on the detec-

tion scenarios change [49]. Thus, we aim to derive a sim-

pler and more intuitive representation for the closed-form

solution of (9). To handle the above issues, we consider

conducting Taylor expansion of S(T). For a function f(t),
with its Lipschitz continuous gradient function∇f(t), then

f(t) can be Taylor approximated at the a fix point t0 by:

f̂(t, t0)←
L

2

∥

∥

∥

∥

t− t0 +
1

L
f(t0)

∥

∥

∥

∥

2

+ C , (10)

where L is a constant, C = − 1

2L
∥∇f(t0)∥

2
+f(t0) (please

refer to the supplementary material for detail deductions).

Based on this, we approximate S(T) at the last Tk−1 as:

Ŝ(T,Tk−1)←
LS

2

∥

∥

∥

∥

T−Tk−1+
1

LS

∇S
(

T
k−1

)

∥

∥

∥

∥

2

2

+Cs ,

(11)

where Ls is the Lipschitz constant of S(T) and Cs =

− 1

2Ls

∥

∥∇S(Tk−1)
∥

∥

2

2
+ S(Tk−1) represents as a constant.

And the updating formulate of the target matrix can be sub-

stituted as:

T
∗ =argmin

T

λŜ(T,Tk−1)+
µ

2
∥T+B−D∥

2

F

=argmin
T

LS

2

∥

∥

∥

∥

T−T
k−1 +

1

LS

∇S(Tk−1)

∥

∥

∥

∥

2

2

+
µ

2
∥T+B−D∥

2

F ,

(12)

which simply involves the sum of two l2 norms, rather than

a traditional l1 norm constraint optimization problem, and

therefore does not require the use of conventional algo-

rithms or simulating soft thresholding [42]. By taking the

derivative of the equation and equating it to zero, a closed-

form solution for updating T at the k-th step can be derived:

T
k =

λLS

λLS + µ
T

k−1 +
µ

λLS + µ

(

D
k−1 −B

k
)

−
λ

λLS + µ
∇S(Tk−1) ,

(13)

where all three coefficients are constant values. By assign-

ing each of them a learnable vector, the final equation for

updating the target matrix can be reformulated:

T
k = γTk−1+(1−γ)(Dk−1−Bk)−ε∇S(Tk−1) , (14)

where γ = λLS

λLS+µ
, ε = λ

λLS+µ
. We learn the function ∇S

end-to-end without complex matrix operations such as soft

thresholding, satisfying the Lipschitz continuity assump-

tion. And the updating equation for reconstructed D
k is:

D
k = B

k +T
k . (15)

3.3. RPCANet Framework

This section describes the overall architecture of the net-

work and module design of RPCANet, based on the opti-

mization equations in Section 3.2. As shown in Fig. 2, the

input to the network is an infrared image X ∈ R
H×W with

targets, where H and W are the image height and width,

and the update parameters are initialized as D
0 = X and

T
0 = 0. These parameters are then passed through K de-

composition stages, each corresponding to an iterative ma-

trix low-rank sparse decomposition process, to simulate the

update operation of multiple iterations in model-driven ap-

proaches.

In detail, the updated parameters Dk−1 and T
k−1 are fed

into the k-th decomposition stage, where k ∈ {1, . . . ,K}.
The background B

k, target Tk, and reconstructed result Dk

for the current stage are estimated by BEM, TEM, and IRM,

respectively. Typically, Bk represents the latent variable of

the current decomposition stage and is not involved in the

parameter transfer between stages.
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Figure 3. Detail network structure of the single stage from Fig. 2 in RPCANet: background extraction module (BEM), target extraction

module (TEM), and image reconstruction module (IRM).
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rithm and the modules of the deep unfolding network.

Background Estimation Module (BEM): As shown in

Fig. 3, we adopt BEM to estimate the background. In

(8), proximal operator proxµ(·) is to-be-decided. Here, in-

spired by former DUN-based works [29, 32, 33, 50] and in

the spirits of flexibility [41], we adopt a residual structure

proxNet(·) to simulate this operator. As (16) formulates:

B
k = proxNet(Dk−1 −T

k−1)

= D
k−1 −T

k−1 + Fk(Dk−1 −T
k−1) ,

(16)

where Fk(·) indicates the 3 × 3 convolution group in the

structure as Fig. 3 shows. Here,Fk(·) consists of lB middle

layers [Conv+BN +ReLU ], and two convolution layers:

feature extraction layer [Conv +BN +ReLU ] and image

reconstruction layer [Conv], respectively. Here, BN stands

for batch normalization and ReLU for rectified linear unit

[22]. All of them are in the stride of 1 and the padding of 1,

and we set C = 32 and lB = 3 in this study.

Target Extraction Module (TEM): This module takes

the updated background B
k, target Tk−1, and reconstruc-

tion result Dk−1 as inputs, as shown in Fig. 3. Moreover,

we set γ = 0.5 to evenly treat the three inputs and rewrite

(14) as:

T
k=T

k−1+D
k−1−Bk−ε∇S(Tk−1) . (17)

We assign the parameter learning task to ϵ as ϵk, which is

a learnable scalar independent of each reconstruction stage

and does not share parameters. As to the Lipschitz con-

tinuous gradient function ∇S , [31] finds that a single-layer

CNN consisting of a convolution layer and a ReLU acti-

vation function is Lipschitz continuous, which also holds

for multiple stacked layers. Therefore, to avoid complex

network design, we adopt simple convolution layers and

ReLU to simulate the function ∇S as shown in the orange

box in Fig. 3, in accordance with the assumption in Sec-

tion 3.2. We also introduce the difference of last Dk−1 and

updated B
k to enhance successive target feature, and the

update function of Tk is written as:

T
k=T

k−1+D
k−1−Bk−εkGk(Tk−1+D

k−1−Bk). (18)

Specifically, Gk(·) comprises an initial convolution layer, lT
of middle layers, and a reconstruction layer. Since the Lip-

schitz continuous property of the statistical operation BN is

not clear [31], we omit the BN from the convolution block.

Image Reconstruction Module (IRM): To align with

the RPCA process that maps the target and background into

a restored image, we devise an IRM that converts the de-

composition task into an image reconstruction task with a

neural networkMk(·), as presented in Fig. 3:

D
k =Mk(Bk +T

k) . (19)

Instead of applying residual blocks or other complex net-

works in the reconstruction module [32, 33], we employ a

simple and decent CNN architecture [43] in learning image

features and mapping the decomposed background and tar-

get effectively. Similar to Fk(·),Mk(·) has three types of

convolution layer with lD middle layer, where lD = 3.

The corresponding updating operations in optimization-

based and our DUN-based frameworks are shown in Fig. 4.

To sum up, we propose an end-to-end training framework

for the ISTD task named RPCANet. Its trainable param-

eters set Θ includes the convolutional network parameters

in BEM, TEM, and IRM in each decomposition stage, and

the independent trainable scalar ϵ in TEM, which collects

as Θ =
{

Θk
BEM

,Θk
TEM

,Θk
IRM

, εk
}K

k=1
, where K is the

number of overall decomposition stages.

4. Network Training

4.1. Training Loss

Since we separate an ISTD task into the target segmen-

tation and infrared image reconstruction, thus the loss func-
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Figure 5. Heatmaps of variables Bk and T
k in different decomposition stages of RPCANet on three representative scenes when K = 6.

tion consists of two components: Lsegmentation and Lfidelity.

The former measures the target segmentation performance

using SoftIoU [24], while the latter measures the infrared

image reconstruction performance using the least squares

error between the reconstructed image and the original im-

age. The loss function is defined as follows:

Ltotal = Lsegmentation + τ · Lfidelity

= 1−
1

Nt

Nt
∑

i=1

TP

FP+TP+FN
+

τ

NtN

Nt
∑

i=1

∥

∥D
K−D

∥

∥

2

F
,

(20)

where Nt and N are the total training number and total pix-

els per image. τ is the regularization parameter and set to

0.01 in our experiment.

4.2. Implementation Details

We conduct experiments on three publicly available

datasets: SIRST-Aug [47], NUDT-SIRST [19], and IRSTD-

1K [46], with their split strategies, all images are normal-

ized into 256 × 256. Besides, evaluation metrics are two

target-level: probability of detection (Pd) and false alarm

rate (Fa); two pixel-level: mean intersection over union

(mIoU ) and F-measure (F1); and the receiver operating

characteristic (ROC) curve and the area under ROC (AUC).

We train our model for 400 epochs in the PyTorch frame-

work on each dataset using an Nvidia GeForce 3090 GPU.

We use an Adam optimizer with an initial learning rate of

10−4 in the poly policy, where the initial learning rate is

multiplied by
(

1− iter
total iter

)0.9
and a batch size of 8.

5. Experiment

To confirm the fundamental process of the suggested net-

work, we verify the model by visualizing mid-layers and

conduct ablation studies. Next, we describe experiments on

open-source datasets for performance evaluation.

5.1. Model Verification

Fig. 5 presents the heatmaps of the intermediate update

variable B
k and T

k, where k ∈ {2, 4, 6}. At lower stages,

the network prioritizes low-level edge texture information

in the background, leading to insufficient background re-

construction. As the decomposition deepens, the network

Table 1. Effect of stage number K on the detection performance in

mIoU (%), F1(%), Pd (%), and Fa (10−5) on SIRST-Aug [47].

Stages (K) Params mIoU ↑ F1 ↑ Pd ↑ Fa ↓

1 0.113M 60.10 75.08 98.21 62.20

2 0.227M 69.26 81.84 98.49 46.12

3 0.340M 69.82 82.23 98.07 42.63

4 0.453M 69.50 82.01 98.07 40.36

5 0.567M 70.24 82.52 96.01 36.02

6 0.680M 72.54 84.08 98.21 34.14

7 0.793M 70.98 83.02 96.15 35.85

Table 2. Effect of layer number lT on the detection performance in

mIoU (%), F1 (%), Pd (%), and Fa (10−5) on SIRST-Aug [47].

TEM Params mIoU ↑ F1 ↑ Pd ↑ Fa ↓

lT = 1 0.402M 67.07 80.29 99.17 40.53

lT = 3 0.513M 70.63 82.79 97.80 41.36

lT = 9 0.846M 67.99 80.95 94.36 32.75

lT = 12 1.013M 69.98 82.34 97.25 38.46

lT = 6 0.680M 72.54 84.08 98.21 34.14

Table 3. Studies on different proximal networks and w/wo IRM

on the detection performance in mIoU (%), F1 (%), Pd (%), and

Fa (10−5) on SIRST-Aug [47].

BEM IRM Params mIoU ↑ F1 ↑ Pd ↑ Fa ↓

RB 0.624M 66.33 79.76 98.07 61.39

CNN 0.679M 71.43 83.33 97.77 32.45

Ours 0.507M 67.07 80.29 96.56 36.89

Ours 0.680M 72.54 84.08 98.21 34.14

acquires more comprehensive information, demonstrating

its ability to learn from formula-guided training.

Likewise, Tk progressively learns the target’s location

from disorganized high-frequency information, resulting in

a sparse matrix as the segmented output. Fig. 5 (c) shows

that false alarms in the initial stages are eliminated under

mask supervision, showing the data-driven way corrects the

detection result. These successive heatmaps verify the ef-

fectiveness of RPCANet in learning infrared variables ac-

cording to training data while preserving the interpretability

of RPCA model that facilitates the ISTD task.

5.2. Ablation Studies

Effects of Parameter K and lT: Table 1 compares
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Figure 6. Representative visual results from various ISTD methods. Accurately detected targets, missed targets, and false alarms are each

highlighted by boxes in red, blue, and yellow.

Table 4. Studies on ∇S simulation network in detection perfor-

mance mIoU (%), F1 (%) on three different datasets.

Config
NUDT-SIRST [19] IRSTD-1K [46] SIRST-Aug [47]

mIoU↑ F1↑ mIoU↑ F1↑ mIoU↑ F1↑

T
k−1 88.54 93.92 60.98 75.76 70.54 82.72

Ours 89.31 94.35 63.21 77.45 72.54 84.08

the effects of different reconstruction stage counts. Our

method only reaches significant detection performance in

two stages, validating the essential attributes of the sug-

gested RPCANet. Additionally, we see that K = 7 has a

worse ISTD performance than K = 6, which makes sense

given that a higher K could hinder gradient propagation,

based on this, we set K to 6. Similarly, as shown in Table

2, the number of the convolutional layer lT faces the same

manner, the performance of the network can be improved

as lT raises, but the gain effect of too many reconstruction

stages on the network performance is limited, thus, we take

lT = 6 in all our experiments.

Studies of proxNet(·) and IRM: The emulation of

proximal operators acts an essential role in background es-

timation [33, 41], we investigate two proxNet(·) construc-

tions (residual block (RB) [32] and plain CNN) for proxi-

mal operators. Table 3 demonstrates that RB can yield some

effects and a small parameter count, our network in Sec-

tion 3.3 achieves better results with a minimal parameter

increase. We also examine the influence of the IRM. As de-

picted in the third row of Table 3, RPCANet, guided by the

reconstruction module, exhibits substantial improvements

in four metrics, proving the module’s effectiveness.

Studies of∇S Simulation Network: We investigate the

impact of incorporating D
k−1 and B

k subtraction within

Gk(·) for target feature enhancement. Table 4 compares two

configurations. While using T
k−1 alone yields satisfactory

results, incorporating additional information in (18) signif-

icantly improves mIoU and F1. We can conclude that ap-

propriate modifications to the network structure, guided by

the model’s prior, can enhance detection performance.
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Table 5. mIoU (%), F1 (%), Pd (%), Fa (10−5), and runtime values of different methods performance on NUDT-SIRST [19], IRSTD-

1K [46], and SIRST-Aug [47]. The second column records the parameter statistics for data-driven algorithms.

Methods Params
NUDT-SIRST [19] IRSTD-1K [46] SIRST-Aug [47] Time (s)

mIoU ↑ F1 ↑ Pd ↑ Fa ↓ mIoU ↑ F1 ↑ Pd ↑ Fa ↓ mIoU ↑ F1 ↑ Pd ↑ Fa ↓ CPU/GPU

Tophat [2] - 22.23 36.37 96.19 76.27 5.35 10.15 68.73 86.50 16.70 28.62 95.05 11.77 0.0111/-

MPCM [36] - 9.26 16.95 70.58 32.74 14.87 25.89 68.73 6.51 19.76 33.00 93.40 3.14 0.0624/-

IPI [10] - 34.62 51.43 92.38 7.54 18.64 31.42 78.01 11.10 21.93 35.87 80.06 1.62 3.0972/-

PSTNN [45] - 25.46 40.58 78.52 7.95 16.38 28.15 69.07 7.65 13.83 24.30 59.97 1.56 0.2249/-

ACM [7] 0.398M 69.00 81.66 95.98 13.34 61.56 76.20 92.93 8.88 70.49 82.62 96.70 35.29 -/0.0072

ALCNet [8] 0.427M 71.48 83.37 96.30 11.45 58.23 73.61 92.92 10.31 66.21 79.67 97.80 37.40 -/0.0070

ISNet [46] 0.967M 87.51 93.34 97.35 3.37 55.29 71.21 94.61 14.19 70.51 82.71 97.66 31.57 -/0.0132

AGPCNet [47] 12.360M 85.40 92.13 98.10 4.72 61.00 75.76 89.35 5.34 72.16 83.83 99.03 35.56 -/0.0205

DNANet [19] 4.697M 83.94 91.27 98.52 6.21 60.51 75.40 91.07 5.43 69.58 82.06 96.14 27.26 -/0.0250

UIUNet [38] 50.540M 88.71 94.01 91.43 1.89 63.06 77.35 93.60 6.57 71.80 83.59 98.35 28.29 -/0.0261

Ours 0.680M 89.31 94.35 97.14 2.87 63.21 77.45 88.31 4.39 72.54 84.08 98.21 34.14 -/0.0096

5.3. Comparison to State­of­the­art Methods

For model-driven methods, we select: filter-based

Tophat [2], HVS-based MPCM [36], matrix optimization-

based IPI [10], and tensor optimization-based PSTNN

[45]. For data-driven algorithms, we conduct experiments

on ACM [7], ALCNet [8], ISNet [46], AGPCNet [47],

DNANet [19], and UIUNet [38].

Qualitative Results: Fig. 6 depicts visual results ob-

tained from various algorithms applied to three datasets.

RPCANet effectively generalizes complex scenarios, pro-

ducing outputs with accurate target shapes and low false

alarm rates. Compared to model-driven algorithms, our

network excels at suppressing false alarms while preserv-

ing the sparse shape of infrared targets. Although some

DL-based models can effectively reduce false alarms, they

may struggle in small and complex situations, leading to

missed detections. Algorithms like ISNet largely maintain

the target shape; however, they occasionally encounter dif-

ficulties in multi-target scenarios. The visualization results

clearly illustrate that our network combines the advantages

of optimization-based and DL-based methods.

Quantitative Results: To showcase the effectiveness of

our network, we compare its detection performance with the

SOTA baseline. Table 5 demonstrates that RPCANet out-

performs most model-driven and data-driven ISTD frame-

works in four indicators using fewer parameters. Model-

driven methods like IPI excel in target-level metrics but lack

pixel-level accuracy. Data-driven networks improve mIoU

and F1 scores while preserving the target’s shape. However,

DL-based algorithms like AGPCNet and UIUNet suffer

from overfitting and require more parameters. In contrast,

RPCANet combines model-driven priors with accurate ob-

ject extraction and segmentation guided by data, achieving

superior performance with fewer parameters. ROC curves

in Fig. 7 highlight that our model rapidly reaches the upper-

left corner and exhibits competitive performance in terms

of AUC: RPCANet (0.9857), ACM (0.9830), and UIUNet

(0.9477). Moreover, the last column in Table 5 shows that

our framework obtains great computational efficiency.

Figure 7. ROC curves of different methods on NUDT-SIRST [19].

6. Conclusion

In this paper, we propose an interpretable framework for

infrared small target detection based on deep unfolding net-

works. We model the ISTD task as a relaxed RPCA problem

and solve the optimization steps via network emulations,

including the proximal network and sparsity-constrained

neural layers. Our scheme produces trustworthy visualiza-

tions and outstanding detection results in extensive experi-

ments on various public datasets. The architecture of RP-

CANet effectively guides neural layers to learn low-rank

backgrounds and sparse targets, facilitating the detection

tasks in an almost ”white box” manner. We hope our find-

ings cloud inspire researchers to explore more interpretable

solutions for ISTD problems in the future.
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