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Abstract

We present a novel approach for action recognition in
UAV videos. Our formulation is designed to handle occlu-
sion and viewpoint changes caused by the movement of a
UAV. We use the concept of mutual information to compute
and align the regions corresponding to human action or mo-
tion in the temporal domain. This enables our recognition
model to learn from the key features associated with the mo-
tion. We also propose a novel frame sampling method that
uses joint mutual information to acquire the most informa-
tive frame sequence in UAV videos. We have integrated our
approach with X3D and evaluated the performance on mul-
tiple datasets. In practice, we achieve 18.9% improvement
in Top-1 accuracy over current state-of-the-art methods
on UAV-Human [30], 7.3% improvement on Drone-Action
[41], and 7.16% improvement on NEC Drones [7]. The
code is available at https.//github.com/Ricky-Xian/MITFAS

1. Introduction

Unmanned aerial vehicles (UAVs) are increasingly used
for different applications, including search and rescue, agri-
culture, security, construction and aerial surveillance. This
results in many challenging perception problems related to
detection, tracking, re-identification, and recognition. In
particular, action recognition using UAV videos is an im-
portant problem. While deep learning based methods [5,10]
have achieved good performance for video action recogni-
tion on ground camera videos [5, 38], there are many chal-
lenges with respect to using them on aerial videos.

Compared to ground camera videos, the human actors
in UAV videos appear rather small due to high camera al-
titude (see Figure 1). A wider area of the background oc-
cupies most of the pixels in the video frame, and only a
small fraction (e.g., less than 10%) corresponds to a human
action. Since these videos are captured from a moving (or
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Figure 1. F; and F;i, are two frames at time ¢ and ¢ + 1, re-
spectively, from the same UAV video. The human actor in the two
frames occupies less than 10% of the pixels due to the high camera
altitude (top images). (a) MITFAS will focus on the regions corre-
sponding to salient motions and use mutual information to find the
more informative frame. (b) Because of the UAV’s motion, the po-
sition of the human actor in F}4; appears to be relatively behind
compared to F;. Our algorithm (MITFAS) computes and aligns
these regions so that the recognition model will infer more from
the human motions. As shown in the right image, the main body
of the human actor in two frames overlaps after feature alignment.

dynamic) UAV, the position and orientation of the human
actor may change considerably between the frames. This
can result in making the model infer more from the back-
ground changes, as opposed to action information, during
training. The motion of the UAV camera can also result in
blurry frames and some techniques have been proposed to
handle them [26, 30,52].

It is harder to collect and annotate UAV videos. Overall,
there are fewer and smaller UAV video datasets, as com-
pared to ground video datasets. Additionally, because of
continuous changes in the altitude and the camera angle,
videos captured using UAVs tend to be more diversified and
have unique viewpoints. Some parts of the human actor
may be occluded, and not all parts of the human body that
contribute to the action can be seen from the camera. Hence,
some of the frames in the video are less informative, and this
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reduces the overall accuracy [15,44,50,53].

Main Contribution: We present a novel approach for
video action recognition in UAV videos with dynamic back-
grounds and moving cameras. We take advantage of the
mutual information to obtain and align the useful features
corresponding to the human actor in the temporal domain.
Our alignment method is used to identify the region of the
human action, and find the most similar features in the video
sequence. As aresult, our learning-based recognition model
is able to focus more on the human action, rather than the
background regions. Due to the varying viewpoints gen-
erated by the movement of a UAV camera, not all the hu-
man body parts that contribute to the action are visible. We
present a novel frame sampling method based on joint mu-
tual information for dynamic UAV videos, which can com-
pute the most informative and distinctive frame sequence
for training aerial action recognition models. We have in-
tegrated our temporal feature alignment and frame sam-
pling methods with X3D [10] and use them for aerial action
recognition (as shown in Figure 2). The novel components
of our work include:

1. We use mutual information as a criterion to obtain and
align the features at the same time. Our method takes
the movement of the UAV into account and estimates
the overlapping features by maximizing the mutual in-
formation. Given a reference image frame, our ap-
proach finds the most similar features in the subse-
quent frames.

2. We present a new frame sampling method for UAV
videos. Our approach is designed to compute the most
informative frame sequence in the video such that all
the frames are mostly different from each other. We
combine mutual information and joint mutual infor-
mation to extract the frame. Our method is flexible
and can deal with different variations in the video se-
quences. Extensive experiments show our sampling
method overperforms peers.

We test our method on 3 public UAV video datasets. We
achieve 20.2% improvement over the baseline method and
18.9% improvement over current state-of-the-art method on
UAV-Human [30]. Our method improves the top-1 accu-
racy on Drone Action [41] by 16.6% over the baseline
method and 7.3% over the current state-of-the-art methods.
On NEC Drones [7], our method get 78.62% top-1 accu-
racy, which is 7.18% higher than the current state-of-the-art
and 12.47% over baseline model by using 1/2 input frame
size.

2. Related Work
2.1. Temporal Feature Alignment

Temporal alignment-based methods have been exten-
sively studied in various video tasks. For instance, Cao et
al. [4] proposed an ordered temporal alignment algorithm
specifically designed for few-shot video classification. Sim-
ilarly, Lu et al. [33] introduced an index-guided framework
that utilizes indices to guide pooling and up-sampling oper-
ations, while Huang et al. [ 19] presented a method for learn-
ing transformation offsets of pixels to align up-sampled fea-
ture maps. Additionally, Huang et al. [20] proposed an
aligned feature aggregation algorithm for aligning features
of multiple resolutions, and Liu et al. [32] explored feature
alignment in the context of multi-frame human pose estima-
tion.

However, it is important to note that most of these meth-
ods rely on skeleton information and employ learning-based
modules to align important joint points. Despite their suc-
cess in ground-based videos, these methods may not be
as effective in aerial videos due to two primary reasons.
Firstly, there is a scarcity of labeled datasets for aerial
videos compared to ground videos, making it more chal-
lenging to train these learning modules and difficult to trans-
fer them to unseen domains. Secondly, the high flying alti-
tude and moving camera in aerial videos make it challeng-
ing to accurately identify important body joint points. To
address these limitations, our proposed method takes a dif-
ferent approach by avoiding complex training procedures
and not relying on skeleton information.

2.2. Similarity Measurement

Various similarity measures have been proposed for
comparing image patches. However, in the case of UAV
videos with small actor resolution and moving cameras,
conventional metrics like Euclidean distance [53] are af-
fected by background changes and shaking frames. Cosine
similarity [17], although used for high-dimensional data,
neglects pixel value magnitudes. Peak Signal-to-Noise Ra-
tio (PSNR) [18] focuses on pixel-level comparisons but is
sensitive to dominant background changes. Structural Simi-
larity Index Measure (SSIM) [45] evaluates luminance, con-
trast, and structure but is susceptible to structural variations
like rotations and shifts commonly found in aerial videos.

Mutual information is used as a similarity measure be-
tween images by [34,47]. As a similarity measure, mutual
information has been widely used in the medical imaging
domain [25,43]. Liu et al. [32] have explored the possibil-
ity of using mutual information for person pose estimation
tasks. Ji et al. [23] have proposed an unsupervised image
clustering and segmentation method by maximizing the mu-
tual information between spatial region pairs. Inspired by
the success of mutual information for image processing, we
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Figure 2. Given a starting frame F; in a UAV video, we use a localization network to localize the human action and crop the region
containing the human motion as the reference image F,.. At time ¢ + 1, we use our feature alignment algorithm to estimate the optimal
operation parameter w;, ; and find a region in L“fﬂ (Fi+1) C Fiy1 that the mutual information between sz«ﬂ (Fi+1) and the reference

image F;. is maximized. Next, we use Lwrﬂ (Fi+1) as the new reference image to find the optimal parameter wy, » at time ¢ 4+ 2 and
repeat for subsequent frames. Then, we use the criterion illustrated in Section. 3.2 Eq . 11 to find a sequence of the most distinctive
and informative frames. We use a temporal inference backbone network (e.g., X3D [10]) to generate the predicted action label from the

spatial-temporal features associated to the sampled frame sequence.

use this concept for temporal feature alignment and frame
sampling. Compared to other similarity measures, mutual
information measures the statistical dependence or infor-
mation redundancy between two images using pixel value
distributions, which makes it more robust.

2.3. Video Recognition for Aerial Videos

Aerial video action recognition is a challenging task, es-
pecially when the camera is moving. The performance of
action recognition on ground-camera video datasets has in-
creased as a result of recent advancements in deep learning
techniques. However, we don’t get a similar level of ac-
curacy on videos captured using UAV cameras [40]. For
aerial video, [14], [37], [36], [39], [1], [12], [39] apply 2D
CNNs (e.g., ResNet, MobileNet) as the backbones to per-
form single-frame classification and combine the outputs of
all frames in the video for recognition. [2], [41], [42] lever-
age two-stream CNNs to utilize attributes from the human
motion and the appearance. [7], [8], [30], [39], [46] use I3D
network [5] to learn from spatial-temporal features from hu-
man actors and surroundings. To better focus on the target
actor in the video, [26,27] have proposed an attention mech-
anism with Fourier transform for better feature extraction.
AZTR [48] proposes a general framework leveraging CNNs
and attention mechanisms for aerial action recognition on
both edge devices and decent GPUs. Our feature alignment
and sampling method could also be combined with these
action recognition methods to improve their accuracy.

Given a video captured from a UAYV, classic feature rep-

resentation algorithms for aerial video action recognition
are limited by the small size of the human actors in aerial
videos. Sometimes, these approaches improperly identify
the camera’s motion as a feature [35, 49]. [21] have pro-
posed 2D affine motion models to approximate the cam-
era motion between the adjacent frames. [24] have pro-
posed a method where the motion patterns of dense trajec-
tories are clustered to characterize foreground-foreground
or foreground-background relationships. Inspired by prior
works, our method aligns the human-centered views that
are transformed from UAV videos to learn from key features
corresponding to the parts of the human body that contribute
most to the actions.

3. Video Recognition using Mutual Informa-
tion

We present a mutual information-based method for ac-
tion recognition on UAV videos with moving cameras and
dynamic backgrounds. Our method takes the characteris-
tics of the UAV videos into consideration and uses mutual
information as the criterion to compute and align the regions
that existing salient motions in the video. We use joint mu-
tual information to sample the frame sequences that con-
vey most information about human action. Table. 1 high-
lights the notation and symbols used in this section. We
provide the foundational understanding of mutual informa-
tion in Appendix A, urging readers to review it beforehand
for an enhanced grasp of the paper.
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Notation Term
10 Mutual information, joint mutual information
H( Entropy, joint entropy

Probability mass function
Joint histogram
Frame sequence in the video
Operations to get aligned region

Rotation matrix

Translation matrix

Scaling operation

Operations parameters
Mapping function from frames to features
Candidate pool for frame sampling

NEE vwgmrrmoo

Table 1. Notation and symbols used in the paper.

3.1. Temporal Feature Alignment

In this section, we describe our approach that uses mu-
tual information (illustrated in Appendix. B) to obtain and
align the features that correspond to salient motions in the
temporal domain. In UAV videos, human actors appear sig-
nificantly small in aerial data, and most pixels in the frame
belong to the background. Therefore, we have redundant
information about the background in the video that may
decrease the performance of our learning model. More-
over, the position of the human actor may change consider-
ably between adjacent frames, which makes the recognition
model infer more from the pixels corresponding to redun-
dant background information than the human body move-
ments. Thus, our objective is to find the region that contains
dominant information about the action for each frame in the
video and the pixels related to the human actors are well
matched.

Let’s assume that all the images have the same 2D image
coordinate with the origin positioned in the top left corner,
with the x axis along the rows and y axis along the columns.
Given a video V, which corresponds to a sequence of raw
frames at different times, V' = {UF}, ¢ € N}. We generate
the reference image F. that is transformed from a region in
the raw frame F}. The reference image F) is a human cen-
tred image that mainly contains salient actions of the human
actor.

To compute F., suppose {2; contains all feasible oper-
ation parameters wy, such that for w; € §2;, we can gen-
erate a region from F; using an operation L,,. We can
consider L, as a transformation from 2D raw frame co-
ordinates of F; to the 2D reference frame coordinates cor-
responding to F,., followed by scaling to the same size of
F.. Thus, L, consists of rotation operation R(6;), trans-
lation operation D(d;) and scaling operation S(s;), where
Wy = (et,dt,St) € Qt:

t

Our objective is to find w; € ), for every ¢ such that:

w; = arg max I(L, (F}); Fy), 2)

w €N

where

I(Lo,(Fy):; Fy) = H(L, (F)+H(F)~H(Ly, (Fy), Fy).

3)
We use this equation to compute the optimal parameter w;,
S0 as to compute the target region in F; that is aligned with
F..

We need to calculate the mutual information between
two images L, (F}) and F,.. There is no exact mathemati-
cal model known to precisely calculate the actual probabil-
ity distributions related to each image. In general, marginal
and joint histograms are used [47] to approximate the re-
spective distributions. Let v, (p) denote the value of the
pixel at position p in L, (F}) and z,,, (p) the intensity of the
corresponding pixel in F,.. The joint histogram h,,, (v, 2)
can be computed by binning the values of the pixel pairs
(Vw, (D), 2, (p)) for all possible p. We conduct ablation ex-
periments on the impact of bin numbers that are used to
generate histogram in Section. C. Then, the marginal prob-
ability distribution py,, (v),pzw, (2) and joint probability
distribution py z,, (v, z) of v and z can be obtained by nor-
malizing the joint histogram h,, (v, 2):

_ hy,(v,2)
Pz = h o)

Pvw, (v) = ZpVZwt (v,2), “4)
PZw, (Z) = ZpVZwt (’Uv Z)

The mutual information can be calculated as:

PV Zw, (V, 2)

Pvw, (U)prf, (Z)

&)
Mutual information is computed using histograms of low-
level pixel values on both target and reference patches,
which is similar to the mean shift tracking. However, our
method uses histograms to approximate the joint probabil-
ity distribution and measure the inherent statistical depen-
dence between target and reference patch. Also, it can be
applied at the feature level. We use a feature extractor to
get the features for both F} and F).. Suppose the mapping
function between the RGB images to the features is M, the
features extracted from F; and F,. are M (F;) and M (F}.).
Our objective reduces to finding a subset M (F;) C M(t)
such that

(L, (Fy); Fy) = ZpVZwt (Ua Z) log

v,z

M (Fy)* = arg max

M (Fy)CM(Fy) I(Ms(Ft);M(FT))v (6)
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Figure 3. We sample the ¢ + 1th frame F;1, from the candidate
pool by choosing the frame that is not only least similar to the
previous frame but also all the previously sampled frames.

where
I(M;(Fy); M(Fy)) =H(M;(Fy)) + H(M(Ft)) o
— H(M,(Fy), M(Fy)).

3.2. Mutual Information Sampling

Because of the high camera altitude, many parts of the
human body are not visible. Some parts of the human body
that result in the action may be occluded by some other parts
that do not contribute to the action. Also, there are lots of
“duplicated” frames because of the high frame rate, which
essentially contains redundant information. Therefore, not
all the video frames are useful for the training, and using
some of them may even decrease the overall accuracy. To
solve this issue, we present a novel frame sampling method
using a combination of mutual information and joint mutual
information to find the frame sequences that contain more
information about action changes in the UAV videos.

The main idea behind our method is to find out more in-
formative frame sequences in the video given a start frame.
Consider a video as a sequence of frames across time. Sup-
pose we have already sampled ¢ frames and our goal is to
find the ¢ 4+ 1th frame F;;; in the candidate pool C;;
where C’; 11 consists of all the possible frames that we could
choose for F; ;. Let Fs = {UFy, F1, Fs - - - F; } denote the
set that contains all the sampled frames. Our approach is to
choose F;; that is the most distinctive as compared with F;
as well as the set of all previously sampled frames so that
it provides more unseen features for the recognition model
training, see Figure 3:

Fi-i—l = arg min OéI(Fl,FH_l) + ,BI(FS, F’i-‘rl)- (8)

Fii1€Ciq1

The first term is used to minimize the mutual information
between the current frame and the previous frame. It tends

to sample adjacent frames that are least similar so that the
newly sampled frame will contain more information for
training. The second term is used to minimize the joint mu-
tual information with all the sampled frames, which could
decrease the information redundancy over the whole sam-
pling sequence. We can decompose it using the chain rule
of joint mutual information:

I(Fg; Fipr) = I(Fo, Fy, Fo - - Fy; Fipa)

Z €)
- ZHFj% Fip1|Fj1Fj_q -+ Fo)
7=0

In practice, the conditional mutual information is hard to
compute as the conditional probability distribution is hard
to calculate. However, to make the problem more tractable,
we use the low-dimensional approximation to estimate the
joint mutual information between F;; and Fy [3, 13].
1 d
I(Fg; Fip1) = —— » I(Fy; Fiq) (10
1+1 =

So the overall expression becomes:

Fiy1=arg min ol (F; Fipq)+ B

I(F;: F,
Fi1€Ciqq 1 + 1 ( 7 +1)

§=0

(11
Here, we add weights «,3 to the two terms in Eq. 11 to
adjust to different scenarios. We analyze the behavior of «
and 3 in the Appendix 4.4.

3.3. MITFAS: Aerial Video Recognition

In this section, we present our overall method for aerial
video recognition (see Fig. 2). We use temporal feature
alignment and frame sampling and combine them with a
temporal inference backbone network (e.g, X3D [10]) to
disentangle the human actor from superfluous backgrounds
and learn from key features associated with the human mo-
tions.

In our benchmarks, most of the videos available are cap-
tured on a UAV camera with anti-shake technology which
could stabilize the camera and reduce the camera vibration,
we assume no rotation is needed, i.e., R(0;) = Identity.
For general videos, R(6;) is the rotation matrix represented
and computed as a 2D transformation:

sinf;  cosb; (12)

R(6,) = {cos 0; —sin Gt}

We localize the human actor at the start frame and en-
large the region by about 10% of its height to obtain the
reference F, [16]. We conduct ablation studies on the size
of F,. in Section. C. Considering the human actor may per-
form actions that have large vertical changes like stretching
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Method Backbone  Frames Number Input Size Initialization Top-1 Acc. (%) 1
X3D-M [10] - 16 224 x 224 None 27.0
X3D-L [10] - 16 224 x 224 None 27.6

FAR [26] X3D-M 16 224 x 224 None 27.6
Ours (MITFAS) X3D-M 16 224 x 224 None 40.2
FAR [26] X3D-M 8 540 x 540 None 28.8
Ours (MITFAS) X3D-M 8 540 x 540 None 38.4
13D [5] ResNet-101 8 540 x 960 Kinetics 21.1
FNet [29] 13D 8 540 x 960 Kinetics 24.3
FAR [26] I3D 8 540 x 960 Kinetics 29.2
FAR [26] X3D-M 8 620 x 620 Kinetics 39.1
Ours (MITFAS) X3D-M 8 620 x 620 Kinetics 46.6
X3D-M [10] - 16 224 x 224 Kinetics 30.6
MVIT [9] - 16 224 x 224 Kinetics 24.3
FAR [26] X3D-M 16 224 x 224 Kinetics 31.9
Ours (MITFAS) X3D-M 16 224 x 224 Kinetics 50.8

Table 2. Benchmarking UAV Human and comparisons with prior arts.. For 224 x 224 resolution and 16 frames input, when training
from scratch, our approach achieves a 13.2% improvement over the baseline X3D-M and 12.6% over the current state-of-the-art FAR. For
520 x 520 resolution and 8 frames input, MITFAS overperforms the current state-of-the-art FAR by 9.6% when training from scratch. For
224 x 224 resolution and 16 frames input, when initializing with Kinetics pre-trained weights, MITFAS improves the top-1 accuracy over
baseline by 20.2% and over SOTA method by 18.9%. For resolution over 620 x 620 and 8 frames input, when initializing with Kinetics
pretrained weights, MITFAS overperforms the current state-of-the-art FAR by 7.5%. Our method obtains better performance in all settings,

which illustrates the effectiveness of our proposed MITFAS.

arms, we add 15% height as the margin on the top of F;. to
ensure all the information about the action are included and
crop the region as our final reference image. Therefore, we
enlarge the region by 25% vertically and 10% horizontally
to get ;..

We use the sliding window strategy with scalable win-
dow sizes to find the aligned regions or features in all the
frames. To make the process more efficient, we do not ap-
ply sliding window search over the entire frame. Instead,
once we compute w; at time ¢, we use the same operation at
t+1 to obtain the region L,x (Fy11). We expand Ly (Fi41)
by 25% as the searching area at ¢t + 1. In this way, we could
significantly decrease the overall mutual information com-
putations by only searching in the searching area which is
a subset of F; ;. In order to improve the reliability, we oc-
casionally re-perform localization to update the searching
area. More ablation studies on the impact of searching area
size is given in the supplementary.

Once all the w; are found for all time ¢, well-aligned
frames are obtained by the transformation. We use our
frame sampling method illustrated in Section. 3.2 to gen-
erate a sequence of 8 or 16 frames for model training. We
will randomly pick a start frame as Fjy, denoting the index
of Fy in the sequence as k(. To maintain the randomness in
our sampling strategy, we set a randomly generated stride

r1 when sampling F;. We compute our candidate pool C
by a set of all the frames that have index greater than kj,
but not exceed kg + r1. Next, we find the most informative
frame in the candidate pool using Eq. 11 and use it as F3.
We follow the same strategy to sample all the subsequent
frames.

After obtaining all the sampled frames, we use a tem-
poral inference backbone network to extract and learn from
spatial-temporal features from the human actions. We em-
ploy X3D [10] as the backbone in our method for its ef-
ficiency and performance on video tasks. However, our
method could be combined with any action recognition
models for better behavior understandings on UAV videos.

4. Results

In this section, we describe our implementation and
present the results. We compare the performance with other
state-of-the-art video action recognition methods on 3 UAV
datasets. The implementation and training details are shown
in Appendix. A.

4.1. Results on UAV Human

UAV Human is currently the largest UAV-based human
behavior understanding dataset. It contains scenarios cap-
tured from both indoor and outdoor environments with dif-
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Method Frames Input Size Init. Top-1
HLPF All 1920 x 1080 None 64.3
PCNN - 1920 x 1080  None 75.9
X3D-M 16 224 x 224 Kinetics 83.4
FAR 16 224 x 224 Kinetics  92.7
Ours 16 224 x 224 Kinetics  100.0

Table 3. Results on Drone Action. Our method achieves 100%
top-1 accuracy, 16.6% over the baseline method X3D-M [10], out-
performing current state-of-the-art method FAR [26] by 7.3% un-
der same configuration. (HLPF [22], PCNN [6])

Method Frames Input Size Init. Top-1

X3D-M 8 960 x 540 Kinetics 66.1
FAR 8 960 x 540 Kinetics 71.4
Ours 8 540 x 540 Kinetics  78.6

Table 4. Results on NEC Drones. Our method shows an im-
provement of 12.5% on top-1 accuracy against the baseline X3D-
M [10], 7.2% over current state-of-the-art FAR [26].

ferent lighting and weather conditions. The videos are cap-
tured in dynamic backgrounds with different UAV motions
and flying altitudes. It has 155 annotated actions, many of
which are hard to distinguish such as squeeze and yawn.

We compare our method against prior state-of-the-art
methods on UAV Human. As shown in Table 2, we imple-
ment our method and compare the performance with other
state-of-the-art methods in various configurations in terms
of the backbone network, frame rates, frame input sizes,
and weights initialization. We use X3D-M as the backbone
of our method with two different initialization settings. One
of them is training from scratch and the other is initialized
with Kinetics pretrained weights.

First, when using the same configuration (frames, input
size, initialization), our method outperforms all the prior
methods by a large margin. When training from scratch, we
achieve a 12.6% improvement over current state-of-the-art
methods. We get an 18.9% improvement when using Ki-
netics pretrained weights. This indicates the effectiveness
of our method, which reduces the information redundancy
and makes the model learn more from the motion changes
rather than background variations.

4.2. Results on NEC Drone

NEC Drone is an indoor dataset that contains 5,250
videos with 16 actions performed by 19 actors. The videos
are captured using a UAV flying at a low altitude on a bas-
ketball court. Compare to UAV Human, NEC Drone has
more consistent lighting conditions while bringing more
noises caused by light reflections.

We present the results on NEC Drone in Table 4. We ob-
tain a Top-1 accuracy of 78.6%. We compare our method

Sampling Method  Top-1 ‘ Sampling Method  Top-1

Random 23.8 TFA + Random 39.8
Uniform 25.8 TFA + Uniform 42.2
MG Sampler 28.1 | TFA + MG Sampler  45.5
MIS 28.7 TFA + MIS 46.2

Table 5. Temporal Feature Alignment (TFA) and Mutual Infor-
mation Sampling (MIS) ablation studies on UAV-Human-Subset.
The baseline is vanilla X3D with random [ 1] and uniform sam-
pling [28], and we add our methods TFA and MIS step by step.
From our experiments, TFA boost the accuracy by 16-17.5%. MIS
outperforms the random sampling, uniform sampling, and MG
Sampler [53].

Method UAV-Human Drone Action
Bounding box tracking [5] 474 95.9
Spatial-temporal action detection [31] 47.9 95.9
TFA (ours) 50.8 100.0

Table 6. Comparison with other methods [8,31].

against the baseline X3D-M and shows an improvement of
12.5%. Our approach outperforms the current SOTA FAR
on NEC Drone by 7.2%. Note that, the improvement we
achieved is obtained with 1/2 input frame size, which fur-
ther demonstrates the advantage of our method.

4.3. Results on Drone Action

Drone Action is an outdoor video dataset that was cap-
tured using a free-flying UAV in low altitude and low speed.
It contains 240 videos across 13 human actions performed
by 10 human actors. Drone Action is the smallest dataset
we used, but it is collected using a free-flying UAV that re-
sults in continuous position changes of the human actor.

As shown in Table 3, we achieve 100% Top-1 accuracy
which outperforms current SOTA by 7.3% under the same
configuration, which further illustrates the benefits of our
proposed MITFAS.

4.4. Ablation Experiments

In this subsection, we mainly show the results of ab-
lation experiments to demonstrate the effectiveness of the
two components of our approach: Temporal Feature Align-
ment(TFA) and Mutual Information Sampling(MIS). More
ablation studies are given in Appendix.

We randomly pick 30% videos for each action label in
UAV-Human and conduct the ablation experiments on this
UAV-Human subset. We use X3D-M [10] as the backbone
network. All results are generated by using a sequence of
16 frames with a resolution of 224 x 224.

Effectiveness of Temporal Feature Alignment For
Temporal Feature Alignment (TFA), our objective is to
solve the small resolution corresponding to the human ac-
tor and viewpoint changes in the UAV videos. Our TFA
finds and aligns the region that contains dominant informa-
tion about the action for each frame in the video. As shown
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Sampling Method  Alpha Beta UAV-Human " DroneAction

Top-1 Top-1
X3D + TFA + MIS 1.0 0.0 45.3 94.5
X3D+TFA+MIS 0.0 1.0 45.7 95.9
X3D + TFA + MIS 1.0 0.5 45.5 97.2
X3D + TFA + MIS 1.0 1.0 46.2 100

Table 7. Mutual Information Sampling (MIS) ablation studies on
UAV-Human-subset and Drone Action. The baseline is vanilla
X3D with TFA, we test the MITFAS Sampling in terms of two
hyperparameters for mutual information and joint mutual infor-
mation, o and (3 respectively. From our experiments, MITFAS
obtains the best accuracy when o = 1.0 and 5 = 1.0.

Similarity Measure Top-1 Acc
Euclidean Distance 42.1
Cosine Similarity 39.5
Peak Signal-to-Noise Ratio 434
Structural Similarity Index Measure 44.8
Mutual Information 46.2

Table 8. Comparison with other similarity measures on UAV-
Human Subset. Compared to other similarity measures, mutual
information achieves the best accuracy.

in Table. 5, our TFA improves the top-1 accuracy by 16 -
17.5% when it is integrated with X3D and different sam-
pling methods.

We also compare our TFA with other methods in Table 6.
The bounding box tracking method [8] applies the person
detector for foreground patch detection on all the tempo-
ral frames and then extracts the foreground patch based on
the bounding boxes. Standard spatial-temporal action de-
tection pipeline [31] integrates the detection and tracking
algorithms to generate the proposal for the feature extrac-
tion. The results are generated using X3D and uniform
sampling with the same configurations. As shown in Ta-
ble. 6, our method improves the top-1 accuracy over other
two methods by 2.9% on UAV-Human and 4.1% on Drone
Action. Such improvement is attributed to our proposed
TFA can not only extract the foreground patches but also
align all the patches so that the main body of the human
actor is well-matched in the temporal domain. Unlike the
other two methods, our method does not align the bound-
ing boxes. The bounding boxes are only used to locate the
human actor. As illustrated in Section 3.1, the alignment
in our method is performed at the pixel-level, ensuring that
the generated frame closely resembles the preceding one.
Therefore, the model could focus on the pixels correspond-
ing to the parts of the human body that contribute most to
the actions during training. Moreover, our method does not
require any training procedures and could be utilized in any
scenarios without domain issues.

Effectiveness of Mutual Information Sampling For

Mutual Information Sampling (MIS), our goal is to sample
the informative frames that better represent the video for
the action recognition methods. We compare it with three
other sampling methods. First, we compare with two base-
line methods: (1) Random sampling [! 1] where frames are
randomly picked (2) Uniform sampling [28] where frames
are sampled uniformly given a randomly generated start
and end point. Then, we compare with the current state-
of-the-art MG Sampler [53] which uses an adaptive sam-
pling strategy based on temporal consistency between ad-
jacent frames. As shown in Table. 5, compared with other
sampling methods, MIS results in 0.6 - 6.4% improvement
in Top-1 accuracy for UAV videos, which demonstrates the
effectiveness of our proposed method.

Hyperparameters We evaluate our Mutual Information
Sampling in terms of two hyperparameters for mutual infor-
mation and joint mutual information, o and 3 in Eq. 11 re-
spectively. The baseline is vanilla X3D with TFA. As shown
in Table 7, from our experiments, MITFAS obtains the best
accuracy when a = 1.0 and 8 = 1.0. This demonstrates
that both items in Eq.11 are equally important in discrimi-
nating the more informative frames.

Comparison of other similarity measures We compare
the result of using mutual information with other similarity
measures in Table.8. The results demonstrate that mutual
information is a better criterion for measuring the similarity
between images for UAV videos.

5. Conclusion, Limitations and Future Work

We propose a novel approach for video action recogni-
tion on UAVs. Our approach is designed to handle the vary-
ing and small resolution of the human, large changes in the
positions of the human actor between frames, and partially
occluded key points of the actions caused by continuous
movement of the UAVs. We present a mutual information-
based feature alignment to obtain and align the action fea-
tures in the temporal domain. Our method is efficient and
works well on UAV videos. We also present a novel frame
sampling method to find the most informative frames in the
video. We compare with prior approaches and demonstrate
improvements in Top-1 accuracy on 3 UAV datasets. Our
approach has a few limitations. First, we assume there does
not exist a long-range spatial relationship between the hu-
man actor and the background. Second, we assume the in-
put videos contain only one scripted human agent perform-
ing some action. We would like to explore the possibil-
ity of extending our method to multi-human or multi-action
videos.
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