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Abstract

In this work we present DREAM, an fMRI-to-image
method for reconstructing viewed images from brain activi-
ties, grounded on fundamental knowledge of the human vi-
sual system. We craft reverse pathways that emulate the hi-
erarchical and parallel nature of how humans perceive the
visual world. These tailored pathways are specialized to
decipher semantics, color, and depth cues from fMRI data,
mirroring the forward pathways from visual stimuli to fMRI
recordings. To do so, two components mimic the inverse
processes within the human visual system: the Reverse Vi-
sual Association Cortex (R-VAC) which reverses pathways
of this brain region, extracting semantics from fMRI data;
the Reverse Parallel PKM (R-PKM) component simultane-
ously predicting color and depth from fMRI signals. The
experiments indicate that our method outperforms the cur-
rent state-of-the-art models in terms of the consistency of
appearance, structure, and semantics. Code will be avail-
able at https://github.com/weihaox/DREAM .

1. Introduction
Exploring neural encoding unravel the intricacies of

brain function. In last years, we have witnessed tremendous
progress in visual decoding [14] which aims at decoding a
Functional Magnetic Resonance Imaging (fMRI) to recon-
struct the test image seen by a human subject during the
fMRI recording. Visual decoding could significantly affect
our society from how we interact with machines to help-
ing paralyzed patients [36]. However, existing methods still
suffer from missing concepts and limited quality in the im-
age results. Recent studies turned to deep generative mod-
els for visual decoding due to their remarkable generation
capabilities, particularly the text-to-image diffusion mod-
els [29, 40]. These methods heavily rely on aligning brain
signals with the vision-language model [27]. This strategic
utilization of CLIP helps mitigate the scarcity of annotated
data and the complexities of underlying brain information.

Still, the inherent nature of CLIP, which fails to preserve
the scene structural and positional information, limits vi-
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Figure 1. Forward and Reverse Cycle. Forward (HVS): visual
stimuli 7→ color, depth, semantics 7→ fMRI; Reverse (DREAM):
fMRI 7→ color, depth, semantics 7→ reconstructed images.

sual decoding. Hence, current methods have endeavored to
incorporate structural and positional details, either through
depth maps [7, 35] or by utilizing the decoded representa-
tion of an initial guessed image [25, 31]. However, these
methods primarily focus on merging inputs that fit well
within the pretrained generative model for visual decoding,
lacking the insights from the human visual system.

We commence our study with the foundational princi-
ples [3] governing the Human Visual System (HVS) and
dissect essential cues crucial for effective visual decoding.
Our method draw insights from HVS — how humans per-
ceive visual stimuli (forward route in Fig. 1) — to address
the potential information loss during the transition from the
fMRI to the visual domain (reverse route in Fig. 1). We
do that by deciphering crucial cues from fMRI recordings,
thereby contributing to enhanced consistency in terms of
appearance, structure, and semantics. As cues, we inves-
tigate: color for accurate scene appearance [24], depth for
scene structure [28], and the popular semantics for high-
level comprehension [27]. Our study shows that current
visual decoding methods often underscored and unnoticed
color which in fact plays an indispensable role. Fig. 2 high-
lights color inconsistencies in a recent work [25]. The gen-
erated images, while accurate in semantics, deviate in struc-
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Figure 2. Appearance Inconsistency. When decoding the fMRI
data of a subject viewing a test image (top), recent visual decoding
methods, here [25], reconstruct images (bottom) which are seman-
tically close but still suffer from strong color inconsistencies.

ture and color from the original visual stimuli. This phe-
nomenon arises due to the absence of proper color guidance.

Following above analysis, we propose DREAM, a visual
Decoding method from REversing humAn visual systeM.
It aims to mirror the forward process from visual stimuli to
fMRI recordings (Sec. 3). Specifically, we design two re-
verse pathways specialized in deciphering semantics, color,
and depth from fMRI. Reverse-VAC (Sec. 4.1) replicates
the reverse operations of the visual associated cortex, ex-
tracting semantics from fMRI. Reverse-PKM (Sec. 4.2) pre-
dicts color and depth simultaneously from fMRI signals.
Deciphered cues are then fed into Stable Diffusion [29]
with T2I-Adapter [24] to guide the image reconstruction
(Sec. 4.3). Our contributions are summarized as follows:

• We scrutinize the limitations of recent diffusion-based
visual decoding methods, shedding light on the poten-
tial loss of information, and introduce a novel formu-
lation based on the principles of human perception.

• We mirror the forward process from visual stimuli to
fMRI recordings within the visual system and devise
two reverse pathways specialized in extracting seman-
tics, color, and depth information from fMRI data.

• We show through experiments that our biologically
interpretable method, DREAM, outperforms state-of-
the-art methods while maintaining better consistency
of appearance, structure, and semantics.

2. Related Work
2.1. Diffusion Probabilistic Models

Recently, diffusion models have risen to prominence as
cutting-edge generative models. Denoising Diffusion Prob-
abilistic Model is a parameterized bi-directional Markov
chain that utilizes variational inference to produce match-
ing samples. The forward diffusion process is designed to
transform any data distribution into a basic prior distribu-
tion (e.g., isotropic Gaussian), and the reverse denoising

process learns to denoise by learning transition kernels pa-
rameterized by deep neural networks such as U-Net. In La-
tent Diffusion Models (LDMs) [29], diffusion process is ap-
plied within the latent space rather than in the pixel space,
enabling faster inference and reducing training costs. The
text-conditioned LDM, known as Stable Diffusion (SD), has
gained widespread usage due to its versatile applications
and capabilities. ControlNet [42] and T2I-Adapter [24] aim
to enhance the control capabilities even more by training
versatile modality-specific encoders. These encoders align
external control (e.g., sketch, depth, and spatial palette)
with internal knowledge in SD, thereby enabling more pre-
cise control over the generated output. Unlike SD, which
solely employs the CLIP text encoder, Versatile Diffusion
(VD) [40] incorporates both CLIP text and image encoders,
thereby enabling the utilization of multimodal capabilities.

2.2. Image Decoding from fMRI

The advancements in visual decoding are closely inter-
twined with the evolution of various modeling frameworks.
For instance, in [13], sparse linear regression was applied to
preprocessed fMRI data to predict features extracted from
early convolutional layers in a pretrained CNN. In the past
few years, researchers have advanced visual decoding tech-
niques by mapping the brain signals to the latent space of
generative adversarial networks (GANs) [10] to reconstruct
human faces [5] and natural scenes [25, 32]. More recently,
visual decoding has reached an unprecedented level of qual-
ity [11, 26, 34] with the release of vision-language mod-
els [27], multimodal diffusion models [29, 40], and large-
scale fMRI datasets [2]. Lin et al. [19] learned to project
voxels to the CLIP space and then processed outcomes
through a fine-tuned conditional StyleGAN2 [16] to recon-
struct natural images. Takagi et al. [34] employed the ridge
regression to associate fMRI signals with the CLIP text em-
bedding and the latent space of Stable Diffusion, opting for
varied voxels based on different components. Recent re-
search [22, 26] explored the process of mapping fMRI sig-
nals to both CLIP text and image embeddings, subsequently
utilizimg the pre-trained Versatile Diffusion model [40] that
accommodates multiple inputs for image reconstruction.

2.3. Multi-Level Modeling in Visual Decoding

Hierarchical visual feature representations are frequently
utilized in visual decoding. Early studies [1, 13] have indi-
cated that hierarchical features extracted through pretrained
CNN models demonstrated strong correlation with neural
activities of visual cortices. Recent research delved into
combining both low-level visual cues and high-level se-
mantics inferred from brain activity, using frozen diffusion
models for reconstruction [22, 26, 31, 41]. The low-level
visual cues are commonly incorporated in an implicit man-
ner, such as utilizing intermediate features predicted by a
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Figure 3. Relation of the HVS and Our proposed DREAM. Grounding on the Human Visual System (HVS), we devise reverse pathways
aimed at deciphering semantics, depth, and color cues from fMRI to guide image reconstruction. (Left) Schematic view of HVS, detailed
in Sec. 3. When perceiving visual stimuli, connections from the retina to the brain can be separated into two parallel pathways. The Parvo-
cellular Pathway originates from midget cells in the retina and is responsible for transmitting color information, while the Magnocellular
Pathway starts with parasol cells and is specialized in detecting depth and motion. The conveyed information is channeled into the visual
cortex for undertaking intricate processing of high-level semantics from the visual image. (Right) DREAM mimics the corresponding
inverse processes within the HVS: the Reverse VAC (Sec. 4.1) replicates the opposite operations of this brain region, analogously extract-
ing semantics Ŝ as a form of CLIP embedding from fMRI; and the Reverse PKM (Sec. 4.2) maps fMRI to color Ĉ and depth D̂ in the
form of spatial palettes and depth maps to facilitate subsequent processing by the Color Adapter (C-A) and the Depth Adapter (D-A) in
T2I-Adapter [24] in conjunction with SD [29] for image reconstruction from deciphered semantics, color, and depth cues {Ŝ, Ĉ, D̂}.

large-scale vision model [26] or encoded from an initial es-
timated image [31]. The high-level semantics is frequently
represented as CLIP embedding. Recent research [7, 35]
also suggested the explicit provision of both low-level and
high-level information, predicting captions and depth maps
from brain signals. Our method differs in terms of how to
predict auxiliary information and the incorporation of color.

3. Preliminary on the Human Visual System

Human Visual System (HVS) endows us with the ability
of visual perception. The visual information is concurrently
relayed from various cell types in the retina, each capturing
distinct facets of data, through the optic nerve to the brain.
Connections from the retina to the brain, as shown in Fig. 3,
can be separated into a parvocellular pathway and a mag-
nocellular pathway1. The parvocellular pathway originates
from midget cells in the retina and is responsible for trans-
mitting color information, while the magnocellular pathway
starts with parasol cells and is specialized in detecting depth
and motion. The visual information is first directed to a sen-
sory relay station known as the lateral geniculate nucleus
(LGN) of the thalamus, before being channeled to the vi-
sual cortex (V1) for the initial processing of visual stimuli.
The visual association cortex (VAC) receives processed in-

1An additional set of neurons, known as the koniocellular layers, are
found ventral to each of the magnocellular and parvocellular layers [3].

formation from V1 and undertakes intricate processing of
high-level semantic contents from the visual image.

The hierarchical and parallel manner where visual stim-
uli are broken down and passed forward as color, depth, and
semantics guided our choices to reverse the HVS for decod-
ing. For a detailed illustration of human perception and an
analysis on the feasibility of extracting desired cues from
fMRI recordings, please consult supplementary material.

4. DREAM

The task of visual decoding aims to recover the viewed
image I ∈ RH×W×3 from brain activity signals elicited by
visual stimuli. Functional MRI (fMRI) is usually employed
as a proxy of the brain activities, typically encoded as a set
of voxels fMRI ∈ R1×N . Formally, the task optimizes f(·)
so that f(fMRI) = Î , where Î best approximates I .

To address this task, we propose DREAM, a method
grounded on fundamental principles of human perception.
Following Sec. 3, our method relies on explicit design of
reverse pathways to decipher Semantics, Color, and Depth
intertwined in the fMRI data. These reverse pathways mir-
ror the forward process from visual stimuli to brain activity.
Considering that an fMRI captures changes in the brain re-
gions during the forward process, it is feasible to derive the
desired cues of the visual stimuli from such recording [2].
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Figure 4. R-VAC Training. To decipher semantics from fMRI, we
train an encoder Efmri in a contrastive fashion which aligns fMRI
data with the frozen CLIP space [27]. Data augmentation (repre-
sented by the dashed rectangle) [17] combats the data scarcity of
the fMRI modality. See Sec. 4.1 for more details.

Overview. Fig. 3 illustrates an overview of DREAM. It is
constructed on two consecutive phases, namely, Pathways
Reversing and Guided Image Reconstruction. These phases
break down the reverse mapping from fMRI to image into
two subprocesses: fMRI 7→ {Ŝ, Ĉ, D̂} and {Ŝ, Ĉ, D̂} 7→ Î.
In the first phase, two Reverse Pathways decipher the cues
of semantics, color and depth from fMRI with parallel
components: Reverse Visual Association Cortex (R-VAC,
Sec. 4.1) inverts operations of the VAC region to extract
semantic details from the fMRI, encoded as CLIP embed-
ding [27], and Reverse Parallel Parvo-, Konio- and Magno-
Cellular (R-PKM, Sec. 4.2) is designed to predict color and
depth simultaneously from fMRI signals. Given the lossy
nature of fMRI data and the non-bijective transformation
of image 7→ fMRI, we then cast the decoding process as
a generative task while using the extracted Ŝ, Ĉ, D̂ cues as
conditions for image reconstruction. Therefore, in the sec-
ond phase Guided Image Reconstruction (GIR, Sec. 4.3),
we follow recent visual decoding practices [34,35] and em-
ploy a frozen SD with T2I-Adapter [24] to generate images
through benefiting here the additional Ŝ, Ĉ, D̂ guidance.

4.1. R-VAC (Semantics Decipher)

The Visual Association Cortex (VAC), as detailed in
Sec. 3, is responsible for interpreting the high-level seman-
tics of visual stimuli. We design R-VAC to reverse such
process through analogous learning of the mapping from
fMRI to semantics fMRI 7→ Ŝ. This is achieved by training
an encoder Efmri whose goal is to align the fMRI embed-
ding with the shared CLIP space [27]. Though CLIP was
initially trained with image-text pairs, prior works [21, 31]
demonstrated ability to align new modalities. To fight the
scarcity of fMRI data, we also carefully select ad-hoc data
augmentation strategy [17].

Contrastive Learning. In practice, we train the fMRI en-
coder EfMRI with triplets of {fMRI, image, caption} to pull
the fMRI embeddings closer to the rich shared semantic
space of CLIP. Given that both text encoder (Etxt) and im-
age encoder (Eimg) of CLIP are frozen, we minimize the
embedding distances of fMRI-image and fMRI-text which
in turns forces alignment of the fMRI embedding with
CLIP. The training is illustrated in Fig. 4. Formally, with
the embeddings of fMRI, text, and image denoted by p, c,
v, respectively, the initial contrastive loss writes

Lp = − log
exp (pi·ci/τ)∑K
j=0 exp (pi·cj/τ)

− log
exp (pi·vi/τ)∑K
j=0 exp (pi·vj/τ)

,

(1)
where τ is a temperature hyperparameter. The sum for each
term is over one positive and K negative samples. Each
term represents the log loss of a (K+1)-way softmax-based
classifier [12], which aims to classify pi as ci (or vi). The
sum over samples of the batch size n is omitted for brevity.

Data Augmentation. An important issue to consider is
that there are significant fewer fMRI samples (≈ 104) com-
pared to the number of samples used to train CLIP (108),
which may damage contrastive learning [15, 43]. To ad-
dress this, we utilize a data augmentation loss based on
MixCo [17], which generates mixed fMRI data rmixi,k from
convex combination of two fMRI data ri and rk:

rmixi,k = λi · ri + (1− λi) · rk, (2)

where k represents the arbitrary index of any data in the
same batch, and its encoding writes p∗i = Efmri(rmixi,k).
The data augmentation loss, which excludes the image com-
ponents for brevity, is formulated as

LMixCo =−
n∑

i=1

[
λi · log

exp (p∗i ·ci/τ)∑K
j=0 exp (p

∗
i ·cj/τ)

+ (1− λi) · log
exp (p∗i ·ck/τ)∑K
j=0 exp (p

∗
i ·cj/τ)

]
.

(3)

Finally, the total loss is a combination of Lp and LMixCo
weighted with hyperparameter α:

Ltotal = Lp + αLMixCo . (4)

4.2. R-PKM (Depth & Color Decipher)

While R-VAC provides semantics knowledge, the latter
is inherently bounded by the CLIP space capacity, unable
to encode spatial colors and geometry. To address this is-
sue, inspired by the human visual system, we craft the R-
PKM component to reverse pathways of the Parvo-, Konio-
and Magno-Cellular (PKM), subsequently predicting color
and depth from the fMRI data denoted as fMRI7→{Ĉ, D̂}.
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While color and depth can be represented in various ways
(e.g., histograms, graphs), we represent them as spatial
color palettes and depth maps to facilitate the reconstruc-
tion guidance, as discussed in Sec. 4.3. Visuals are in Fig. 3.

In practice, we formulate the problem as RGBD estima-
tion. The color palette is then derived from the RGB pre-
diction by first ×64 downscaling it and then upscaling back
to its original size. There are readily available methods for
fMRI 7→ RGBD mapping [7, 35] but they offer limited per-
formance due to the scarcity fMRI data. Instead, we intro-
duce a multi-stage encoder-decoder training [9], which ben-
efits from both the scarcely available (fMRI, RGBD) pairs
and the abundant RGBD data without fMRI. Fig. 5 shows
the training procedure for R-PKM.

Stage 1. Given limited pairs {(r, d)}={fMRI, RGBD}, we
first train an encoder to map RGBD to their corresponding
fMRI data. To compensate for the absence of depth in fMRI
datasets, we use MiDaS-estimated depth maps [28] as sur-
rogate ground-truth depth. The encoder is trained with a
convex combination of mean square error and cosine prox-
imity between the input r and its predicted counterpart r̂:

Lr(r, r̂) = β ·MSE(r, r̂)− (1− β) cos(∠(r, r̂)), (5)

where β is determined empirically as a hyperparameter.

Stage 2. Similar to stage 1, we now train the decoder with
pairs {(r, d)} in a supervised manner:

Ls(d, d̂) = ∥d− d̂∥1 + J (d̂), (6)

where d̂ = D(r) and the total variation regularization J (d̂)

encourages spatial smoothness in the reconstructed d̂.

Stage 3. To address the scarcity of fMRI data and improve
the model generalization to unseen categories, we employ a
self-supervised strategy to finetune the decoder while keep-
ing the encoder frozen. This facilitate the usage of any
natural images (e.g., from ImageNet [6] or LAION [30])
along with their estimated depth maps, without need of
paired fMRI and image data. Hence, we train solely with
the RGBD data by ensuring a cycle consistency through the
Encoder-Decoder transformation, i.e. d̂ = D(E(d)), with
the loss in Eq. (6). Given that this stage involves images
for which fMRI data was never collected, the model greatly
improves its generalization capability.

4.3. Guided Image Reconstruction (GIR)

Equipped with R-VAC (Sec. 4.1) and R-PKM (Sec. 4.2),
our method can decipher semantics Ŝ, color Ĉ, and depth
D̂ in the form of CLIP embedding, spatial color palette,
and depth map. Finally, guided image reconstruction
{Ŝ, Ĉ, D̂} 7→ Î completes the reverse mapping of the for-
ward process during the visual perception I 7→ fMRI.
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Figure 5. R-PKM Training. Our multi-stage training reverses the
PKM pathway and decodes color and depth cues in fMRI data.
Stages 1 and 2 employ (RGBD, fMRI) pairs to train an encoder
E that maps RGBD to fMRI and a decoder D to decode RGBD
from fMRI. Stage 3 benefits from additional RGBD images with-
out fMRI to train D in a cycle-consistent manner d̂ = D(E(d)),
while keeping E frozen. See Sec. 4.2 for details.

We utilize Stable Diffusion (SD) [29] to reconstruct
the final image from the predicted CLIP embedding Ŝ
and the additional guidance from predicted color palette Ĉ
and depth map D̂. Such guidance is produced using the
color adapter Rc and the depth adapter Rd within T2I-
adapter [24]. This process is formulated as follows:

FR = ωcRc

(
Ĉ
)
+ ωdRd

(
D̂
)
,

Î = SD
(
z,FR, Ŝ

)
,

(7)

where z is a random noise, ωc and ωd are adjustable weights
to control the relative significance of the adapters.

5. Experiments
Following common practice in the field, we evaluate

DREAM with the largest public neuroimaging dataset, the
Natural Scene Dataset [2]. We report our performance
against five leading methods [11, 19, 26, 31, 34]. We de-
tail our experimental methodology in Sec. 5.1 and report
quantitative and qualitative evaluations in Sec. 5.2. Abla-
tion studies are presented in Sec. 6.

5.1. Experimental Setting

Dataset. We use the Natural Scenes Dataset (NSD) [2]
in all experiments, which follows the standard practices in
the field [11, 19, 22, 26, 31, 34]. NSD, as the largest fMRI
dataset, records brain responses from eight human subjects
successively isolated in an MRI machine and passively ob-
served a wide range of visual stimuli, namely, natural im-
ages sourced from MS-COCO [20], which allows retriev-
ing the associated captions. In practice, because brain ac-
tivity patterns highly vary across subjects [14], a separate
model is trained per subject. The standardized splits contain
982 fMRI test samples and 24,980 fMRI training samples.
Please refer to the supplementary material for more details.

Metrics for Visual Decoding. The same set of eight met-
rics is utilized for our evaluation in accordance with prior
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Figure 6. Sample Visual Decoding Results from the SOTA Methods on NSD.

Table 1. Quantitative Evaluation. Following standard NSD metrics, DREAM performs on a par or better than the SOTA methods (we
highlight best and second). We also report ablation of the two strategies fighting fMRI data scarcity: R-VAC without Data Augmentation
(DA) and R-PKM without the third-stage decoder training (S3) that allows additional RGBD data without fMRI.

Method Low-Level High-Level
PixCorr ↑ SSIM ↑ AlexNet(2) ↑ AlexNet(5) ↑ Inception ↑ CLIP ↑ EffNet-B ↓ SwAV ↓

Mind-Reader [19] − − − − 78.2% − − −
Takagi et al. [34] − − 83.0% 83.0% 76.0% 77.0% − −
Gu et al. [11] .150 .325 − − − − .862 .465
Brain-Diffuser [26] .254 .356 94.2% 96.2% 87.2% 91.5% .775 .423
MindEye [31] .309 .323 94.7% 97.8% 93.8% 94.1% .645 .367
DREAM (Ours) .288 .338 95.0% 97.5% 94.8% 95.2% .638 .413

w/o DA (R-VAC) .279 .340 86.8% 88.1% 87.2% 89.9% .662 .517
w/o S3 (R-PKM) .203 .295 92.7% 96.2% 92.1% 94.6% .642 .463

research [26, 31]. To be specific, PixCorr is the pixel-level
correlation between the reconstructed and ground-truth im-
ages. PixCorr is the pixel-level correlation between the re-
constructed and ground-truth images. Structural Similar-
ity Index (SSIM) [38] quantifies similarity between two
images. It measures the structural and textural similar-
ity rather than just pixel-wise differences. AlexNet(2) and
AlexNet(5) are two-way comparisons of the second and
fifth layers of AlexNet [18], respectively. Inception is
the two-way comparison of the last pooling layer of In-
ceptionV3 [33]. CLIP is the two-way comparison of the
last layer of the CLIP-Vision [27] model. EffNet-B and
SwAV are distances gathered from EfficientNet-B1 [37] and
SwAV-ResNet50 [4], respectively. The first four metrics can
be categorized as low-level measurements, whereas the re-
maining four capture higher-level characteristics.

Metrics for Depth and Color. We use metrics from depth
estimation and color correction to assess depth and color
consistencies in the final reconstructed images. The depth
metrics, as elaborated in [23], include Abs Rel (absolute
error), Sq Rel (squared error), RMSE (root mean squared
error), and RMSE log (root mean squared logarithmic er-
ror). For color metrics, we use CD (Color Discrepancy) [39]

Table 2. Consistency of the Decoded Images. We evaluate the
color and depth consistencies in decoded images by comparing
the distances between test images and visual decoding results.
DREAM significantly outperforms the other two methods [26,31].

Method
Depth Color

Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ CD ↓ STRESS ↓

Brain-Diffuser [26] 10.162 4.819 9.871 1.157 4.231 47.025
MindEye [31] 8.391 4.176 9.873 1.075 4.172 45.380
DREAM (Ours) 7.695 4.031 9.862 1.039 2.957 37.285

and STRESS (Standardized Residual Sum of Squares) [8].
Please consult the supplementary material for details.

Implementation Details. One NVIDIA A100-SXM-80GB
GPU is used in all experiments, including the training of
fMRI 7→ Semantics encoder Efmri and fMRI 7→ Depth
& Color encoder E and decoder D. We use pretrained
color and depth adapters from T2I-adapter [24] to extract
guidance features from predicted spatial palettes and depth
maps. These guidance features, along with predicted CLIP
representations, are then input into the pretrained SD model
for the purpose of image reconstruction. The hyperparame-
ters α= 0.3, β = 0.9, ωc and ωd are set as 1.0 unless other-
wise mentioned. For further details regarding the network
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Test Ground-truth (D,C) Predictions (D̂, Ĉ) DREAM DREAM w/o Color Guidance

Figure 7. Visual Decoding with DREAM. Sample outputs demonstrate DREAM’s ability to accurately decode the visual stimuli from
fMRI. Our depth and color predictions from the R-PKM (Sec. 4.2) are in line with the pseudo ground-truth, despite the extreme complexity
of the task. DREAM reconstructions closely match the test images, and the rightmost samples demonstrate the benefit of color guidance.

Table 3. Effectiveness of R-VAC (Semantics Decipher) and R-PKM (Depth & Color Decipher). We conducted two sets of experiments
using ground-truth (GT) or predicted (Pred) cues to reconstruct the visual stimuli, respectively.

Reconstruction Low-Level High-Level
(Sec. 4.3) PixCorr ↑ SSIM ↑ AlexNet(2) ↑ AlexNet(5) ↑ Inception ↑ CLIP ↑ EffNet-B ↓ SwAV ↓

G
T

semantics {S} .244 .272 96.68% 97.39% 87.82% 92.45% 1.00 .415
+depth {S,D} .186 .286 99.58% 99.78% 98.78% 98.09% .723 .322
+color {S,D,C} .413 .366 99.99% 99.98% 99.19% 98.66% .702 .278

Pr
ed

semantics {Ŝ} .194 .278 91.82% 92.57% 93.11% 91.24% .645 .369
+depth {Ŝ, D̂} .083 .282 88.07% 94.69% 94.13% 96.05% .802 .429
+color {Ŝ, D̂, Ĉ} .288 .338 94.99% 97.50% 94.80% 95.24% .638 .413

architecture, please refer to the supplementary material.

5.2. Experimental Results and Analysis

Visual Decoding. Our method is compared with five state-
of-the-art methods: Mind-Reader [19], Takagi et al. [34],
Gu et al. [11], Brain-Diffuser [26], and MindEye [31]. The
quantitative visual decoding results are presented in Tab. 1,
indicating a competitive performance. Our method, with
explicit deciphering mechanism, appears to be more pro-
ficient at discerning scene structure and semantics, as evi-
denced by the favorable high-level metrics. The qualitative
results, depicted in Fig. 6, align with the numerical findings,
indicating that DREAM produces more realistic outcomes
that maintains consistency with the viewed images in terms
of semantics, appearance, and structure, compared to the
other methods. Striking DREAM outputs are the food plate
(left, middle row) which accurately decodes the presence of
vegetables and a tablespoon, and the baseball scene (right,
middle row) which showcases the correct number of players
(3) with poses similar to the test image.

Besides visual appearance, we wish to measure the con-
sistency of depth and color in the decoded images with re-
spect to the test images viewed by the subject. We achieve
this by measuring the variance in the estimated depth (and
color palettes) of the test image and the reconstructed re-
sults from Brain-Diffuser [26], MindEye [31], or DREAM.
Results presented in Tab. 2 indicate that our method yields
images that align more consistently in color and depth with
the visual stimuli than the other two methods.

Cues Deciphering. Our method decodes three cues from
fMRI data: semantics, depth, and color. To assess seman-
tics deciphered from R-VAC (Sec. 4.1), we simply refer to
the CLIP metric of Tab. 1 which quantifies CLIP embed-
dings distances with the test image. From the aforemen-
tioned table, DREAM is at least 1.1% better than others.
Fig. 7 shows examples of the depth (D̂) and color (Ĉ) deci-
phered by R-PKM (Sec. 4.2). While accurate depth is ben-
eficial for image reconstruction, faithfully recovering the
original depth from fMRI is nearly impossible due to the
information loss in capturing the brain activities [2]. Still,
coarse depth is sufficient in most cases to guide the scene
structure and object position such as determining the loca-
tion of an airplane or the orientation of a bird standing on a
branch. This is intuitively understood from the bottom row
of Fig. 7, where our coarse depth (D̂) leaves no doubt on
the giraffe’s location and orientation. Interestingly, despite
not precisely preserving the local color, the estimated color
palettes (Ĉ) provide a reliable constraint and guidance on
the overall scene appearance. This is further demonstrated
in last three columns of Fig. 7 by removing color guidance
which, despite appealing visuals, proves to produce images
drastically differing from the test image.

6. Ablation Study

Here we present ablation studies while discussing first
the effect of using color, depth and semantics as guidance
for image reconstruction thanks to our reversed pathways
(i.e., R-VAC and R-PKM).
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Ground-Truth Predictions ωc / ωd

Test D D̂ Ĉ 1 / 1 (ours) 1 / 0.6 1 / 0 0.6 / 0 0 / 1 0 / 0

Figure 8. Effect of the Composition Weight in GIR (Sec. 4.3). The two weights ωc and ωd control the relative importance of correspond-
ing features from three deciphered cues: semantics, color, and depth. When predicted depth or color fail to provide reliable guidance, we
can manually tweak the weights to achieve satisfactory reconstructed results.

Effect of Color Palettes. As highlighted earlier, the deci-
phered color guidance noticeably enhances the visual qual-
ity of the reconstructed images in Fig. 7. We further quan-
tify the color’s significance through two additional sets of
experiments detailed in Tab. 3, where the reconstruction
uses: 1) ground-truth (GT) depth and caption with or with-
out color, and 2) fMRI-predicted (Pred) depth and semantic
embedding with or without the predicted color. The results
using ground-truth cues serve as a proxy. The generated
results exhibit improved color consistency and enhanced
quantitative performance across the board, underscoring the
importance of using color for visual decoding.

Effect of Depth and Semantics. Tab. 3 presents results
where we ablate the use of depth and semantics. Com-
parison of GT and predicted semantics (i.e., {S} and {Ŝ})
suggests that the fMRI embedding effectively incorporates
high-level semantic cues into the final images. The over-
all image quality can be further improved by integrating ei-
ther ground truth depth (represented as {S,D}) or predicted
depth ({Ŝ, D̂}) combined with color (denoted as {S,D,C}
and {Ŝ, D̂, Ĉ}). Introducing color cues not only bolsters the
structural information but also strengthens the semantics,
possibly because it compensates for the color information
absent in the predicted fMRI embedding. Of note, all met-
rics (except for PixCorr) improve smoothly with more GT
guidance. Yet, the impact of predicted cues varies across
metrics, highlighting intriguing research avenues and em-
phasizing the need for more reliable measures.

Effect of Data Scarcity Strategies. We ablate the two
strategies introduced to fight fMRI data scarcity: data aug-
mentation (DA) in R-VAC and the third-stage decoder train-
ing (S3) which allows R-PKM to use additional RGBD data
without fMRI. The results shown in the two bottom rows
of Tab. 1 demonstrate that the two data augmentation strate-

gies address the limited availability of fMRI data and sub-
sequently bolster the model’s generalization capability.

Effect of Weighted Guidance. The features inputted into
SD are formulated as S+ ωcRc(C) + ωdRd(D), where two
weights ωc and ωd from Eq. (7) control the relative impor-
tance of the deciphered cues and play a crucial role in the fi-
nal image quality and alignment with the cues. In DREAM,
ωc and ωd are set to 1.0 showing no preference of color
guidance over depth guidance. Still, Fig. 8 shows that in
some instances the predicted components fail to provide de-
pendable guidance on structure and appearance, thus com-
promising results. There is also empirical evidence that in-
dicates the T2I-adapter slightly underperforms when com-
pared to ControlNet. The performance of the T2I-adapter
further diminishes when multiple conditions are used, as
opposed to just one. Taking both factors into account, there
are instances where manual adjustments to the weighting
parameters become necessary to achieve images of the de-
sired quality, semantics, structure, and appearance.

7. Conclusion
This paper presents DREAM, a visual decoding method

founded on principles of human perception. We design re-
verse pathways that mirror the forward pathways from vi-
sual stimuli to fMRI recordings. These pathways specialize
in deciphering semantics, color, and depth cues from fMRI
data and then use these predicted cues as guidance to re-
construct visual stimuli. Experiments demonstrate that our
method surpasses current state-of-the-art models in terms of
consistency in appearance, structure, and semantics.
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