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Abstract

We propose a straightforward yet highly effective few-
shot fine-tuning strategy for adapting the Segment Anything
(SAM) to anatomical segmentation tasks in medical im-
ages. Our novel approach revolves around reformulating
the mask decoder within SAM, leveraging few-shot embed-
dings derived from a limited set of labeled images (few-
shot collection) as prompts for querying anatomical objects
captured in image embeddings. This innovative reformu-
lation greatly reduces the need for time-consuming online
user interactions for labeling volumetric images, such as
exhaustively marking points and bounding boxes to provide
prompts slice by slice. With our method, users can manu-
ally segment a few 2D slices offline, and the embeddings of
these annotated image regions serve as effective prompts for
online segmentation tasks. Our method prioritizes the effi-
ciency of the fine-tuning process by exclusively training the
mask decoder through caching mechanisms while keeping
the image encoder frozen. Importantly, this approach is not
limited to volumetric medical images, but can generically
be applied to any 2D/3D segmentation task.

To thoroughly evaluate our method, we conducted ex-
tensive validation on four datasets, covering six anatomi-
cal segmentation tasks across two modalities. Furthermore,
we conducted a comparative analysis of different prompt-
ing options within SAM and the fully-supervised nnU-Net.
The results demonstrate the superior performance of our
method compared to SAM employing only point prompts
(∼50% improvement in IoU) and performs on-par with fully
supervised methods whilst reducing the requirement of la-
beled data by at least an order of magnitude.

1. Introduction
Medical imaging such as CT, MRI, and X-Ray, etc are

the most effective technique for in vivo analysis of diverse
human anatomical structures. However, visual assessment
of anatomical structures, even by experts, can introduce
subjectivity, errors, and significant delays. Therefore, there
is growing interest in leveraging computational approaches

to automatically analyze medical images. In this regard,
automated anatomical segmentation methods have become
essential, enabling precise identification and delineation of
regions of interest (ROI) before deriving clinical measures.

In recent years, several automatic segmentation meth-
ods [2, 3, 8, 12, 18, 19, 25] have made significant strides in
addressing the limitations associated with manual segmen-
tation, resulting in improved reliability, reproducibility, and
efficiency in the analysis of medical images [12]. These ap-
proaches are based on the latest advances in deep learning
with diverse architectures mostly following the design of
UNet ( [12]) and transformers [7, 21]).

The current approach to segmenting anatomical struc-
tures in medical images relies on task-specific neural net-
works tailored to predefined anatomical targets. However,
these models struggle to generalize when encountering un-
familiar or diseased anatomies. Consequently, practitioners
often face the need to develop new models with a new round
of data collection and labeling, which is particularly expen-
sive for large volumetric medical datasets such as CT and
MRI. Hence, leveraging pre-trained segmentation founda-
tion models for segmenting medical images is a fundamen-
tal research question. These pre-trained foundation mod-
els should be rich in model capacity to represent complex
anatomical structures, having been trained on diverse and
extensive datasets.

Indeed, segmentation foundation models have become a
valuable framework for transfer learning and domain adap-
tation [16, 23, 24], demonstrating outstanding segmenta-
tion performance on major natural image benchmarks [24].
Compared to smaller models trained on limited data, these
models exhibit comprehensive representation capabilities,
suggesting their potential for improved generalization on
new tasks. Segment Anything (SAM) model [16], one of
the prominent segmentation foundation models, has gained
widespread recognition. Using an extensive dataset com-
prising over one billion masks, SAM demonstrates im-
pressive zero-shot proficiency in generating precise object
masks for unseen tasks.

SAM provides versatile options for prompting: bound-
ing boxes, points, masks, or texts. With these prompting
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methods, SAM promises to reduce the need for task-specific
data to fine-tune and retrain new models when applied to
a novel task. However, prompting may pose challenges
when adapting SAM for segmenting volumetric medical
images such as CT or MRI. First, SAM is inherently a 2D
model. For segmenting large 3D volumetric scans, anno-
tating regions by adding points or boxes slice by slice is
still time consuming. Our experiments demonstrate that
point-only prompting yields subpar performance when seg-
menting typical anatomies in CT and MRI images. Achiev-
ing good zero-shot performance requires accurate bound-
ing boxes on each object region or sub-regions, substan-
tially increasing the prompting efforts. Prompting is even
more challenging when anatomical structures exhibit con-
siderable shape variation or are distributed in multiple dis-
connected areas in 2D cross-section views. Second, SAM’s
ability to segment anything inherently leads to ambiguous
predictions, particularly when anatomical structures appear
closely layered in 2D views. As illustrated in Figure 1, rely-
ing solely on a single point prompt is insufficient for accu-
rately segmenting the aorta (top) and knee joints (bottom) in
CT images. Even with the inclusion of bounding boxes as
prompts, accurately distinguishing the aorta from surround-
ing arteries remains challenging because the box would
cover all anatomies nearby. In this case, one has to provide
multiple points and distinguish these as foreground or back-
ground to exclude surrounding objects. This increases the
prompting efforts dramatically. Finally, in addition to pro-
viding three segmentation predictions, SAM incorporates
two estimations, namely Intersection Over Union (IoU) and
stability score, to assist users in evaluating the reliability
of the predictions. However, these measurements may not
be sufficient for users to determine which segmentation to
select confidently for end-application. This limitation is ev-
ident in two examples illustrated in Figure 1, where the last
column depicts the segmentation predictions with the high-
est predicted IoUs and stability scores. In these examples,
it is observed that the predictions with the highest scores
tend to correspond to segments that are relatively easier to
delineate, often achievable through simple intensity thresh-
olding. Consequently, relying solely on the IoU and sta-
bility scores may lead to sub-optimal segmentation. To
ensure accurate results, precise prompting and careful se-
lection among three predictions become crucial, requiring
users to participate.

This paper proposes a few-shot fine-tuning strategy for
adapting SAM to segment anatomical structures in medi-
cal images. Importantly, this proposal does not involve in-
troducing new network architectures or models. Instead,
all components utilized in this study are from the original
SAM. The key modification lies in reformulating SAM’s
mask decoder, which is adapted to accept few-shot embed-
dings as prompts, eliminating positional-encoded points,

Figure 1. Two cases using SAM point prompting. The points are
marked in yellow. Segmentation is colored red. The top row is
an axial slice from a chest CT scan with a segmented aorta, and
the bottom row is a coronal slice of a CT image with a segmented
femur. We show three segmentation predictions from SAM for
each case, with predicted IoU and stability score above the default
thresholds (0.88 and 0.95, respectively).

bounding boxes, or dense prompts such as masks and their
corresponding prompt encoders. The fine-tuning process
focuses on training SAM’s mask decoder on a small set
of labeled images specific to the segmentation task. Our
fine-tuning process is computationally efficient compared
to training standalone neural networks. To validate the ef-
fectiveness of our approach, we conducted a comprehen-
sive evaluation comparing it with various prompting op-
tions offered by SAM, as well as a fully supervised nnU-Net
trained on all available labeled images. Our evaluation was
conducted on six anatomical structures. The findings indi-
cate that the proposed fewshot fine-tuning method achieves
anatomical structure segmentation performance comparable
to SAM when using accurate bounding boxes as prompts
while significantly outperforming SAM when using fore-
ground points alone as prompts.

2. Related Work

Since the introduction of SAM, several recent studies
[6, 11] have investigated its performance in medical image
segmentation benchmarks, specifically comparing various
prompting options. Most of these studies suggest that using
bounding boxes as prompts generally leads to improved per-
formance compared to using points alone, though this find-
ing is inconsistent depending on the dataset. In line with
this ongoing discussion, our paper delves into the intrica-
cies of employing SAM with varying modes of prompting,
providing further insights and analysis.

In adapting SAM for medical image segmentation, Med-
SAM [17] performs fine-tuning of SAM’s mask decoder
using a carefully curated medical image dataset compris-
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ing over 200,000 masks from 11 different modalities. No-
tably, their fine-tuning process focuses solely on the mask
decoder while keeping the remaining components of SAM
frozen. The results demonstrate significant improvements
in segmentation performance compared to zero-shot SAM
with various prompting options. However, the effective-
ness of MedSAM has not been validated against fully su-
pervised methods. Additionally, the training effort required
for fine-tuning, including data collection and computation
time, poses practical challenges in adopting their approach.

Another approach, Med SAM Adaptor (MSA) [22], en-
hances SAM by introducing a set of adaptor neural net-
work modules connected through the original SAM network
modules. During training, the SAM modules remain un-
changed, while the parameters of the adaptor modules are
updated to achieve the goal of segmenting medical images.
MSA exhibits promising results in adapting SAM for the
medical domain, demonstrating its effectiveness on 19 med-
ical image segmentation datasets. However, the training
process of MSA still entails a non-trivial cost. Addition-
ally, relatively large dataset collection is needed for fine-
tuning. In contrast, our proposed approach maintains the
integrity of SAM’s image encoder while focusing solely on
fine-tuning the mask decoder using a minimal amount (5-
20) of labeled images specific to the given segmentation
task. Our approach significantly reduces the training effort
required and provides a practical solution for adapting SAM
to medical image segmentation.

Most of the existing approaches adapting SAM for med-
ical images are still prompting-based methods, requiring
users to provide accurate prompts during the use of the al-
gorithms that may not be ideal for large volumetric medical
images.

3. Method
This section first describes the SAM method briefly be-

fore introducing the proposed fewshot fine-tuning strategy.

3.1. Segment Anything

The Segment Anything Model (SAM) is a state-of-the-
art segmentation model trained on the largest segmenta-
tion dataset to date [16]. SAM was extensively evaluated
on 23 diverse datasets upon its release, covering a wide
range of natural images [16]. The evaluation demonstrated
that SAM achieved remarkable accuracy in zero-shot appli-
cations, outperforming other interactive or dataset-specific
models without requiring re-training or fine-tuning on un-
seen datasets or segmentation tasks.

SAM takes a 2D image with dimensions of 1024 × 1024
and RGB channels as input. The first step of SAM is to uti-
lize its image encoder, a vision transformer [7,9], to extract
image embeddings from the input image. The resulting im-
age embeddings are obtained at a down-sampled resolution

of 64 × 64. SAM incorporates user input prompts, includ-
ing points, bounding boxes, and masks, and encodes objects
and their positional information into prompt embeddings to
identify and locate objects within the image. These prompt
embeddings serve as queries for the mask decoder, which
is based on MaskFormers [4, 5]. The mask decoder (illus-
trated in Figure 2) employs attention mechanisms to capture
the correlations between the queries (prompt embeddings
with tokens) and keys (image embeddings with encoded po-
sitional information). This enables the retrieval of relevant
information stored in the image embeddings (values). The
mask decoder comprises multiple layers of two-way trans-
formers, as depicted in Figure 2 (a). These transformers
incorporate self-attention and cross-attention layers, allow-
ing both the image and prompt embeddings to attend to each
other’s information.

3.2. Prompting with SAM

SAM offers two modes: automatic mode and prompt-
ing mode. In automatic mode, users do not need to provide
any input. The algorithm generates a grid of uniformly dis-
tributed points on the input image, which serve as prompts
for segmentation. The auto-segmentation mode is not suit-
able for anatomical segmentation tasks as it lacks alignment
with anatomical entities and segments anything in the im-
age.

A more targeted approach is to use the prompting mode,
which allows users to interact with the algorithm by pro-
viding various types of prompts such as points, bounding
boxes, and masks to indicate the location of the target ob-
jects (skipping the text-based prompting because we do not
find it in the open source release 1. In point prompting,
users can provide multiple points to indicate the foreground
and background areas. An alternative is to provide bound-
ing boxes as prompts. Users can specify the coordinates of
the top-left and bottom-right corners of the bounding boxes
to indicate the regions of interest. This approach has shown
to yield improved results when adapting SAM for medical
image segmentation over using points prompting [17].

3.2.1 Fewshot Fine-tuning for SAM Adaption

We propose a fewshot fine-tuning method for adapting
SAM to segment anatomical structures from medical im-
ages. Instead of relying on user-provided prompts, our
method utilizes SAM’s image encoder to extract target em-
beddings from a set of fewshot images that are labeled for
the specific segmentation task.

Given a fewshot set DL = (xi, yi)
NLi = 1, where NL

is the number of labeled images in DL, xi denotes i-th im-
age, and yi denotes the corresponding segmentation ground
truth. Both xi and yi are 2D images (xi, yi ∈ RW×H ) with

1https://github.com/facebookresearch/segment-anything
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Figure 2. Mask decoder (b) in SAM using user prompts (d) and the proposed prompting method based on fewshot target embeddings
derived from a set of labeled images (c). Two-way transformer layers allow both image embeddings and prompt embeddings to attend to
each other’s information (a). To maintain clarity, we have omitted the process of dense mask embeddings and positional encodings. Green
dash lines indicate the process in the mask decoder that are modified for fewshot finetuning. And the part in the box marked by the red
dash line is removed in the modified mask decoder as the proposed method does not use user prompt embeddings.

spatial size W ×H . We first run SAM’s image encoder on
each image to obtain image embeddings zi ∈ R256×W

′
×H

′

at a 16× downsampled resolution (W
′
= W/16, H

′
=

H/16).

To align the resolution of the embeddings with the seg-
mentation ground truth, we downsample the corresponding
ground truth yi to ŷi, ŷi ∈ RW

′
×H

′

. For each anatomical
label l, we compute the target embedding ẑli ∈ R256 by
averaging the embedding vectors only within the downsam-
pled mask corresponding to label l, applying the formula
ẑli =

∑
[(ŷi = l) ∗ zi]/

∑
(ŷi = l), where the summation

iterative across all spatial locations in ŷi, (ŷi = l) is the
binary ground truth for label l, and ∗ denotes element-wise
multiplication. Finally, all fewshot target embeddings for
the set DL are in RNL×C×256, where C are the number of
labels.

Fewshot target embeddings are concatenated with query
tokens as one part of the input to the modified mask de-
coder; the other input is the image embeddings (refer to Fig-
ure 2 (a)). We modify the mask decoder to accept fewshot
target embeddings (as indicated by the green dashed lines
in Figure 2 (b)) rather than user-defined prompts (as shown
by the red box with a dashed line border in Figure 2 (a)).
Practically, the only change is the number of output tokens

to fetch from the two-way transformer layers (two versus
three in the original SAM’s mask decoder), which is also
the number of input tokens to the MLP. The use of query
tokens has the same intuition as that in the original trans-
former [21]. In our case, for each label, we query two masks
(foreground and background) using two tokens to represent
a one versus the rest pixel-wise classification schema. At
each layer, both the fewshot target embeddings and the im-
age embeddings attend to each other using a cross-attention
mechanism. This allows the model to capture the correla-
tions between the fewshot target embeddings and the image
embeddings in the embedding space. After the first layer,
the fewshot embeddings with tokens are also self-attended.
This self-attention mechanism helps refine the representa-
tion of the fewshot embeddings and incorporate relevant in-
formation across embeddings in the fewshot set.

Same as the original SAM’s mask decoder, the image
embeddings enriched from the two-way transformer layers
are upsampled and reshaped to a lower dimension. This re-
duces the dimensions of the image embeddings from R256

to R32, enabling more efficient computation for resolution
reconstruction. Accordingly, the fewshot target embeddings
and tokens are reshaped into the same reduced dimension
(R32), allowing for dot-product operations with the upsam-
pled image embeddings. The final segmentation prediction
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for each anatomical label from the modified mask decoder
has two channels (foreground and background) after spa-
tially resizing into the original resolution (1024 × 1024).

3.2.2 Rationale Behind Fewshot Prompting

In SAM, the mask decoder design, similar to the trans-
former decoder in MaskFormer [5], aims to retrieve rele-
vant information from the image embeddings (Values) using
keys that are partially represented by positional encodings.
The process involves generating queries based on the posi-
tional encodings derived from user-provided location infor-
mation, such as points or bounding boxes. These positional
encodings (queries) are then matched with the positional en-
codings (keys) stored within the image embeddings. By do-
ing so, the regions within the image embeddings that corre-
spond to the user input can be fetched and transformed into
segmentation predictions. This mechanism allows SAM to
effectively utilize the spatial relationships between the user-
provided location information and the image embeddings
for accurate segmentation.

In our proposed method, we eliminate the need for a
prompt encoder and instead utilize fewshot target embed-
dings for segmentation. The labels of the target embed-
dings are propagated to the embeddings extracted from a
test image. Rather than explicitly designing a nearest neigh-
bor matching label propagation schema, our method lever-
ages the power of the two-way transformer layers within
SAM’s mask decoder to facilitate optimal matches between
the fewshot target embeddings and the image embeddings
extracted from a test image. The target embeddings act
as queries, allowing the retrieval and transformation of in-
formation stored in the image embeddings generated by
SAM’s image encoder into segmentation predictions. In
essence, the cross-attention maps between target embed-
dings and image embeddings in the two-way transformer
layers represent the pair-wise similarity between queries
and keys in the embedding space, while the distance met-
rics and mapping techniques to measure these similarities
were learned via the fine-tuning process.

4. Experiments

4.1. Datasets

We collected three publicly-available datasets for
anatomical segmentation on CT or MRI images. They are
AMOS22 [14], MSD [1], and Verse20 [20]. We also col-
lected one large-scale CT dataset internally. In total, all
dataset contains 3,748 subjects, covering six anatomical
structures, consisting of the tibia, femur, vertebrae, heart,
aorta, and postcava. Datasets are summarized in Table 1.
Because SAM operates on 2D images, we sampled 2D
slices from 3D images for training and testing. The slices

were selected on the predefined axes after resampling scans
into either fixed isotropic spacings or in a fixed in-plane res-
olution while keeping the original z-spacing (Table 1). For
simplicity, we avoid the instance-segmentation problem in
the Verse20 dataset, e.g., all vertebrae bodies in the Verse20
dataset are considered one anatomical label.

4.2. Methods Comparison

Three methods are compared: SAM (using point or box
prompts), nnU-Net [13], and the proposed fewshot fine-
tuning methods. We extract points and bounding boxes
from the segmentation ground truth to mimic the user pro-
viding accurate points or boxes for prompting SAM. Note
that this represents an idealized setting, where ground truth
is leveraged to generate comprehensive prompts. For each
anatomical label, we first perform connected component
analysis. Then for each connected component, we compute
a single point within the component mask, using the coor-
dinate where the value in the distance map function is the
highest. The distance map function (DMFx) for a given
location x to the segmentation ground truth Ω is computed
as the follows:

DMFx =

{
inf ∥x− dΩ∥2 if x ∈Ω
0 others

(1)

where ∥x − dΩ∥2 is the euclidean distances between vox-
els coordinates x and coordinates in the ground truth object
boundary set dΩ. The bounding box for each component is
simply derived from the segmentation ground truth as the
top left and bottom right corners. Given an anatomy in 2D
cross-section view with c connected component, the final
point prompts are a sequence of coordinates c×2 combined
with c-dimensional binary point labels (one if present in
foreground, otherwise zero). The box prompts are c×2×2.
For the Verse20 dataset, we have, on average, six connected
components (vertebrae instances) on each 2D image. In
such cases, manual prompting may be infeasible for prac-
tical usage. To showcase SAM’s zeroshot capability, SAM
(using point or box prompts) is only executed on images on
the test set without retraining or fine-tuning.

nnU-Net was trained using all 2D slices from the train-
ing split. We tuned training hyper-parameters for each task
separately using a validation set with 10% of images within
the training set.

In our proposed fewshot fine-tuning method, we perform
fine-tuning on the modified mask decoder using fewshot
subsets created with varying sizes, specifically 5, 20, and
50 examples from the training set. During fine-tuning, the
modified mask decoder is trained only using the fewshot
subset, while the fully-supervised nnU-Net is trained on all
available training examples. The images in a fewshot subset
are used to extract fewshot target embeddings using SAM’s
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Dataset Anatomy
(Modality)

#Subjects Spacings
(mm) Axes Intensity clip 2D slices

in training#total #train #test

Internal Tibia (CT) 3308 3008 300 isotropic 1.0 coronal [-500, 1300] 3008Femur (CT)

AMOS22 [14] Aorta (CT) 360 288 72 in-plane 0.8 axial [-160, 240] 3561Postcava (CT)
MSD [1] Left atrium (MRI) 20 15 5 isotropic 1.0 axial [0.5%, 99.5%] 583

Verse20 [20] Vertebrae (CT) 60 47 13 in-plane 1.0 coronal [-500, 1300] 691

Table 1. Data collection and processing parameters across six different anatomies on four different data sources. We listed each set’s total
number of subjects and splits, including the number of 2D slices used in training. After resampling 3D images into fixed isotropic or
in-plane resolutions, the 2D slices were extracted on the sampling axes. Clipping ranges are given for rescaling CT intensity values. For
MRI scans, percentiles are used to exclude outliers.

image encoder. Once extracted, these fewshot target em-
beddings can be cached as part of model storage, allowing
them to be used as prompts during test time. This caching
mechanism also makes subsequent iterations of fine-tuning
efficient.

4.3. Metrics

We report the intersection over union (IoU) and average
symmetric surface distance (ASSD) as the metrics for eval-
uating the segmentation performance. IoU metrics were
computed using the resampled spacings as shown in Ta-
ble 1. ASSD metrics were reported in milli-meters.

4.4. Experiment Details

The model parameters were optimized using the Adam
optimizer [15] with an initial learning rate of 10−4 and de-
cay rates β1 set to 0.9 and β2 set to 0.99. The network pa-
rameters were initialized using He initialization [10]. The
nnU-Net method was trained for a maximum of 200 epochs
for all tasks, with training stopping when the metrics on
the validation set did not show improvement for ten epochs.
Data augmentations were randomly applied during training,
including intensity scaling and shifting, contrast stretching,
Gaussian additive noise, spatial flipping, and resizing af-
ter cropping. For fine-tuning the modified mask decoder,
a maximum of 50, 80, and 100 iterations were performed
when the fewshot set consisted of 5, 20, and 50 labeled im-
ages, respectively. The images in the fewshot set were se-
lected to best represent the target anatomy’s appearance. All
experiments were conducted on a machine with 4 NVIDIA
Tesla K80 GPUs, 24 CPU cores, and 224 GB RAM. The
fine-tuning experiments were completed within three hours
using the cache mechanism.

4.5. Results

Table 2 shows that SAM with only point prompts
exhibits suboptimal performance, with Intersection over
Union (IoU) below 70% and Average Symmetric Surface
Distance (ASSD) exceeding 10 mm on all tasks. This is

primarily due to the inherent ambiguity in the predictions,
as demonstrated in Figure 1. SAM utilizing bounding boxes
as prompts demonstrates remarkable zero-shot capabilities,
achieving the highest scores in the postcava and vertebrae
among all methods. Although SAM with accurate bounding
box prompts shows solid performance, qualitative results
(Figure 3 5th column, 5th row) show that SAM image em-
beddings, in general, do not suffice to represent pathological
changes that do not belonging to the common anatomy. In
the cases of knee joint segmentation, osteophytes (shown
on the tibia, colored in red) are partially missed (marked
in a yellow circle). As we do not update SAM’s image
encoder, this segmentation error shows that the image em-
beddings extracted by the pre-trained image encoder fail to
describe osteophytes. Segmenting pathological changes it-
self is a challenging task as these changes may be under-
represented in the data collection, given we also saw same
under-segmentation in nnU-Net’s results (Figure 3 6th col-
umn, 5th row). Interestingly, our fine-tuning approach pro-
duces even better results than SAM with box prompts on
segmenting the femur, tibia, left atrium, and aorta when
using 50 labeled images, showing the proposed method’s
ability to segment difficult anatomical structures when suf-
ficient images are labeled for fine-tuning. Crucially, the re-
quired number of labeled images are an order of magnitude
less than to achieve similar results with the fully supervised
nnU-Net approach, especially for knee segmentation.

In contrast, the fine-tuning method using only 5 labeled
images on Verse20 produces sub-optimal results, with IoU
at 85.1 and ASSD at 6.2mm compared with box-prompting
SAM at IoU 93.4 and ASSD 0.8mm. The drop in perfor-
mance for segmenting vertebrae with five-shot fine-tuning
is attributed to missing coverage of all vertebrae in 2D coro-
nal views. Most 2D views cover thoracic and lumbar verte-
bra, while cervical and sacrum spines are under-represented
in the sampled 2D training slices. Therefore, including all
vertebrae with only 5 2D coronal slices is challenging. For
segmenting tubular structures such as the left atrium, aorta,
and postcava, the fewshot method with 5 images also faced
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Anatomy Metrics SAM Ours (n-shot) nnUNetPoint box n=5 n=20 n=50

Femur IoU % 66.4± 26.2 97.2± 1.3 96.8± 2.2 97.6± 3.3 97.8± 2.0 97.8± 0.9
ASSD 10.4± 9.0 1.3± 0.7 1.5± 1.2 1.1± 1.6 1.00± 1.1 0.6±0.7

Tibia IoU % 50.3± 17.9 96.3± 2.3 95.3± 5.7 96.8± 4.6 97.1± 3.4 97.5±2.6
ASSD 17.5± 10.3 1.48± 1.1 2.0± 2.9 1.2± 2.0 1.1± 1.5 0.7±1.2

Left Atrium IoU % 66.4± 26.0 88.4± 6.5 82.4± 13.2 83.1± 12.2 89.1±8.7 88.9± 7.9
ASSD 10.4± 7.8 2.9± 1.4 6.56± 6.6 5.53± 5.4 2.12± 2.0 0.6±0.6

Aorta IoU % 53.3± 31.2 88.8± 7.6 82.4± 8.9 90.1± 8.4 90.8± 8.3 94.2±5.7
ASSD 29.1± 27.2 0.8± 0.6 7.4± 4.7 1.8± 1.6 1.0± 1.4 0.4±0.8

Postcava IoU % 69.4± 17.3 79.2±8.9 73.3± 11.2 76.1± 10.7 77.7± 9.1 78.1± 6.1
ASSD 12.8± 9.4 2.1±1.6 8.1± 5.3 7.8± 3.6 5.2± 2.4 2.7± 2.5

Vertebrae IoU % 65.7± 34.1 93.4±2.8 85.1± 6.9 89.3± 10.7 92.9± 5.4 92.7± 3.7
ASSD 29.9± 40.4 0.8±0.4 6.2± 5.7 4.5± 4.9 3.2± 3.5 0.7± 0.8

Table 2. Quantitative results of anatomical segmentation methods on various anatomies. Three set of methods in comparison: SAM (point
or boxes as prompts), the proposed few-shot methods trained with 5, 20, and 50 labeled images, and the fully-supervised nnUNet trained
with full data. Best results are in bold. ASSD: average symmetric surface distance, IoU: intersection over union.

the challenges given these structures may look very differ-
ent in 2D cross-section views, and such variations cannot
be sufficiently summarized with only 5 images. By adding
more labeled images to the fewshot set, the segmentation
performance can be improved substantially. Qualitative re-
sults show that the segmentation errors were mostly over-
segmentation of adjacent non-target anatomies (such as il-
ium bone segmented in Figure 3 1st row, 4th column not
part of sacral vertebrae). Overall, the segmentation errors
in the proposed approach may be caused by the SAM’s im-
age encoder not capturing sufficient anatomical semantics,
especially around the boundaries of these anatomical struc-
tures. Over-segmentations mostly show that these features
failed to distinguish adjacent anatomies, especially when
they appear similar (e.g., left atrium versus the surround-
ing tissues in other parts of the heart). On the other hand,
we also observe that SAM’s image embeddings are power-
ful enough to identify unrelated regions that are far from the
target anatomy, even when they are similar in appearance.
In abdomen CT images, many anatomical structures have
similar intensity distributions, such as between the aorta and
postcava. Figure 3 shows no false positives of labeling the
aorta as postcava or vice versa in the fewshot fine-tuning
results.

Finally, the nnU-Net trained with all labeled images
achieved the best overall segmentation performance, show-
ing that training task-specific model still produces better
segmentation results if a sufficient number of labeled im-
ages is available. When comparing the fewshot SAM
method to other SOTA methods leveraging SAM, our ap-
proach achieves a better IoU score on aorta segmentation
than MSA 1-point DICE score although trails behind Med-
SAM 1-point performance (DICE score). Although IoU and
DICE scores are different metrics, they are strongly posi-

tively correlated and thus enable qualitative comparison of
these methods.

5. Discussion & conclusion

This study introduces a method for adapting SAM to
anatomical segmentation tasks in medical images (CT,
MRI). Our approach eliminates user prompts and relies on
a few labeled images for prompting. We compare this ap-
proach with prompt-based SAM (points and boxes) and
fully supervised nnU-Net methods. Crucially, accurate
ground truth segmentations are leveraged to generate the
bounding box prompts for SAM, representing highly ide-
alized prompts that are unlikely to be generated for ev-
ery sample without significant labeling effort. This level
of prompting can be expensive and sometimes infeasible
for medical anatomical structure segmentation, especially
when dealing with large sparsely-distributed entities, such
as airways and vessels.

Remarkably, our fine-tuning approach with 5 labeled im-
ages achieves comparable results to SAM with (idealized)
bounding box prompts for femur and tibia segmentation,
highlighting the potential to reduce the amount of label-
ing effort required and still maintain accurate segmentation
of anatomical structures. The reduced requirement for la-
beled images while maintaining good performance is a key
strength of our method. Additionally, the fine-tuning pro-
cess is efficient by caching computed image embeddings,
allowing for reuse in repeated runs. Experimental results
demonstrate the effectiveness of our method in segmenting
various challenging anatomies in CT or MRI images, even
possible with only 5 labeled images for training. Finally, the
utility of our fewshot SAM goes beyond medical image seg-
mentation, providing a generic framework for token-query-
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Figure 3. Qualitative results of the segmentation methods in comparison. The first column represents the ground truth segmentations,
where all anatomies are visualized in red, except for the femur, which is visualized in green to differentiate it from the tibia. The subsequent
columns depict the results of different segmentation methods: SAM with bounding box prompt (5th column), the fully supervised nnU-Net
(6th column), and the proposed fewshot finetuning with 5, 20, and 50 labeled images (2nd-4th columns). Each row corresponds to a
different case.

based object detection and classification tasks outside of the
medical image and segmentation domains.
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