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Abstract

Video composition merges the foreground and back-
ground of different videos, presenting challenges due to
variations in capture conditions (e.g., saturation, bright-
ness, and contrast). Video harmonization is a vital pro-
cess in achieving a realistic composite by seamlessly adjust-
ing the foreground’s appearance to match the background.
In this paper, we propose TSA2, a novel method for video
harmonization that incorporates temporal segment adap-
tation and aggregation. TSA2 divides the inharmonious
input sequence into temporal segments, each correspond-
ing to a different frame rate, allowing effective utilization
of complementary information within each segment. The
method includes the Temporal Segment Adaptation module,
which learns and remaps the distribution difference between
background and foreground regions, and the Temporal Seg-
ment Aggregation module, which emphasizes and aggre-
gates cross-segment information through element-wise cor-
relations. Experimental results demonstrate that TSA2 out-
performs advanced image and video harmonization meth-
ods quantitatively and qualitatively.

1. Introduction
The generation of realistic composite videos has gained

significant attention in both academia and industry, offer-
ing a wide range of applications in modern society, particu-
larly in the field of multimedia and AIGC [5]. For instance,
in online conferences, there is a demand for changing the
background of self-portraits [26, 29, 33]. In general, video
composition involves merging the foreground of one video
with the background of another [1, 28]. In practice, how-
ever, due to variations in capture conditions, such as sat-
uration, brightness, and contrast, composite videos often
appear unrealistic. To overcome this challenge, image and
video harmonization techniques have been proposed to gen-
erate more realistic composite videos with minimal human
intervention, eliminating the need for specialized editing
software like Adobe Photoshop and Adobe Premiere Pro.

To generate harmonious video frames, one approach

*Corresponding author.

is to apply image harmonization methods on a frame-by-
frame basis. Early techniques focused on color and tone
matching, involving the transfer of global statistics [32,34],
gradient-domain methods [31], and multi-scale statistics
matching [38]. More recently, convolutional neural net-
works (CNNs) and vision Transformers have been uti-
lized [8,10,14–16,18,36,40]. These methods have achieved
notable progress by learning dense pixel-to-pixel transfor-
mations between composite images and ground-truth har-
monized images. However, image harmonization methods
typically neglect the temporal relationship between frames,
leading to potential inconsistencies and flickering artifacts
in consecutive frames. As illustrated in Figure 1, even ad-
vanced image harmonization methods like HarmonyTrans-
former [15] exhibit unsatisfactory results, with noticeable
temporal discontinuity in the inharmonious car area.

To address the temporal consistency in video harmo-
nization, Huang et al. [19] propose an end-to-end network
trained on a synthetic dataset. However, its limited tempo-
ral receptive field (2 frames) and inadequate consideration
of internal correlations and distributions within the fore-
ground and background regions lead to unsatisfactory vi-
sual results, as shown in Figure 1. Recently, Lu et al. [27]
propose CO2Net, a video harmonization method based on
the assumption of color mapping consistency. CO2Net con-
sists of an image harmony network for generating harmo-
nized images and a refinement module that enhances the re-
sults using color mapping consistency from a lookup table.
However, the video harmonization performance of CO2Net
is influenced by its first stage, and the two-stage training
scheme introduces complexity compared to training from
scratch. Additionally, the lookup table focuses on pixel-
level color consistency, neglecting global color information
in the foreground and background regions.

In this paper, we propose TSA2, a novel video harmo-
nization method that addresses the aforementioned issues
by leveraging long-term temporal information and exploit-
ing background information across frames. Taking inspi-
ration from notable works such as TSN [44] and Slowfast
Network [12], which adeptly sample temporal information
for action recognition and segment videos into various parts
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Figure 1. Examples of video harmonization. Our proposed TSA2 can adjust the appearances of the composite foreground video sequence
to make them compatible with the background regions. We show the harmonized results generated by the advanced image harmonization
method HarmonyTransformer [15] and the video harmonization method Huang et al. [19]. Best viewed on screen.

with distinct frame rates for video recognition, we adopt
a similar strategy. This involves partitioning the original
inharmonious input sequence into multiple temporal seg-
ments, each encapsulating a diverse frame rate represen-
tation. By dividing the sequence into temporal segments,
TSA2 surpasses methods that rely on two confined adja-
cent frames or a single image harmonization technique, as
it can effectively employ temporal information within each
segment and capture complementary temporal information
across segments. We introduce two key modules in TSA2:
the Temporal Segment Adaptation (TSAda) module and the
Temporal Segment Aggregation (TSAgg) module.

The TSAda module integrates inharmonious foreground
and harmonious background within each temporal segment.
It learns the distribution difference between foreground and
background regions and remaps the distribution of fore-
ground features to match that of background features. The
TSAgg module further aggregates information across tem-
poral segments. It emphasizes and aggregates the com-
plementary information by utilizing element-wise correla-
tions calculated through a segment attention mechanism.
This adaptive aggregation process enhances the harmoniza-
tion results. Moreover, TSA2 can be trained from scratch,
avoiding the need for a complex two-stage training scheme
used by CO2Net. This simplifies the training process while
achieving effective video harmonization. As shown in Fig-
ure 1, with the two elaborate modules, our TSA2 achieves
improved visual quality compared with existing advanced
image and video harmonization methods.

Our main contributions are summarized as follows. (1)
We introduce TSA2, a novel video harmonization method
that effectively addresses the challenges of inharmonious
video sequences. By dividing the input into frame-rate-
aware temporal segments, TSA2 leverages long-term tem-
poral information for harmonization. (2) We propose the
TSAda module, which facilitates the mapping of fore-

ground features to match the distribution of background fea-
tures within each temporal segment. (3) We propose the
TSAgg module, which can emphasize and aggregate infor-
mation across different temporal segments. (4) Compara-
tive evaluations demonstrate the superiority of our TSA2

over existing image and video harmonization techniques.

2. Related Work
Image harmonization. Early research in image harmo-
nization focused on utilizing low-level image representa-
tions to adjust the appearance of the foreground to match
the background. These methods employed techniques such
as alpha matting [37, 42], gradient [20, 31], color distribu-
tion [7, 32, 34] and multi-scale statistics [38]. However,
these approaches often prioritize matching the appearance
without giving enough consideration to visual realism [29].
Recent advancements in image harmonization have lever-
aged CNNs and vision Transformers to achieve promising
results [2–4,6,8–10,13–18,21–25,35,36,40,41,43,48,50].
For instance, Tsai et al. [40] introduce an end-to-end deep
network that utilizes a segmentation mask as semantic in-
formation for training. Cong et al. [8] formulate image har-
monization as background-guided domain translation, us-
ing a background domain code to guide the harmonization
process. However, since the image harmonization methods
do not consider the temporal relationship between frames,
consecutive frames are not connected naturally, resulting in
sub-optimal results when they are applied directly to the
video harmonization task.
Video harmonization. Video harmonization can be seen
as an extension of image harmonization, where the goal is
to adjust the appearance of the foreground video to match
the background video. Huang et al. [19] introduce a dataset
of synthetic composite videos generated from real images
and proposed an end-to-end network for video harmoniza-
tion. Their method achieves realistic results by incorporat-

4137



1
2
3
4

7
6
5

1
2
3
4

7
6
5

Temporal Segment
Aggregation Module

Temporal Segment

Adaptation Module 𝑆1
Enc.

Enc.

Enc.

Dec.
2   4   6

Sk
ip

 c
o

n
n

ec
ti
o

n

Masks

𝐼 𝑡−𝑁:𝑡+𝑁
𝑐

Temporal Segment

Adaptation Module 𝑆2

Temporal Segment

Adaptation Module 𝑆3

𝑀 𝑡−𝑁:𝑡+𝑁

መ𝐼𝑡

ഥ𝑀𝑡

345

246

147

Frame rate: 1

Frame rate: 2

Frame rate: 3

Enc. Encoder

Dec. Decoder

Figure 2. The framework of the proposed TSA2, which consists of three feature encoders, three TSAda modules, a TSAgg module, and a
feature decoder. Here we take an inharmonious input sequence with seven frames as an example.

ing a pixel-wise disharmony discriminator and considering
the temporal consistency between adjacent frames through
a temporal consistency loss. However, their network has
limitations in terms of capturing long-term temporal con-
texts and utilizing the internal correlations and distribu-
tions of foreground and background information. More
recently, Lu et al. [27] propose CO2Net for video harmo-
nization. CO2Net consists of an image harmonization net-
work and a refinement module. However, the performance
of CO2Net is dependent on the image harmonization net-
work, and the utilization of local pixel-level information
through a lookup table may limit its capabilities. In this
paper, we introduce TSA2, a method that utilizes temporal
segment adaptation and aggregation to tackle video harmo-
nization. Our TSA2 effectively leverages internal correla-
tions and distributions within each temporal segment and
across different segments. Moreover, TSA2 can be trained
from scratch, eliminating the need for a complex two-stage
training scheme as in [27].

3. Method
3.1. Overview

Given 2N+1 consecutive composite inharmonious frame
sequence IC[t−N :t+N ] ∈ R(2N+1)×3×H×W , and the corre-
sponding binary mask sequence of composite foreground
regions M[t−N :t+N ] ∈R(2N+1)×1×H×W , we denote ICt as
the central frame and the other frames IC[t−N :t−1,t+1:t+N ]

as neighboring frames, and Mt denotes the central frame
foreground mask. H and W denote the height and the
weight, respectively. Accordingly, the background mask se-
quence can be denoted as M̄[t−N :t+N ] = 1−M[t−N :t+N ].
The goal of our method is to generate a realistic central
frame Ît which is consistent with the background region
IBt =M̄t ◦ ICt visually and temporally, and should be close
to the ground-truth frame IGT

t . M̄t denotes the central

frame background mask. The overall pipeline of our pro-
posed method is shown in Figure 2.

Without loss of generality, we take the composite inhar-
monious frame sequence with 7 frames

{
IC1 , IC2 , . . . , IC7

}
as an example. As shown in Figure 2, the seven input frames
are first divided into three temporal segments based on dif-
ferent temporal intervals (i.e.,

{
IC4 , IC4 , IC5

}
,
{
IC2 , IC4 , IC6

}
and

{
IC1 , IC4 , IC7

}
), with each temporal segment represent-

ing a frame rate (from one to three, respectively) and con-
taining various temporal information for video harmoniza-
tion. To process these temporal segments, we employ a
shared-weight feature encoder to convert the frames into the
feature domain. The TSAda module is then applied to trans-
fer important background information to the inharmonious
foreground region in the central frame IC4 within each seg-
ment. Information across three temporal segments is fur-
ther emphasized and aggregated through the TSAgg mod-
ule. The aggregated features are then fed into the feature
decoder to generate the harmonized central frame Î4. The
structures of the feature encoder and the feature decoder are
shown in the supplementary document.

3.2. Dividing Sequence into Temporal Segments
Utilizing long-term temporal information from distant

harmonious background regions is crucial for video harmo-
nization [19]. However, the network proposed in [19] falls
short in this aspect. It stacks two adjacent inharmonious
frames along the channel dimension and directly applies
several multi-scale 2D convolution layers to these stacked
frames. The use of only two frames limits the temporal con-
text and hinders the inharmonious regions from accessing
harmonious background information from distant frames.

In this paper, we draw inspiration from TSN [44] and
Slowfast Network [12] to address the video harmonization
problem. We divide the neighboring 2N frames in an inhar-
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Figure 3. Structure of the TSAda module. This module is utilized to remap the distribution of extracted foreground features to that of the
background features.

monious sequence into N temporal segments based on their
temporal distances from the central frame, with each seg-
ment representing a specific frame rate. The segmentation
is predicated upon their temporal proximity to the central
frame, effectively encapsulating various frame rates within
each segment. This segmentation equips us to harness tem-
poral cues more effectively. By recognizing the differing
significance of individual frames, and by orchestrating the
harmonious collaboration of insights across segments, we
optimize the utilization of temporal data. Expanding upon
this foundational segmentation, we introduce the TSAda
module and the TSAgg module.

3.3. Temporal Segment Adaptation
Due to variations in capture conditions such as season,

weather, and time of the day, there is a significant diver-
gence in brightness and color distributions between inhar-
monious foreground regions and harmonious background
regions [27]. Simply concatenating foreground and back-
ground features within each temporal segment and passing
them through subsequent convolution layers is insufficient,
leading to suboptimal utilization of foreground and back-
ground information. To address this issue, we propose the
TSAda module inspired by [30] and [24], which aims to
remap the distribution of extracted foreground features to
that of the background features. By doing so, we enable
more effective utilization and transfer of important infor-
mation and color distribution from the background features.
The structure of the TSAda module is depicted in Figure 3.

The input video sequence is divided into N tempo-
ral segments {S1, . . . , Sn} , n ∈ [1 : N ], where Sn ={
ICt−n, I

C
t , ICt+n

}
is a temporal segment consisting of a for-

mer neighboring frame ICt−n, the central frame ICt and a
latter neighboring frame ICt+n. Since we need to harmo-
nize the central frame, the reference frame ICt appears in
each temporal segment. After converting the input segment

Sn into the feature domain F n =
{
FC

t−n,F
C
t ,F

C
t+n

}
,

we multiply the input features by the background masks
M̄n =

{
M̄t−n, M̄t, M̄t+n

}
and multiply the central fea-

ture by its foreground mask Mt, getting the background
features FB

n =
{
FB

t−n,F
B
t ,F

B
t+n

}
and the central fore-

ground feature F F
n,t. Then, FB

n and F F
n,t are then fed into

two convolution layers with a channel attention operation,

yielding F̃
B

n and F̃
F

t , respectively. F̃
B

n and F̃
F

t are with

equal channel numbers. Afterward, F̃
B

n and F̃
F

n,t are first
concatenated before feeding into convolution layers to pro-
duce two parameters β and γ, which are with the same size

as F̃
F

t . Then instance normalization is applied to the central

foreground feature F̃
F

n,t as

F̃
F,c

n,t ← (F̃
F,c

n,t − µF,c
n,t )/σ

F,c
n,t , (1)

where µF,c
n,t and σF,c

n,t are the mean and standard deviation

of F̃
F,c

n,t in channel c as

µF,c
n,t =

1

HW

∑
y,x

F̃
F,c,y,x

n,t , (2)

σF,c
n,t =

√
1

HW

∑
y,x

(
F̃

F,c,y,x

n,t − µF,c
n,t

)2
, (3)

where H and W are the height and width of F̃
F,c

n,t . Then we
update β and γ as

β ← β + µ
F̃

B
n
,γ ← γ + σ

F̃
B
n
, (4)

where µ
F̃

B

n

and σ
F̃

B

n

are calculated in a similar way as
Equations (2) and (3). Then, γ and β are multiplied and
added to the normalized foreground feature in an element-
wise manner as

F F,Ada
n,t ← F̃

F

n,t · γ + β . (5)
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Finally, we add F F,Ada
n,t with the extracted harmonious re-

gion of the central frame FB
t as the output

FAda
n,t ← F F,Ada

n,t + FB
t . (6)

Since the difference between the foreground and the
background features varies with respect to the different spa-
tial location, while the statistics µ

F̃
B

n

, σ
F̃

B

n

, µ
F̃

F,c

n,t

and

σ
F̃

F,c

n,t

are of size C×1 ×1, we use convolution layers to

predict two spatial-wise adaptation parameters β and γ.
In contrast to [30], which employs segmentation maps

for parameter generation, and unlike [24], where foreground
and background regions are treated separately, the convo-
lutional layers within the TSAda module jointly process
foreground and background features to capture their distinc-
tions. Subsequent to acquiring β and γ from the convolu-
tional layers, we seamlessly integrate them into the back-
ground features’ mean and standard deviation. This syner-
gistic fusion enables us to harness significant background
information during the remapping process, consequently
amplifying the effective utilization and seamless transfer-
ence of pertinent features. This harmonious integration
considerably enhances the feature remapping mechanism,
thereby elevating its efficiency and efficacy.

3.4. Temporal Segment Aggregation
To address the varying levels of informativeness in dif-

ferent temporal segments and effectively integrate features
from multiple segments, we introduce the TSAgg mod-
ule. Unlike existing methods that use 2D or 3D convolu-
tion layers for multi-frame aggregation, our TSAgg mod-
ule adopts a novel approach. It leverages multi-segment
attention maps to assign adaptive pixel-level aggregation
weights to each temporal segment. These attention maps,
calculated in an embedding space, represent the similarity
between different adapted segments. By incorporating the
attention maps, the TSAgg module can effectively aggre-
gate information across different temporal segments, taking
into account both the informative low-frame-rate segments
and the fine-detail information captured by high-frame-rate
segments. This adaptable aggregation mechanism substan-
tially bolsters the holistic video harmonization procedure.
This enhancement empowers the model to efficiently cap-
italize on the available temporal cues, ultimately leading
to enhanced performance. Detailed struture of the TSAgg
module can be found in the supplementary document.

For each adapted temporal segment output from the
TSAda module (i.e., FAda

n,t =
{
FAda

1,t ,FAda
2,t ,FAda

3,t

}
), we

convert FAda
n,t , n = [1 : 3] into the embedding space. In

our implementation, we use a 3×3 convolution layer for
the converting operation. Intuitively, regions that are more
similar to the adjusted central frame should be paid more
attention in the embedding space. They are further con-
catenated, followed by a sigmoid operation applied to each

position across channels to calculate the multi-segment at-
tention maps Mn as

Mn=sigmoid(θ(FAda
n,t )Tϕ(FAda

2,t )), n = 1, 2, 3, (7)

where θ(·) and ϕ(·) are convolution layers. The multi-
segment attention maps are then multiplied in a pixel-wise
adaptive manner to FAda

n,t , followed by a fusion convolu-
tion layer to aggregate these segment-attention-modulated
features as
FAgg

t = Conv([M1 ⊗ FAda
1,t ,M2 ⊗ FAda

2,t ,M3 ⊗ FAda
3,t ]). (8)

In order to fully utilize temporal information over different
temporal segments, we further concatenate them along the
temporal dimension and feed it into a 3D convolution layer.
The output from the 3D convolution layer is added with

FAgg
t to generate F̃

Agg

t as the final output of the TSAgg
module. In this way, important information can be empha-
sized and aggregated across different segments.

4. Experiments
4.1. Experimental Settings
Training settings. Huang et al. [19] collect a private
synthetic dataset named Dancing MSCOCO on their own,
which is not suitable for a fair comparison with other meth-
ods, and there is a massive gap between the simulated move-
ment and the complex movement in real videos [27]. In this
paper, we use HYouTube as the training set [27], the same
as CO2Net. HYouTube is a recent proposed large dataset
for the video harmonization task based on the existing
large-scale video object segmentation dataset YouTubeVOS
2018 [49], which contains more than 25,000 20-frame video
sequences with various motions and diverse scenes [27].
Given the ground-truth frame IGT

t and the harmonized re-
sult Ît generated by our method TSA2, we adopt the simple
but effective Charbonnier loss [45–47] to train our method
from scratch, which is different from the two-stage training
scheme proposed in CO2Net. The training loss function is

L =

√∥∥∥IGT
t − Ît

∥∥∥2

+ ε2, (9)

where ε is set to 1e−6 in our experiments. All video frames
are resized to 256 × 256 pixels for training and testing,
which is the same setting as CO2Net [27]. Rotation and
flipping are applied for data augmentation.
Inference settings. We evaluate our method on HYouTube-
Test using the sliding-window scheme [45]. HYouTube-
Test includes 636 20-frame video sequences. To quan-
titatively evaluate the generated frames, we utilize MSE,
PSNR, SSIM, foreground MSE (fMSE), foreground PSNR
(fPSNR) and foreground SSIM (fSSIM) as metrics [15,16].
We utilize NIQE to evaluate the visual quality and TL to
evalutate the temporal consistency. We employ RAFT [39]
to compute optical flow for TL.
Implementation details. TSA2 takes seven consecutive
frames (i.e., N = 3) as inputs unless otherwise specified.
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Table 1. Quantitative comparisons of different methods on HYouTube-Test [27]. The best results are marked in bold while the second ones
are marked with underlines. The unit of #Params is million (M). The Runtime is the average running time (seconds) which is measured on
HYouTube with the spatial resolution of 256× 256 in a per-frame manner.

Method Parameters (M) Runtime (s) PSNR↑ SSIM↑ fPSNR↑ fSSIM↑ NIQE↓ MSE↓ fMSE↓ TL↓
DIH [40] 24.79 0.0066 29.95 0.6292 24.17 0.6933 7.0711 105.70 614.07 11.75
S2AM [11] 67.00 0.1636 30.05 0.6695 24.26 0.7657 5.4439 103.93 611.22 9.64
DoveNet [10] 54.76 0.0113 30.19 0.6856 24.35 0.7677 5.8637 113.15 444.92 9.13
FeatureModulation [18] 11.59 0.1512 30.26 0.6960 24.64 0.7876 5.7941 82.04 474.13 8.64
RainNet [24] 54.75 0.0162 30.75 0.8006 24.36 0.7681 5.6167 56.90 298.85 6.24
IntrinsicHarmony [16] 40.86 0.0440 30.51 0.7984 23.88 0.7497 5.7580 67.27 359.81 5.89
BargainNet [8] 3.92 0.0113 30.21 0.7955 24.38 0.7757 5.7004 97.52 503.77 5.57
HaronyTransformer [15] 26.52 0.0783 31.14 0.8047 25.07 0.7933 5.6948 35.58 208.26 4.95
S2CRNet-VGG16 [22] 21.70 0.0136 31.20 0.8055 25.12 0.7935 5.6689 35.51 205.96 4.90
EDVR [45] 20.50 0.3210 31.33 0.8048 25.51 0.7875 5.3632 35.79 198.79 4.49
Huang et al. [19] 55.27 0.1419 30.37 0.7342 24.29 0.7339 5.7749 76.48 379.99 4.60
CO2Net [27] 26.77 0.0460 31.30 0.8050 25.53 0.7978 5.2904 35.26 196.50 4.64
Ours 16.30 0.0315 31.57 0.8063 26.07 0.8044 5.1809 34.70 192.32 4.55
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Figure 4. Visual comparisons of different representative methods on video frames from the HYouTube dataset. Red arrows indicate where
our TSA2 better harmonizes foreground regions and produces realistic appearance adjustments. Please zoom in for better visualization.

We utilize the Adam optimizer with parameters β1 = 0.9
and β2 = 0.999 to train our method. The learning rate is
initially set to 1e− 4 and is later reduced by 0.5 every 150k
iterations till 600k iterations. We implement our method
with the PyTorch framework and train the method using 2
NVIDIA GeForce GTX1080Ti GPUs, with each mini-batch
consisting of 2 samples.

4.2. Quantitative and Qualitative Comparisons
We compare the proposed TSA2 with two kinds of ad-

vanced methods: (1) image harmonization methods in-
clude DIH [40], S2AM [11], DoveNet [10], Feature-
Modulation [18], RainNet [24], IntrinsicHarmony [15],
BargainNet [8], HarmonyTransformer [15] and S2CRNet-
VGG16 [22]. We retrain all these methods using the dataset
of HYouTube based on the publicly available codes released
by the authors. (2) Video harmonization methods Huang et
al. [19] and CO2Net. We carefully implement Huang et

al. and train the network on HYouTube. Since the CO2Net
is a framework with an image harmonization network and
a refinement module, we put the refinement module be-
hind the state-of-the-art image harmonization method Har-
monyTransformer. (3) A typical video restoration method:
EDVR [45]. Given that EDVR is initially designed for
video super-resolution, we have omitted the final upsam-
pling operation to adapt it for video harmonization.

Quantitative evaluations. As shown in Table 1, our TSA2

outperforms image and video harmonization methods. For
example, one can see that TSA2 outperforms Harmony-
Transformer [15], the state-of-the-art image harmonization
method, by 0.43dB/0.0016/1.00dB/0.0111 on HYouTube
in terms of PSNR/SSIM/fPSNR/fSSIM. Compared to
Huang et al. [19], TSA2 obtains 1.20dB/0.0721/1.78/0.0645
gain. In terms of PSNR/SSIM/fPSNR/fSSIM. Though our
TSA2 does not optimize for the NIQE score, it still produces
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Table 2. The average rank result of our user study.
Method Result

TSA2 (Ours) 1.570
CO2Net [27] 1.795

Huang et al. [19] 2.303

Table 3. Investigation of the TSAda and TSAgg modules.
Method TSAda TSAgg fPSNR fSSIM

Ours-Concat % % 25.21 0.7951
Ours-Baseline % % 25.67 0.8021
Ours-TSAda ! % 25.85 0.8029
Ours-TSAgg % ! 25.91 0.8032

Ours ! ! 26.07 0.8044

the lowest NIQE score, which indicates that the TSA2 can
generate harmonized results with the best visual quality.
Qualitative evaluations. Exemplar visual results of differ-
ent representative methods are shown in Figure 4. It can be
easily observed that our method integrates the foreground
videos into the background videos, achieving better visual
consistency than other methods. We mask a video for a
dynamic comparison of the results obtained from various
methods. Please refer to the supplementary material.
Computational efficiency. As shown in Table 1, our
method achieves the highest metrics with a relatively small
number of parameters and a fast runtime. For example,
we achieve a 1.00dB performance gain in terms of fP-
SNR using only about 60% of the parameters compared to
the state-of-the-art image harmonization method, Harmony-
Transformer [15]. Compared with the existing video har-
monization method, our runtime is about 20% of Huang et
al. [19], but obtains a 1.78dB fPSNR improvement.
User study. We conduct a user study to subjectively com-
pare our method against the advanced image and video
harmonization methods: HarmonyTransformer [15] and
Huang et al. [19]. 20 participants are asked to rank the
results produced by comparison methods and our method
for 20 randomly selected videos. For each video, the input
and results from the three different methods are shown to
the participants, and the participants are asked to rank the
results from 1 to 3 (the lower, the better). We allow the
participants to give a tie; the average rank is shown below.
The user study results are summarized in Table 2. While
there are different preferences across videos, it shows that
our method is preferred more often by the participants.

4.3. Ablation Studies
We carry out experiments on HYouTube, employing fP-

SNR and fSSIM as metrics to analyze TSA2.
Effectiveness of the TSAda and the TSAgg modules. We
conduct experiments to demonstrate the contributions of
two core modules in our method. We design two base-
lines in this part: (1) Ours-Concat: we concatenate seven
inharmonious frames (

{
IC1 , IC2 , . . . , IC7

}
) in the channel

dimension at the beginning, and feed them into the same
UNet structure as Huang et al. [19]. We set the in-

Table 4. Results of our proposed method with different number of
input frames (i.e., N ).

Method fPSNR fSSIM
Ours-#Frame3 (N = 1) 25.81 0.8030
Ours-#Frame5 (N = 2) 25.98 0.8039
Ours-#Frame7 (N = 3) 26.07 0.8044
Ours-#Frame9 (N = 4) 26.14 0.8051
Ours-#Frame11 (N = 5) 26.04 0.8040

Table 5. Investigation of different temporal segment branches.
345 246 147 fPSNR fSSIM
! % % 25.81 0.8030
% ! ! 25.99 0.8040
! % ! 25.98 0.8039
! ! % 25.98 0.8038
! ! ! 26.07 0.8044

Table 6. Results achieved by the TSAda module and its variants.
Method fPSNR fSSIM

TSAda-w/o-ChannelAtt. 25.99 0.8039
TSAda-w/o-Concat 26.02 0.8042

TSAda-w/o-µ
F̃

B

n

&σ
F̃

B

n

26.00 0.8040
TSAda-RegionNorm. 25.96 0.8036

TSAda 26.07 0.8044

put channel number of the first convolution layer to 21.
(2) Our-Baseline: we remove the TSAda module and the
TSAgg module and use several residual blocks to replace
the TSAda and TSAgg modules while keeping the param-
eters constant. As shown in Table 3, the TSAda module
(Ours-TSAda) and the TSAgg module (Ours-TSAgg) pro-
vide about 0.64 dB and 0.70 dB fPSNR gains compared
with Ours-Concat, and provide about 0.18 dB and 0.24
dB fPSNR gains compared with Ours-Baseline. Using the
TSAda module and the TSAgg module simultaneously pro-
vides 0.86 dB and 0.40 dB gains in terms of fPSNR com-
pared with Ours-Concat and Ours-Baseline, respectively.
Different number of input frames. We evaluate how
the number of input frames affects the harmonized perfor-
mance. We enumerate the cases where N = 1 to 5, i.e., the
input frames number changes from 3 to 11. Table 4 shows
that the capability of TSA2 rises at first and drops with the
increasing number of input frames. Compared with taking
only three frames (N = 1) as the input, the nine-frame
setting obtains more than 0.3dB gain on fPSNR. It demon-
strates that increasing input frames leads to improvements.
However, once saturated, it is unnecessary to include more
input frames since more weakly correlated frames from a
sequence bring unwanted noise. Considering the computa-
tional costs, we choose 7 frames as input.
Different number of temporal segment branches. We
present a comprehensive analysis of the influence of vary-
ing the number of branches on our proposed approach, as
illustrated in Table 5. The observed results underscore a
significant trend: activating all branches leads to the attain-
ment of notably elevated fPSNR and fSSIM values, thereby
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Table 7. Results achieved by the TSAgg module and its variants.
Method fPSNR fSSIM

TSAgg-3DConv 25.96 0.8034
TSAgg-2DConv 25.94 0.8034

TSAgg-w/o-3DConv 26.02 0.8042
TSAgg-w/o-Attention 25.89 0.8031

TSAgg 26.07 0.8044

manifesting a pronounced enhancement in overall perfor-
mance. The findings substantiate the virtue of harnessing
supplementary temporal information, which distinctly con-
tributes to an augmented efficacy in the context of video har-
monization. These results resonates consistently with our
earlier analysis and underscores the potency of incorporat-
ing richer temporal cues to bolster video harmonization.
Comparison of the TSAda module with several variants.
We further validate the effectiveness of the TSAda Mod-
ule by introducing the following four variants: (1) TSAda-
w/o-ChannelAtt.: we remove the channel attention opera-
tion in the TSAda module. (2) TSAda-w/o-Concat: instead
of concatenating F̃

B

n and F̃
F

,tn, we feed F̃
B

n to the convo-
lution layers and generate β and γ directly. (3) TSAda-
w/o-µ

F̃
B

n

&σ
F̃

B

n

: we donnot update β and γ as Equa-
tions (4). (4) TSAda-RegionNorm.: we embed the Region-
aware Adaptive Instance Normalization (RAIN) [24] into
the TSAda module. As shown in Table 6, after we remove
the channel attention operation, the fPSNR value drops by
0.08dB, indicating this operation can explicitly emphasize
the essential background region features while suppressing
redundant channels and enhancing the representation abil-
ity of the foreground region features. TSAda-w/o-Concat
and TSAda-w/o-µ

F̃
B

n

&σ
F̃

B

n

have 0.05dB and 0.07 dB drop
in terms of fPSNR, which demonstrate the effectiveness of
the TSAda module is to utilize and remap the distribution
of foreground features to that of background features adap-
tively. We also compare the TSAda module with the RAIN,
achieving a 0.11dB improvement in terms of fPSNR.
Comparison of the TSAgg module with several vari-
ants. We further validate the effectiveness of TSAgg Mod-
ule by introducing the following four variants: (1) TSAgg-
Conv3D: we concatenate

{
FAda

1,t ,FAda
2,t ,FAda

3,t

}
along the

temporal dimension first and then feed the concatenated fea-
ture to several 3D convolution layers. (2) TSAgg-Conv2D:
we concatenate

{
FAda

1,t ,FAda
2,t ,FAda

3,t

}
along the channel

dimension first and then feed the concatenated feature to
several 2D convolution layers. (3) TSAgg-w/o-Conv3D:
we remove the branch of Conv 3D in the TSAgg module.
(4) TSAgg-w/o-Attention: we do not calculate the multi-
segment attention maps, but fuse

{
FAda

1,t ,FAda
2,t ,FAda

3,t

}
di-

rectly. As shown in Table 7, neither TSAgg-3DConv nor
TSAgg-2DConv achieves good results because it is insuffi-
cient to directly aggregate cross-segment information with
2D/3D convolution layers. When we remove the multi-

Composite frames Masks

TSA2 GT
Figure 5. A failure case.

segment attention maps, the core part in the TSAgg mod-
ule, the results drop by 0.18dB/0.0013 in terms of fP-
SNR/fSSIM. The results indicate that the TSAgg module
can adaptively emphasize and aggregate important informa-
tion across different temporal segments.

4.4. Limitations
Despite the promising performance demonstrated above,

the proposed method still has certain limitations in some
challenging cases. For example, when the proportion of the
foreground region that needs to be adjusted is too large, our
method cannot adjust the inharmonious foreground regions
because there is not enough background region information
to assist the foreground regions to be adjusted. The failure
case is shown in Figure 5. Also, due to the limited GPU
memory footprint, we only experiment on frames with the
spatial resolution of 256×256, which is the same as the ex-
perimental settings in CO2Net. As the future work, we will
explore how to adjust inharmonious videos with large-area
foreground regions. Furthermore, we plan to explore the
creation of efficient and lightweight video harmonization
networks, specifically tailored for real-world applications.
This exploration encompasses scenarios like ultra-high res-
olution video harmonization.

5. Conclusion
In this paper, we present TSA2, a novel end-to-end

method for video harmonization. To effectively leverage
complementary information across different inharmonious
frames, the input sequence is divided into several tem-
poral segments with different frame rates. The proposed
TSAda module learns the distribution difference between
the background and foreground regions and remaps the dis-
tribution of foreground features to that of background fea-
tures, followed by a TSAgg module to emphasize and ag-
gregate cross-segment information adaptively. Our method
achieves superior results both quantitatively and qualita-
tively on representative video harmonization dataset.
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