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Abstract

Crowd image is arguably one of the most laborious data
to annotate. In this paper, we aim to reduce the mas-
sive demand for densely labeled crowd data, and propose
a novel weakly-supervised setting, in which we leverage
the binary ranking of two images with high-contrast crowd
counts as training guidance. To enable training under this
new setting, we convert the crowd count regression prob-
lem to a ranking potential prediction problem. In partic-
ular, we tailor a Siamese Ranking Network that predicts
the potential scores of two images indicating the order-
ing of the counts. Hence, the ultimate goal is to assign
appropriate potentials for all the crowd images to ensure
their orderings obey the ranking labels. On the other hand,
potentials reveal the relative crowd sizes but cannot yield
an exact crowd count. We resolve this problem by intro-
ducing “anchors” during the inference stage. Concretely,
anchors are a few images with count labels used for ref-
erencing the corresponding counts from potential scores
by a simple linear mapping function. We conduct exten-
sive experiments to study various combinations of super-
vision, and we show that our method outperforms existing
weakly-supervised methods by a large margin without ad-
ditional labeling effort. The code is available at https :
//github.com/pandaszzzzz/CCRanking.

1. Introduction

Crowd counting aims to automatically count the num-
ber of individuals in images and has been widely applied in
many areas, e.g., video surveillance, traffic estimation, and
congestion control. Most recent approaches [58], [59], [5],
[19] rely mainly on fully-supervised annotation for individ-
uals in the crowd (i.e., placing a dot at the center of each
individual) to estimate crowd density. Yet, such an anno-
tation process is extremely time-consuming and laborious.
Especially for extremely dense scenarios, it is almost sense-
less to manually label over-heaped dots just for the purpose
of representing crowd density in a scene. Such a tedious
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Figure 1: For the crowd images with more than twice the
number of differences, humans can readily tell which one is
of more people. We can assert that the number of people is:
count(A) < count(B) < count(C) intuitively. (The exact
numbers: count(A) = 254, count(B) = 580, count(C) =
1202. Please zoom in for a better view.) We aim to resolve
the crowd counting problem by solely relying on ranking
two images with high contrast in crowd counts.

annotation process hinders the scale and diversity of crowd
datasets and thus slows down the development of this area.

Recent work [56] revisits the regression-based counting
method that ignores the exact individual locations and di-
rectly maps a crowd image to its crowd counts. However,
the problem of annotation remains unsolved, as ground-
truth crowd counts are required for training, which thus can-
not prevent annotators from strenuously pinpointing each
individual in the images. Besides, some approaches [10],
[2] aim to bypass dense annotations with alternative in-
teractions. Considering each annotated object in an im-
age is atomic and equivalent, they require a few individ-
ual annotations instead of accurate locations of all objects.
These methods are promising to relieve the annotation ef-
forts while still achieving good performance, but they do
not radically solve the problem.

To address the above concern, we rethink the way of gov-
erning crowd counting models. Intuitively, directly estimat-
ing the crowd counts in an image is a challenging task even
for a human expert. But it is much easier to sense the rel-
ative density for a few crowd images with great contrast
in population sizes. For example, for the three crowd im-
ages in Fig. 1, we can easily tell which one has the largest
scale crowd. Thus, this observation sheds light on a novel
methodology of supervising the crowd counting models us-
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ing ranking labels for any pair of crowd images, where each
ranking label indicates which one of the image pair contains
more persons. Compared to the existing annotation process,
annotating ranking labels for images with a large contrast in
crowd sizes is an almost effortless task for human annota-
tors, so establishing larger diverse crowd datasets becomes
possible, which will be of great value to the community. To
this end, it boils down to the problem of how to effectively
leverage the ranking labeled image pairs to supervise crowd
counting models in such a weakly-supervised manner.

To exploit the ranking labels of crowd images, we pro-
pose a novel Siamese Ranking Network (SRN). Specifi-
cally, instead of directly estimating the crowd size of each
image, a pair of crowd images are fed into two separate yet
weight-sharing deep networks to predict their potentials that
indicate the ordering of the counts in crowd images. For in-
stance, in Fig. 1, the potential of C should be higher than
those of A and 3. During the training phase, the magni-
tude relationship between a pair of predicted potentials can
be supervised by the corresponding ranking labels of the
crowd image pair. To this end, the purpose of model op-
timization is to assign appropriate potentials for all crowd
images, which makes their orderings of potentials consis-
tent with the ranking labels. Thus, the predicted potentials
will be innately and positively correlated with the number
of objects in crowd images, so they can be further applied
to regress the absolute crowd counts. We construct a large
number of ranking labels corresponding to pairs of crowd
images as the training set for training our proposed Siamese
network.

However, the learned Siamese network can only produce
potential scores as no crowd count labels are involved in
training. To combat this problem, in the inference stage,
we leverage a few images with crowd count labels as the
reference, denoted as counting anchor set, to disentangle
the relationship between potential scores and actual crowd
counts. Thanks to the positive correlation between the po-
tentials and the ground-truth crowd counts, we establish a
linear mapping function to fit the potential and counts of
anchors, and we apply it to estimate the crowd count of
the query image. Our proposed annotation scheme is far
more facile than the standard point-based annotation, espe-
cially in challenging crowd scenes, but we achieve compa-
rable performances to those trained with stronger supervi-
sion. Extensive experiments study various combinations of
supervision in training, and we show that our model is su-
perior to state-of-the-art weakly-supervised methods, even
better than those trained with point-based labels.

Our contributions are three-fold:

* We introduce a novel weakly-supervised crowd count-

ing setting, which can reduce labeling costs largely and
be notably beneficial to dense and congested crowds.

* We propose a simple but effective Siamese-training

method and utilize the anchoring mechanism to esti-
mate crowd counts and we verify its effectiveness in
this task.

» Extensive experiments conducted on several challeng-
ing benchmarks study various combinations of su-
pervision. We demonstrate that our method out-
performs state-of-the-art weakly-supervised methods
without any extra labeling effort.

2. Related Work

Fully-supervised Crowd Counting. In recent years,
deep learning based methods [48], [59], [53], [25], [19]
have attracted much attention in computer vision for crowd
counting. The crowd counting methods mainly include
detection-based methods and regression-based methods.
For the detection-based methods, Stewart et al. [45] pro-
pose to learn person the detector relying on bounding box
annotations to count. [30] only requires point supervision
to detect the human heads and count them in crowds simul-
taneously. However, it is difficult to accurately detect heads
or bodies in extremely dense and congested crowd scenes,
and that always degrades counting performance.

Therefore, the mainstream idea is to train deep CNN
networks for density regression. CNN-based regression
methods learn a mapping from semantic features to a den-
sity map and predict the total count. The main issue of
regression-based counting tasks is the huge variation of in-
stance scales. To tackle scale variations, employing multi-
ple receptive fields is effective to learn from people of vari-
ous sizes. For instance, several works [58], [59], [38], [43],
[8], [36] employ multi-column networks to obtain local or
global contextual features to handle scale variations. [5],
[26], [15] utilize inception blocks to acquire different recep-
tive fields. Several approaches [19], [6] combine the seman-
tic features with dilated convolution for density estimation.
Meanwhile, some works [34], [60], [57], [49] introduce the
attention mechanism which is effective in extracting fore-
ground features. Considering performance gain from ex-
tra supervision, perspective maps [27], [41], [55] and depth
maps [20] are delivered to bring more scale guidance. On
the other hand, combining with high-level tasks, i.e., local-
ization [31], [24], segmentation [42], depth prediction [60],
can provide more accurate location labels for density re-
gression and boost the counting with extra semantic infor-
mation.

However, all the above CNN-based methods require
a large number of labels during training, and annotating
the crowd counting dataset is a labor-intensive and time-
consuming task.

Weakly-/Un-/Self-Supervised Crowd Counting.
There are some weakly-, un-, or self-supervised counting
methods proposed with the consideration of relieving the
labeling burden. In the weakly-supervised setting, most
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methods are regression-based and adopt the image-level
count label as the weak supervision signal for training.
Idrees et al. [13] leverage Fourier Analysis as feature
extraction mechanisms to predict total counts. The work in
[47] applies the Gaussian process as a weakly-supervised
solution for crowd counting. For the CNN-based methods,
[56] proposes a soft-label sorting network to strengthen the
supervision of crowd numbers beyond the original counting
network, and [17] is a semi-supervised method combining
a few location-level labels with count-level annotations.
[32] focuses on highly confident regions while addressing
the noisy supervision from unlabeled data as well in a
semi-supervised manner. Although the above count-level
methods are “weakly-supervised”, the time spent for
annotation actually is not remarkably reduced, while just
the number of labels is reduced. Besides, Sam et al. [37]
develop an autoencoder to achieve crowd counting in an
almost unsupervised manner, and only a few parameters are
updated when training. By matching statistics of the distri-
bution of labels, they propose a completely self-supervised
training paradigm without using any annotated image in
[35]. But the performance of unsupervised methods still
exists a large gap with fully-supervised works. Besides, it
is known that deep CNN-based crowd counting methods
usually struggle with the overfitting problem due to exist-
ing small datasets and their limited variety. To ease the
overfitting problem, Wang et al. [51] explore generating
synthetic crowd images to reduce the burden of annotation
and alleviate overfitting.

With the rapid development of Transformers [46] in the
field of computer vision, various methods such as Tran-
sCrowd [21], CrowdMLP [50], CrowdFormer [39], and
HACC [18] have employed the Transformer architecture.
Among them, TransCrowd [21] utilizes a Transformer en-
coder based on ViT [9] and employs a regression head
for weakly supervised crowd counting. CrowdFormer [39]
builds upon this by incorporating multi-scale fused features.
However, these methods still require massive count labels
and are not effective in the weakly-supervised setting.

Compared with the prior weakly-supervised methods,
our proposed training settings based on ranking labels can
effectively reduce the labeling burden, while maintaining
the state-of-the-art performance.

Learning to rank. Different from the standard machine
learning tasks of regression or classification, the ranking
tasks are not with precise ground-truth metric targets or
class labels as supervision. These works are designed to
handle with ordered ranks, i.e., which may be from human
preferences, to predict the ordinal rank or relevant metric.
There are many learning-to-rank works proposed in the lit-
erature. Some of the approaches, such as Ranking SVM
[12], RankBoost [11], and RankNet [4], focus on a pair of
instances to learn their ranking function by minimizing the

loss functions. [40] applies learning-to-rank to large-scale
datasets with the Stochastic Gradient Descent method.

In contrast to the above works for predicting ranks, addi-
tional numerical references or other auxiliary supervision
is required if we will make a prediction on the number
of count. Liu er al.[28] propose a learning-to-rank self-
supervised strategy for utilizing available unlabeled images.
And they show the ranking can be used as a proxy task for
some regression tasks to solve the problem of limited size in
existing datasets. However, relying the ranking of cropped
images, which are cropped from the same source image,
suffers the influence of similar paired patterns.

In this paper, the proposed ranking strategy works on
pairwise instances of different images, similar to ranking
SVM [12]. The setting can be free from the aforementioned
problems from the same source pattern. And our method
alleviate both overfitting problem and intensive annotation
burden. The performance in a weakly-supervised setting is
comparable to location-level supervised methods, such that
can be feasibly applied in practical applications.

3. Proposed Method
3.1. Problem Formulation

Given a set of crowd images X = {x1,29,...,2n},
where z; is the sample of crowd images, and z; €
RHXWXC “where H, W, and C denote the height, width,
and number of channels respectively, our goal is to pre-
dict the object count y; of a crowd image x;. The exist-
ing works achieve the goal by learning a mapping function
M : X — Y topredict the labels, i.e., Y = {y1, Y2, ..., Un }-
Different from the previous practice, we utilize ranking la-
bels for supervision instead of count labels. Count labels
refer to the object number of crowd images, while ranking
labels are binary (i.e. {—1, 1}), each of which indicates the
size relationship between the counts of two crowd images.

Formally, the crowd dataset X can be expanded as a set
P of ranking labeled pairs. Each element of the ranking
pair set P in the crowd dataset X is denoted as a tuple
(i, xj,qi),1 <1 < j < n, where the binary ranking
label ¢ € {—1,1}. When the crowd counts of z; and x;
are subject to y; > y;, their size relationship can be eas-
ily identified, which means that the crowd image z; ranks
higher than z;, so that the corresponding label g; ; is set to
1 and vice versa.

In favor of learning the ranking relationship among a set
of crowd images, we introduce the crowd counting potential
v that is positively correlated with the actual crowd count y.
Thus, the goal is to learn an estimating function f(z;w) to
predict the potentials v for all the crowd images with rank-
ing labels, which aims to ensure the ordering of the assigned
potentials obeys the ranking labels. After that, the estima-
tion function can be further used to predict the potential for

345



any query image and the anchoring mechanism can map its
potential to the absolute crowd count.

3.2. Labeling Ranking Pairs

For a pair of unlabeled crowd images {x1, 2}, if it is ob-
served that the crowd number y; is definitely much greater
than g5, the ranking label g; ; is set to 1, and vice versa. If
the relationship is hard to identify, no label will be added to
the ranking pair set P. Regarding various crowd scenarios,
there are different strategies to label ranking pairs.

First, we can exploit the images from public benchmarks
to train our model. For most existing crowd counting bench-
marks (e.g., ShanghaiTech [59], UCF-QNREF [14]), they can
provide the dense annotations of object locations for crowd
images and the count labels can thus be acquired without ef-
fort, which means we can easily convert them into ranking
labels. Generally, for crowd dataset X, the size of all rank-
ing pairs | P,;;| is O(n?) (where n is the size of the dataset),
in which any two images could be formed as a ranking pair.
However, the number of ranking labels is much less than
n?, since we are only allowed to manually label the obvi-
ously distinguishable pairs of crowd images. In addition,
considering that the ranking relationship is transitive, if the
ranking labels, (x 4,2 p,1) (i.e. ya > yp) and (xp,xc, 1)
(i.e. yp > yc), already exist in the annotated set, then
(xa,zc,1) or (xc, x4, —1) will be automatically added to
the annotated set as shown in Fig. 2. Particularly, automatic
labeling can be realized by detecting the connectivity in a
directed acyclic graph, G = (V, E). In specific, V denotes
the set of vertices, which includes all the images that oc-
curred in the ranking pairs. E denotes the set of arcs, where
(wi,j,q;),qi,; = 1refers toan arc i — j from the vertex
i to th vertex j on the graph G .

3.3. Pairwise Ranking Model

Our proposed Siamese ranking network architecture is il-
lustrated in Fig. 2. Specifically, we employ a deep Siamese
Network [7] as the ranking model for pairwise crowd im-
ages, which consists of two branches of networks that share
weights. The input of our model is a ranking pair {z1, z2}
from the set P. Each branch of the network is fed with
one of the image pairs and outputs the corresponding po-
tentials v; and vo. We leverage a Transformer-based feature
extractor architecture, PVTv2 [52], as the backbone of the
Siamese network. The backbone is composed of four stages
to extract feature maps of different scales. The feature map
obtained from the i-th stage exhibits dimensions that are
reduced by a scale factor of 21 compared to the origi-
nal input image size. After obtaining feature maps at four
different scales, we propose a Multi-Scale Feature Fusion
module to generate a feature map that incorporates multi-
scale information. Due to their varying scales and channel
numbers, we initially standardize their scales using a Global

Average Pooling and subsequently ensure uniform channel
numbers through a fully connected layer. Finally, we can
merge them together through summation, resulting in the
final extracted feature. We design a Potential Decoder to
map the feature maps extracted by Transformer Backbone
to the potential values of the scene. Here, we use three fully
connected layers to reduce the dimension of the features to
1. To supervise the ranking labels, we propose to associate
the predicted potentials of two network branches with the
corresponding ranking labels. Inspired by Ranking Support
Vector Machine [12], we can train the network by minimiz-
ing the ranking hinge loss as follows:

‘Crank = Z maa:((),f(xj;w) - f(xsz) - M)a

X4, Tj

s.t. (x;,x;5,1) or (zj,x;, —1) € P, (1)

where M is a hyper-parameter that indicates a margin to
maintain the potential difference between paired images and
w refers to the network weights.

By analyzing the population distribution within the
dataset, it has been observed that in many scenes, the crowd
tends to be denser in the lower half of the image while
sparser in the upper half. This phenomenon can be at-
tributed to the influence of gravity, as it is reasonable for
people to stand on the ground rather than in the air. How-
ever, this tendency can lead to model errors when the model
excessively relies on this characteristic of population dis-
tribution. In order to enhance the robustness of the model,
the original input {1, 22} is modified to {z1, &2}, which
means that there is a 0.5 chance for image =2 to upside-
down vertical flipping. Subsequently, an Upside-Down
MLP is incorporated after the backbone network to detect
whether the x5 features have flipped. Cross-entropy is used
to supervise the flip label and the prediction of MLP.

[fcls = Z <yl>10g(g(xuw))> 2
K3

By introducing this auxiliary classification task, the en-
coder of our model is able to extract more accurate features
across various scenarios.

Specifically, during training, we want the model to dis-
card the redundant samples that are easy to discriminate and
cannot contribute to the model optimization. To do so, we
set a hard sample filter which requires the potentials v; and
vj, inferred from {x;, x;}, should be subject to the condi-
tion 5—; < & (or :—’ < &), where £ is a predefined threshold
to determine if the ranking labels should be abandoned.

3.4. Anchoring Mechanism

During inference, for any query crowd image z, its pre-
dicted potential can be used to regress its crowd count.
Thus, it is intuitive to compare the potential ¢ of the query
image (i.e., 0 = f(&)) against a set of exemplar crowd im-
ages with their ground-truth counts known.
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Figure 2: Our framework consists of three stages. (1) Constructing a DAG to detect transitive relations amongst crowd
images, i.e., automatic labeling, which establishes a crowd dataset with ranking labels. (2) Training the Siamese Ranking
Network on ranking labels to minimize the ranking hinge loss and predict potentials (e.g. v, v2) for crowd images, where
the parameter M denotes the margin of the loss. (3) On the inference stage, the count of a crowd image & can be estimated

by mapping the predicted potential ¢ to actual crowd count g.

In particular, we introduce a counting anchoring mecha-
nism. We denote the labeled exemplar images as counting
anchor set. The anchor set includes a set of crowd images
sampled from the training set, and their counts are specifi-
cally annotated and distributed over a large counting range,
e.g.,30 ~ 3,000. Thus, we can estimate the scaling mapping
function S : v — y that projects the predicted potentials of
the images in the anchor set to crowd counts via linear re-
gression, as shown in Fig. 2 ®. We use a L1 loss to fit the
mapping between potential values and counts:

1 n
Ereg: E Z |yl - Ui|- (3)

By learning to rank, our model effectively captures
crowd characteristics within the scene. The linear function
S then transforms this latent information into precise count-
ing, yielding heightened precision. Our experiments in
Sec. 4 demonstrate a distinct positive relationship between
the model’s predicted potential values and corresponding
counting labels. This affirms the viability of utilizing a lin-
ear function for fitting.

3.5. Ranking v.s. Regression

The reasons for choosing a ranking-based scheme over
regression-based methods are twofold. First, compared to
the point-based annotation, ranking labels are much eas-
ier to obtain, i.e., annotators only need to label ‘“close”,
“less than”, and “greater than” for any two crowd im-
ages. Second, the ranking problem is simpler to solve

than regression-based methods, because ranking relation-
ships are invariant to any image-level geometrical transfor-
mation, which can thus improve the model’s robustness. On
the contrary, optimizing the regression model is difficult and
tends to get stuck with local minima. Although it is easy to
obtain the optimal solution for the ranking-based formula-
tion, it may not always be optimal for crowd counting. This
is because the theoretical upper bound of the ranking opti-
mization objective is easy to approach. It seems that simply
learning a good ranking model is insufficient for counting
tasks, and a suboptimal regression model can also give a
perfect ranking. But a model with perfect ranking perfor-
mance may yield poor regression performance.

Therefore, it is a trade-off for choosing ranking or re-
gression. To further improve our model, we propose to in-
tegrate regression and ranking-based schemes. To this end,
crowd counting can be achieved in such a hybrid weakly-
supervised setting. The optimization objective consists of
three terms, i.e., pairwise ranking 10ss L;.q,x (P; w), regres-
sion loss L4 (D; w), and classification loss Les(T; w). In
each iteration during training, there will be a crowd image
randomly selected from D and a ranking pair randomly se-
lected from P as network input. Formally, the hybrid opti-
mization loss is defined as below:

LT =min Lyank(P;w) + a1 Lyeg(D;w) + anLas (T w),
4

where P denotes the dataset encompassing pairs of images
with ranking labels, D signifies the anchor set consisting of
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crowd images with counting labels employed exclusively
for regression, and 7' encompasses flipping labels. The pa-
rameters a; = 0.2 and as = 0.1 represent the trade-off
among pairwise ranking loss, regression loss, and classifica-
tion loss. Note that, with more crowd labels used in regres-
sion, the performance benefited from regression is greater.
To make full use of the supervision from the counting an-
chor set, we can utilize these few anchor samples with count
labels as D for regression. In the most extreme case, we can
attach all the training images with count labels for optimiz-
ing the regression loss term, so that it transforms our formu-
lation into a label-based optimization completely. Yet, with
the involvement of the ranking loss, the performance is sig-
nificantly superior to the pure regression-based methods.

4. Experiments

We conduct extensive experiments to evaluate our ap-
proach on several crowd counting benchmarks: Shang-
haiTech PartA [59], UCF-QNRF [14], UCF_CC_50 [13].
We compare our approach against other weakly-supervised
counting methods. Note that, compared to the existing
weakly-supervised methods, our ranking-based model re-
quires weaker supervision. In this section, we first describe
the implementation details and evaluation metrics. Then,
we compare and evaluate our method with the peer weakly-
supervised state-of-the-art methods. Last, we perform com-
prehensive ablation studies to delve into our model.

4.1. Implementation Details and Metrics

Implementation Details. The network backbone used
in our experiment is PVTv2 [52]. Apparently, the backbone
can also be replaced by other Transformer-based models or
CNN-based models. The proposed network is trained using
Adam solver [16] as the optimizer with a mini-batch size of
1. The learning rate is set to le-5. Except for the ablation
study, the margin of SVM in our methods is set to 0.5. All
images are resized to 1152 x 768.

Evaluation Metrics. There are two metrics widely used
to evaluate the performance of crowd counting. Mean
Absolute Error (MAE) implies count estimation accuracy,
which is formally defined as,

|
_ . GT
MAFE = N ;_1 lei — e, (5)

where A is the number of images in the testing set. ¢; is the
predicted count for ¢-th image, while its actual count is ciGT.
Mean Squared Error (MSE) is the metric for the variance of
counting estimation to reflect the robustness of prediction,
which is defined as,

N
MSE =

OBCEON ©)

=1

Anchoring Mapping. During inference, to evaluate the
proposed ranking method, the scaling mapping function
S : v — y from potential scores to real count numbers
can be learned by linearly fitting the images in the counting
anchor set, where {v, y} is paired and known.

4.2. Comparison with State-of-the-arts

Compared with previous weakly supervised counting
methods, our supervision scheme is unique, and requires
less supervision information. Here, we mainly compare the
proposed methods with other approaches with diverse su-
pervised settings. Our comparison evaluation is conducted
on ShanghaiTech PartA [59] and UCF-QNREF [14] datasets.

ShanghaiTech Part A Dataset. ShanghaiTech Part A
dataset [59] is a large-scale crowd counting dataset, which
is composed of 482 images with 244,167 annotated persons.
The training set includes 300 images with 162,707 anno-
tated persons, and the remaining 182 images are for testing.
The images are captured from the Internet and the number
of humans ranges from 33 to 3139 per image. Following
the assumption of glance annotation, the available training
ranking pairs are 24,386. Due to our transitive automatic
labeling, the time of manually annotating ranking pairs is
reduced to 16,194. We randomly pick up 50 images from
the same dataset to set up the counting anchor set, which
corresponds to different crowd density levels in the training
set. In total, the number of ranking pairs is only 1/10 of
location-based labels. Adding the labeling efforts of count-
ing anchor set, the total labeling amount is around 1/4 of the
original labels on the ShanghaiTech Part A dataset.

UCF-QNRF Dataset. The UCF-QNRF dataset [14]
contains 1,535 images with counts varying from 49 to
12865 including 1,251,642 annotated heads, thus the aver-
age count is around 815 per image. The training set includes
1,201 images, and 334 images are for testing. We also ran-
domly pick up 50 images from different ranges of density
as the counting anchor set. Owing to the huge data size, the
number of available ranking pairs is exploded, thus it is in-
tractable to annotate all pairs in the real world. To handle
the problem, the hyper-parameter Ny;,, is provided to sim-
ulate the number of annotated ranking pairs when training
for ranking. Here we set Ny;,, = 48,000, which means
the given set P with size 48,000 is fixed before training and
these pairs are available training samples.

Categories of Crowd Counting Methods. Generally,
the supervision of the evaluation methods can be roughly
categorized from laborious to effortless as four levels, loca-
tion level, count level, ranking level, and no label:

* Location level supervision relies on location-based
density maps as the optimizing objective. For a dense-
scene crowd image, it requires a lot of effort to com-
plete the annotation of hundreds of locations.

* Count level supervision is based on crowd count num-
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Table 1: Comparison of our proposed method with baselines and related methods on ShanghaiTech Part A [59] and UCF-
QNREF [14]. “label level” refers to the supervision level of training. ¢/ means the model employs all the labels under the
corresponding level of supervision, and 4 means the model employs a few labels at this supervision level. * indicates the
0.1% of the parameters are tuned with location-level supervision. Note that, Ours exploits the same amount of count labels
as other weakly supervised methods, and ranking labels can be auto-generated from count labels without extra annotating
effort. % indicates our model is purely trained with ranking labels. Best weakly-supervised results are highlighted in red.

[ Label level |  STPartA[59] | UCF-QNRF[14]
Nolabel | MAE, MSE| | MAE|, MSE]|

Fully Supervised Methods

Method ‘ ‘ Location Count

MCNN [59] (2016) v 110.2 173.2 277.0 426.0
Switching-CNN [38] (2017) v 90.4 135.0 228.0 445.0
CSRNet [19] (2018) v 68.2 115.0 119.2 211.4
CAN [27] (2019) v 62.3 100.0 107.0 183.0
ADSCNet [3] (2020) v 55.4 97.7 713 132.5
TopoCount [1] (2021) v 56.9 95.2 87.3 142.4
P2PNet [44] (2021) v 527 85.1 85.3 154.5
CLTR [22] (2022) v 61.2 104.6 89.0 159.0
MAN [23] (2022) v 56.8 90.3 71.3 153.5
Weakly-/Semi-/Un-supervised Methods

GWTA-CCNN [37] (2019) * v 154.7 229.4 - -
CSS-CCNN [35] (2020) v 207.3 310.1 4424 721.6
IRAST (Label Only) [29] (2020) + 98.3 159.2 147.7 253.1
IRAST [29] (2020) + v 86.9 148.9 135.6 233.4

CCLS [56] (2020) v 104.6 145.2 - -

MATT [17] (2021) + v 80.1 129.4 - -
TransCrowd [21](2022) v 66.1 105.1 97.2 170.3
CrowdMLP [50](2022) v 57.8 84.4 94.1 170.3
RFSNet [33](2023) v 62.9 93.7 97.9 171.3
CrowdFormer [39](2023) v 61.2 93.3 92.8 165.9
HACC [18](2023) v 58.3 84.6 92.9 168.7
Ours (Ranking Only) * 71.1 107.3 99.7 177.6
Ours (Partial Weak Labels) + 68.2 106.5 98.4 174.3
Ours v 534 84.4 92.3 164.2

bers without location supervision. There are not many

labels but one-by-one manual counting is required. <‘g§ ﬁ
S A -
* No label supervision is not to use any annotated label, e 1 BRipicceimsn
only use raw crowd images for input. .
Note that our method can be trained with pure ranking la- QZ‘
bels for pair-wise images, and these ranking labels can be S =
ea;ﬂy obtained frk(im count .labsls \ylt.hout additional cost to 8 & : e o bredictod: 29
enhance our weakly supervised training. .
Y Sup g Input Ours (Partial) Ours

Experimental Results. In our experiments, we trained
our model using the same amount of weak count labels with
other weakly supervised methods. Furthermore, we intro-
duced two variants: one trained solely on ranking labels and
another on a combination of ranking and partial count labels
(50 samples). These variants highlight the gains achieved
with minimal weak samples. In the context of partial count

Figure 3: Qualitative visualization of predicted density
maps on two examples from ShanghaiTech PartA and UCF-
QNRF by our methods. It is shown that ranking-based
methods are quite good at distinguishing the crowd regions.

methods for comparison are listed in the second part. The

labels, these weak labels can function directly as anchors
without necessitating additional fine-tuning.

The quantitative comparison with the state-of-the-art
methods on these two datasets is presented in Table 1.
The fully-supervised location-level methods are listed in the
first part of the table, and the weakly-/semi-/un-supervised

performance of the proposed method and compared base-
lines are at the bottom.

As shown in Table 1, we can see that our model trained
with ranking only shows promising results compared to
other methods. This demonstrates that these flexible and
achievable annotations are practical in crowd counting.

349



Table 2: Contribution of our proposed method on the
ShanghaiTech Part A and UCF-QNRF.

|| STPartA | UCF-QNRF

Method || MAE MSE | MAE MSE

Baseline 66.8 119.3]101.4 198.6

Baseline + Multi-Scale 59.5 862 | 93.9 170.1
Baseline + Multi-Scale + MLP-Branch || 53.4 84.4 | 92.3 164.2

The additional 50 samples can boost the counting accu-
racy. When compared with other weakly-supervised meth-
ods such as CrowdMLP [50] and HACC [18] with the same
amount of weak training data, the performance of Ours is
the best in the weakly-supervised setting on MAE and MSE,
and even close to location level baseline MAN [23]. We vi-
sualize the density maps delivered from the first layer of the
network as illustrated in Fig. 3. Although there are no lo-
cation points as supervisory signals, the estimation of our
approach is close to the ground truth density maps.

4.3. Ablation Study

Contribution of the multi-scale features. In order to
evaluate the role of multi-scale feature fusion in crowd
counting, as a baseline, only use the largest size features
as input to the next stage. As shown in Table 2, the perfor-
mance exhibits enhancement as a result of the aggregation
of features derived from distinct stages.

Contribution of the Upside-Down MLP. While intu-
itively assessing whether an image has upside-down flip-
ping as an additional image-level auxiliary classification
task appears to be effective, experimental evaluation is nec-
essary to determine whether this auxiliary task can truly
assist in improving the model’s performance. The results
presented in Table 2 indicate that MAE and MSE have im-
proved scores on different datasets. This implies that the
additional supervision information we introduce indeed as-
sists the model in comprehending scenarios characterized
by diverse distributions.

Impact of the margin on SVM. We set hyper-parameter
margin M to 0.5 in the previous experiments. To inves-
tigate the impact of margin, we conduct experiments on
ShanghaiTech part A datasets. As shown in Table 3 (left),
the results demonstrate setting different margins of SVM
does not affect the counting performance significantly. The
crowd counting performance is similar to our current results
when the margin is set properly, which means the proposed
method is robust.

The size of the counting anchor set. So far, we have
conducted our experiment with the size of the counting an-
chor set 50 for Ours with partial counting labels and 300 for
Ours. To investigate the effect of anchor set size, we con-
duct an experiment that applies different sizes on Shang-
haiTech Part A. The results are shown in Table 3 (right),
we can observe an improved performance by expanding the

Table 3: Impacts of the margin M (left), and the size of the
counting anchor set (right). Note that two factors are varied
independently. The best results are highlighted in bold.

M MAE MSE| Setsize MAE MSE

0 707 107.1| |B|=10 842 1238
0.1 713 1086| |B|=30 719 1084
0.5 682 1065||B|=50 682 1065
1.0 687 103.0| [B|=80 658 101.3
3.0 709 109.1||B| =150 613 94.1

Table 4: Cross dataset experiments on the ShanghaiTech
Part A, UCF-QNRF, and UCF_CC_50 datasets for demon-
strating the generalization of different methods.

I IST PartA — UCF-QNRF I UCF-QNRF — ST PartA I ST PartA — UCF_CC_50

Method |[MAE MSE |[MAE MSE |MAE MSE
MCNN [59] - - - - 3977 624.1
L2R [28] - - - - 3376 4343
SPN [54] 2363 4284 |87.9 1263 [3683 5884

TransCrowd [21] - - 78.7 122.5 - -

CrowdFormer [39] [|162.7 3339 73.0 121.5 - -
Ours (Partial Labels)|[161.4  334.6 76.0 123.1 |3224 4315
Ours 1522 3249 69.0 116.2 |286.8 403.1

set. It implies that the counting method based on regression
labels can be incorporated into our setting and effectively
boost crowd counting.

4.4. Challenging Experiments

Cross Datasets. We conduct experiments to demon-
strate the generalizability of our method across different
data domains. The model is trained on one dataset of
a source domain and evaluated on another dataset as a
target domain. The results are demonstrated in Table 4.
Thanks to the Upside-Down MLP, our model demonstrates
the robustness of scenes with diverse population distribu-
tions, We can observe that the proposed method generalizes
well to the unseen evaluation datasets. Especially, the pro-
posed method can be comparable to or even better than the
location-level supervised methods.

5. Conclusion

In this paper, we propose a novel weakly-supervised set-

ting, in which we leverage the binary ranking of two images
with high-contrast crowd counts as training guidance. In
particular, we tailor a Siamese Ranking Network that pre-
dicts the potential scores of two images indicating the or-
dering of the counts. Hence, the ultimate goal is to assign
appropriate potentials for all the crowd images to ensure
their orderings obey the ranking labels, and then map them
to actual crowd counts.
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